
Page 1 FoxRockX December 2009

Your Free Issue
Dear FoxPro Developer,
Dear FoxRockX Subscriber,
here comes another free copy of FoxRockX for you!
This is not a regular issue but a special issue dedi-
cated to a topic that’s very interesting for Visual
FoxPro Developers! As you know the FoxPro com-
munity is still alive and keeps going. And the large
number of active users of Visual FoxPro with their
amazingly large number of FoxPro applications in
production are interesting to other companies. The
lack of efforts from Microsoft for Visual FoxPro does
not mean that other companies are not allowed to
extend their products to work together with Visual
FoxPro and come up with interesting offers to the
FoxPro community. One of these offers is the Visual
FoxPro Netcompiler from eTecnologia.

This free special issue of FoxRockX contains all
the details you need to know.

Boudewijn Lutgerink is the author of this special issue. He is a kind of an evangelist for the VFP.NET com-
piler and delivered presentations for this tool at local events and conferences many times. In a merry go round
he shows you a lot of features you might never have heard about before which are available in this exciting
product. But please bear in mind that it is still a beta version, and we all have to wait some more time until the
final version becomes available.

Once in a while we will report about the progress of these projects in the regular issues of FoxRockX
magazine. Hopefully you will continue your subscription or in case you are not a subscriber yet will become a
subscriber. Here the details again about our small magazine dedicated to Visual FoxPro:

FoxRockX is published bimonthly with 24 pages DIN A4 and your subscription includes access to the on-
line archive of FoxRockX as well as of all issues of former FoxTalk and FoxTalk 2.0 magazines. Sometimes we
add a free issue (with sponsored articles) like this one - at least once a year and possibly more often. The An-
nual On-Line Subscription rate is US$ 99.00 / 75.00 EUR.

For more details visit our homepage at http://www.foxrockx.com. To subscribe now, visit either http://
shop.dfpug.com (Europe/Asia) or http://www.hentzenwerke.com (USA/Canada). On-line articles, archives
and companion materials are accessible for subscribers through the “FoxRockX” tab at http://portal.dfpug.de.
The access information will be sent with the confirmation of your subscription.

December 2009
Number 3

 2 Special Issue

eTecnologia

.NETCompiler für Visual FoxPro
Developers

Boudewijn Lutgerink

December 2009 FoxRockX Page 2

Introduction
In March 2007 Microsoft came with the dreaded
message that there would never be a version 10 of
Visual FoxPro.

From their point of view, rewriting VFP to the
.Net platform was not feasable and doing so would
take a huge effort, so they declared the fox dead.
That this was also due to the fact that MS did not do
any serious effort to market VFP as THE strongest
database tool they had seems to be a blind spot in
their eyesight.

A group of rebellious developers from Central
America and the USA thought differently. They
saw the power of VFP in the context of datahan-
dling, they saw that rewriting this “capo di capi”
of datahandling tools was THE way to go for .Net
tools. They saw the true strength of the Fox where
it comes to data and string manipulation, an area
where all other .Net languages leave much to ask
for.

So they took up the heroic task of rewriting the
language as we know it for the .Net platform. In
this article I will touch the possibilities of this new
language, the rising star in the .Net world. I have
no doubt that you will agree that this will be the
incarnation of a language that always was the star
in datahandling. As said, I can only touch the pos-
sibilities since I only have about 22 pages to fill,
where my complete whitepaper already is going
way over 100 pages. A book is on its way. Hope-
fully it will be published somewhere next year, at
the same time VFP.Net will see its version 1.

Introducing VFP.Net
The Netcompiler for VFP, or VFP.Net as it is al-
ready called by its fans, offers you the language
you already know.

For a better understanding, VFP in this context
has the meaning of Very Fast Productivity.

The VFP Netcompiler from
eTecnologia
The hope and future for VFP Developers

Boudewijn Lutgerink

There’s a new kid on the block, the word is that it
is mean, lean and blazing fast. The kid is the ka-
rate kid of the developer tools. It cuts “time to ship
software” in half like a true karateka cuts stones
and pieces of wood, it has no mercy with data and
strings and it has some “weapons” developers now
only can dream of. Even worse, it is in the hands
of a gang that consist of software weapon smiths,
and they have some heavy artillery for “the Kid”
in mind.
The biggest mistake MS made in .Net is that they
make accessing the second most expensive asset of
companies extremely hard. This asset is the data in
their databases. Accessing and manipulating data
is, was and will always be the strongest side of “the
Kid” and its fantastic parent Visual FoxPro. The
current tools emphasize too much on doing OOP
for the sake of OOP that simple access to data is
near to impossible. This is the area where the “The
Kid” kicks doors like they are made of paper.
The name of “The Kid” yet unknown, but that is
gonna change, for now we call it the VFP.Net. In
its current state it is a product under development.
The manufacturer, eTecnologia from Guatemala
and Miami, is working on it for a bit more than two
years. Although in beta phase, it already gives a tre-
mendous insight of the possibilities for developers
who care for fast data access.
This article shows you how you can use this new
tool and mix and mingle the well known VFP lan-
guage with the new and exciting possibilities the
.Net framework offers. IMO the classes in this
framework are extremely well worked out, and if
you are serious about your work, knowledge of
the .Net framework is part of your future work. So,
.Net developers of the world, shake, shiver and say
your prayers, because “The Kid” is on its way to
teach you a lesson!

Page 3 FoxRockX December 2009

The commands and functions of VFP are cov-
ered now for more than 90%. Some older functions,
like DDE functions will never be included as these
became obsolete due to the new technologies.

At the same time VFP.Net gives you access to
all the classes that .Net assemblies offer you, either
developed by MS or by 3rd party manufacturers.

eTecnologia also took a good look at the pos-
sibilities other languages had to offer.

This lead to language enhancements that you
will most definetely like. I tell more about that later
on.

As a result of having that well known language
it offers you also the possibilities to access data the
way you are used to, simple, fast and furious. . .

Here’s an overview of the features the VFP.Net
offer you right now:

Code is compiled for the CLR. •
This means that any code you write and
compile into an assembly can now also
be used by other languages in the .Net
world, whether that language is C# or
VB.Net, cobol.net, vulcan.net or what-
ever is available.
The language is embedded in the Sharp-•
Develop IDE.
SharpDevelop is an open source project,
it also offers you a managed code envi-
ronment. This is in contrast with Visual
Studio, that still relies heavily on the
COM model.
The SharpDevelop IDE looks exactly
like the IDE of Visual Studio, with all
the tabs and tools you know, plus,
again, some enhancements.
The SharpDevelop environment works •
with project and file templates. These
templates are actually XML files that
you can easily modify for your use.
Whether you want to create an applica-•
tion for the Desktop, the Web or, in the
future, PDA’s, you can use the same lan-
guage you are so used to and love.
You can include your VFP forms in your •
application.
And the other way around, you can in-
clude also C# of VB.Net forms in your
applications.
Either way your development time and
efforts are protected, you don’t have to
start from scratch when you need a form
that you relied on for so long.
For new forms you have the choice of •
creating Winforms, WPF forms and the
new VFP forms.
The latter comes with visual inheritance,
later on in this article I will show you a
simple form.

Function overload, it is here. •
Function overloading is the possibility
to create a function with a given name
multiple times but with different param-
eters.
This leads to cleaner code that is easier
to maintain.
After creating these functions one call to
such an overloaded function IntelliSense
kicks in and shows you all the possibili-
ties for this one function.
Talking about functions and parameters •
we can also now strong type those pa-
rameters.
The LPARAMETER is still valid. Addi-
tionally you can now use the TPARAM-
ETER keyword.
An example will follow in this article.
Just like the parameters we can now also •
declare strong typed variables, using the
TLOCAL keyword.
At the same time we can now also, on
the same line assign a value to those
variables.
Using strong typed parameters also
“somewhat” speeds up code execution.
Talking about parameters the parameter •
array comes to mind, you can now pass
an unknown number of parameters to a
procedure and “catch” them in an array.
Thinking of arrays. How often did you •
wish for a ZERO BASED array? I know
there have been numerous times I wish
I had one. Well, here is the good news,
the compiler offers you zero based ar-
rays by default.
Blowing the lid of the table restrictions, •
gone is the 255 field limit, gone is the
2Gb limit.
You can now create tables of 2000 fields
and a max of 16 Exabyte on data.
FYI, 16 Exabyte is 16,000,000,000 Gb, is
that enough for you?
2000 fields may be somewhat overdone,
but I have been in situations where I
could use more fields than the 255 we
have now available.
The compiler is a 64 bit compiler, ready •
for the future of 64 bit platforms.
Best of all, on your conference CD you •
will find a beta version of the compiler
so you can play with it yourself.
For those of you who do not come to the •
German DevCon, SHAME ON YOU!
But we have mercy. The beta will be
available for download pretty soon as
well, keep an eye on www.eTecnologia.
net for more information.

December 2009 FoxRockX Page 4

As this is still a product under development
you might find that some things are not entirely
developed yet, other stuff may even be stronger
and better already than we know from other .Net
languages.

Interfaces
In VFP we are familiar with the idea of abstract
classes. These classes are never instantiated in our
applications, they merely provide a blue-print for
classes we derive from them.

Interfaces are one abstraction layer extra be-
tween the classes we create and the design of those

classes. They do provide the lay-out of our classes
BEFORE we create those classes.

For those who are familiar with CRC (Class
responsibility Collaboration) cards, you can think
of interfaces as such cards in that the interface de-
scribes the Responsibilities for the class that will
implement the interface.

A class can implement more than one inter-
face.

The syntax for defining an interface is as fol-
lows:
DEFINE INTERFACE BossInterface
 DelegateWork as Logical
 DoWork as Logical
 ComeLateAtWork as Logical

 Procedure raiseSalary
 Tparameter tnPercentage as Integer
ENDDEFINE

We can now define an abstract class, based on
this interface.
DEFINE CLASS TheBoss IMPLEMENTS BossInterface
 DoWork = .F.
 DelegateWork = .T.

Installing the Compiler
If you know drag and drop you are halfway the in-
stallation already.

Open the zipfile, in the zip you will find a fold-
er SharpDevelop.

Drag that on your disk. Create a shortcut on
your desktop from the bin/sharpdevelop.exe and
you are about to start.

When you bought the Netextender, another
product from etecnologia that brings the .Net
framework to VFP, you will probably install the
SharpDevelop environment under the eTecnolo-
giaNetExtender folder.

Using Vista or Windows 7
If you drag it to the program files folder make sure
that you start the application as admin, if you do
not do that you might have trouble starting it and
modifying and saving files.

Personally I have installed the samples in a
different folder than the standard samples folder
under SharpDevelop. Being at one session of Doug
Hennig in 2007 I learned that virtualization could
lead to problems if you install custom data in the
program files folder (or one of its sub folders),
hence my choice.

Things we always wanted (but were too
shy to ask for)
As with any tool, there were “some” things we
would like to have in VFP. Some of them we asked
for, others were never asked for but we did envy
those developers who had them.

In this section of this FoxRockX issue I will
show you things that were not part of our beloved
VFP language before, but, lo and behold, we do
have them now.

Figure 1. the SharpDevelop folder under the eTecnologia folder

Page 5 FoxRockX December 2009

ComeLateAtWork = .T.

Procedure raiseSalary
 TPARAMETER tnpercentage as number
ENDDEFINE

Now that we have the base class designed we
can subclass it to a class like RainerIsTheBossIn-
FrankFurt based on the TheBoss class.

In future releases of VFP.Net, any additions
you make to the Interface will be mirrored in the
classes, implementing that interface.

Removing functions or properties from the in-
terface definition will not be mirrored in your class-
es as this MIGHT break your code.

ENUMS, numeric data logically
grouped
Enums are a special breed of grouping data. You
could use days of the week, months or whatever
you can come up with.

Keep in mind that enums only work with num-
bers, using the ToString() method
of a value in the Enum will re-
turn the actual string as a value.
The syntax for enums is (with the
days of the week as example):
DEFINE ENUM DaysOfWeek
 Monday = 1
 Tuesday = 2
 Wednesday = 3
 Thursday = 4
 Friday = 5
 Saturday = 6
 Sunday = 7
Enddefine

You can now assign a variable like:
TLOCAL tnDay = DaysOfWeek∷Monday

?m.tnDay && returns 1
?tnday.tostring && returns Monday

Macro substitution
Yeah, I hear you, we have that already in VFP. I
know, but what .Net language has macro substitu-
tion?

RIGHT! That is not possible unless you use a
whole lot of code with, as I understand it, reflection
all over the place. (Frankly, I could not care less,
macrosubstitution is easier than that always!)

Remember however that there is a slight differ-
ence between the pure VFP macro as we know it
and the way it is implemented in VFP.Net.

In VFP we would do something like:
lcCmd = “Goto “+transform(lnRecord)

&lcCmd. && See the closing dot, not common-
ly used in VFP, but allowed nonetheless.

Mind you that closing a macro with a dot (.)
with nothing following it will result in an error.

You will definetely get an error, using &lcCMD
without closing period is the correct way.

Now you can create commands at your leisure
and execute them with the macro substitution,
something that is unthinkable for other .Net tools.
But hey, was it not so that VFP’s superiority was
proven over and over again? It just takes time for
others to understand that.

Structs, powerful “classes” to use in
your code
Structures can be seen as classes with the exception
that, like enums, they cannot have an explicit base
class. You can instantiate them like any other ob-
ject.

Structs can be defined within or outside classes.
The basic idea is that you can define properties and
methods/functions within them. Actually, all the
data types you use are structs in .Net

The above picture shows a small piece of code.
The lnSomeInteger tooltip shows it as a struc-

ture, when hovering your mouse over the variable
name.

In your class you create an instance of that
struct and then you work with that.

A simple example:
DEFINE struct MyCoOrdinates
 STATIC lnX as integer
 STATIC lnY as integer
 PUBLIC Function coOrds()
 TPARAMETERS tnX As integer, ;
 tnY As integer
 this.lnX = tnX
 this.lnY = tnY
 ENDFUNC
ENDDEFINE

This structure has two properties, lnX and lnY.
We use those properties to store the co-ordinates of
the mouse position in our form. The function is a
public function, making this available to the calling
object.

In a winform you can add an object like
TLOCAL oCoord as MyCoOrdinates = ;
 MyCoOrdinates()

Figure 2. Representing a data value as an integer

December 2009 FoxRockX Page 6

component and need that in your Net application.
There can be many good and compelling reasons to
use an external DLL.

Also, and I assume that this is not common
knowledge, the classes in .Net that offer the WIN
API possibilities actually are a wrapper around the
Win API. Using these classes thus means that first
the class allowing access to a given API has to be
called, it then calls the API, receives a value, and
then returns that value. Direct calls to API functions
give you more immediate responses. Maybe not in
measurable timeslots, but still it is a bit faster.

This is one place where Attributes come to res-
cue.

Think of an attribute as an additional tool you
add to a class, one more attribute to use. The func-
tion you need is the DLLImport() function. This
function is available from the system.runtime.In-
teropServices class.

So the first thing to do, before you define a class
where you add an attribute, is make clear that you
are using this class (and the methods in it) in your
code.

The structure looks like:
USING NAMESPACE System::Runtime::;
 InteropServices
USING NAMESPACE System::Windows::Forms ;
 AS Winforms
DEFINE CLASS YourclassName AS WinForms::Form
hMenuHandle = 0

Once that class is defined you can now add at-
tributes (external functions, stored in DLL’s) to that
class
[DllImport(„User32.DLL“,EntryPoint = ;
 „CreateMenu“)] ;
static HIDDEN PROCEDURE CreateVFPMenu ;
 as integer
ENDPROC

Of course, in VFP we do it like:
DECLARE integer CreateMenu IN user32.dll ;
 as CreateVFPMenu

This construction is still possible. The first way
is more in line with the experience of those who are
used to work with .Net (eg VB or C#) languages.
And not only that, you can now refer to the func-
tion by the VFP name you gave it in any method or
event in the form. In my example I would load the
menu in the form Load event:. The difference with
the VFP way of declaring API functions is that in
VFP you call the function as declared, which is still
possible, and in the way using attributes you call
the function as a method of the class itself. So the
VFP.Net way looks like:
WITH this
 .hMenuHandle = .createVFPMenu()
 messagebox(.hMenuHandle)
ENDWITH

This one line of code creates a variable oCoord
AND gives it a value, being an instance of MyCo-
Ordinates.

We now create a method in our form to track
the position of the mouse:
HIDDEN PROCEDURE EmployeesMouseMove AS void
 TPARAMETERS sender as object, ;
 e as System::Windows::Forms::MouseEventArgs

First there is a call to the Coords function in the
struct, as we saw above this functions fills the two
properties lnX and lnY :
this.oCoord.Coords(e.X, e.Y)
TLOCAL lnXCoord = this.oCoord.lnX, ;
 lnYCoord = this.oCoord.lnY

Then we set the text of the labels to display the
position of the mouse:
 this.label1.Text = ;
 „X: „+lnXCoord.ToString()
 this.label2.Text = ;
 „Y: „+lnYCoord.ToString()
ENDPROC

In the definition of the form the structure is in-
stantiated, this can be done in two ways, either by
the most familiar way with the CreateObject() func-
tion:
partial DEFINE CLASS employees2 ;
 AS WinForms::Form
oCoord = CreateObject(„MyCoOrdinates“)

Or in a shorthand version:
partial DEFINE CLASS employees2 ;
 AS WinForms::Form
oCoord = MyCoOrdinates()

Either way works equally well. Using the first
way is more in line with the VFP way. The sequence
of the events firing at startup do differ slightly from
what we know from VFP (LISA G).

Note that if you want to instantiate any C# or
VB.NET object you MUST use the second way. Cre-
ateObject is a function that is just a bit too strong for
these MS tools.

In a true life application you would, of course,
use the e.X and the e.Y values of the MouseMove
procedure directly. I used this as an example of
how to implement a struct. It is all up to your imag-
ination how to use structs in your apps.

Attributes, tools you need to do your
work
Every now and then we use external DLL’s.

After all, the Windows API’s are a true treasure
case with a wealth of functionality.

Maybe you just want to use the function you
are used to and meanwhile you keep looking for the
function and the right class in the .Net framework.
Another reason could be is that you use a 3rd party

Page 7 FoxRockX December 2009

In the following function the codeblock is
passed as a delegate. Which basically means that
the codeblock is transformed by the compiler into a
fully working function
FUNCTION AApply
 LPARAMETERS aInfo, oDelegate
 FOR i = 1 TO ALEN(aInfo)
 aInfo(m.i) = oDelegate(aInfo(m.i))
 ENDFOR
RETURN aInfo

Strong vs weak typed variables and pa-
rameters
Visual FoxPro is a language that uses weak typed
variables. This means that even if we define a vari-
able like:
LOCAL lnVariable as Integer

We can still do this:
lnVariable = „This is NO integer“

The above code gives us no error.
This way of working with variables is still pos-

sible in the Net compiler, giving you time to get
used to strong typing your variables.

Using strong typed variables has several advan-
tages. First of all we cannot (by mistake) change the
type of the variable. If we do so the compiler will
complain about it. Which is a good thing, that way
we are warned even before we run the compiled
code, one advantage of strong typing other devel-
opment environments already had, it is now avail-
able in the development language of your choice.
More so we increase the speed of our applications.
Compare the following two blocks of code:
HIDDEN PROCEDURE Button1Click AS void
 LPARAMETERS sender as object, e as ;
 System::EventArgs
 * LOCALS variation
 *
 LOCAL nValue as long, i as integer, ;
 nSeconds as number
 nValue = 0
 i = 1
 nSeconds = Int(Seconds())
 FOR i = 1 TO 5000000
 nValue = nValue +1
 ENDFOR
 messagebox(Transform(Seconds() ;
 - nSeconds))
ENDPROC

HIDDEN PROCEDURE Button1Click AS void
 TPARAMETERS sender as object, ;
 e as System::EventArgs
 * TLOCALS variation
 *
 TLOCAL nValue as long = 1, i as integer,;
 nSeconds as number = Seconds()

 FOR i = 1 TO 500000000
 nValue = nValue +1
 ENDFOR

This short piece of code gives me a messagebox
showing the handle of the menu.

Also there is a remarkable speed increase using
attributes.

Using an external DLL of course requires that
you know about the whereabouts of the functions
in the DLL, but that is where documentation is im-
portant. So in any case RTFM (read the fine man-
ual).

There are DLL functions that need one or more
parameters. The way to do that is quite similar as
in the previous example. Since I used the Create-
Menu function I will now show the DestroyMenu()
function.

The CreateMenu() function returns a handle
to a menu, the DestroyMenu() function needs this
handle to destroy the right menu.

First we add an attribute to the method that
makes it possible to use the correct function.
[DllImport(„User32.DLL“,EntryPoint = ;
 „DestroyMenu“)] ;
static HIDDEN PROCEDURE DestroyVFPMenu ;
 as integer
 TPARAMETERS tnMenuHandle
ENDPROC

In the FormClosed event you now can use:
this.DestroyVFPMenu(this.hMenuHandle)

Attributes are very powerful. As you can see
in the last example I made a call to a function, us-
ing the this keyword. It looks as if the DestroyVFP-
Menu is a method handling everything. It actually
makes a call to the DestroyMenu API.

Codeblocks
The structure of a codeblock looks like this:
oCodeBlock = {;
|exVal as double| RETURN exVAl^3
 }

Mind you, after the line: |exVal as double| RE-
TURN exVAl^3 is NO semi-colon for line continu-
ation! Putting a line continuation there gives you
errors at compile time.

The way you can use it is like:
FUNCTION test_codeblock
 LOCAL oCodeBlock, bInfo[1]
 DIMENSION aInfo[3]
 aInfo[1] = 1
 aInfo[2] = 2
 aInfo[3] = 3
 oCodeBlock = {;
 |exVal as double| RETURN exVAl^3
 }
 bInfo = AApply(aInfo, oCodeBlock)
 ? bInfo[1] && 1
 ? Binfo[2] && 8
 ? bInfo[3] && 27
ENDFUNC

December 2009 FoxRockX Page 8

Function overload
One concept that many programming languages
have, but that was not available in VFP as we know
it, is function overload.

Function overload is the ability of a compiler
to allow for two (or more) functions with the same
name but with different types of parameters and
return types.

Looking at VFP as we know it we can find over-
loaded functions as well. Take a look at the VFP
Fsize() function as an example:

You can pass it a fieldname; •
You can pass it a fieldname and a work-•
area number;
You can pass it a fieldname and a table •
alias;
You can pass it a filename.•

Four (4) possibilities for one function. Each one
of the returns a numeric value.

The advantage may be obvious. In order to
create a function in pure VFP that could handle all
situations as described for the Fsize() function, you
had to check for the number of parameters, using
Pcount(), then you have to check for the type and
validity of the parameters. (What happens if you
pass the alias of a table that is NOT open?). Only
after all this checking you can come to the very core
of the function.

Using function overload you can simplify the
checks on the passed parameters because you can
now split the function (taking the Fsize again) in 3
functions.

One function receiving only a string, being ei-
ther a fieldname or the name of a file;

One function receiving two strings, being the
name of a field and the alias of a table;

One function receiving a string, being the name
of a field, and a numeric value, representing the
workarea of a table.

IntelliSense, as it is available in VFP.Net is im-
mediately recognizes the functions.

Also, as soon as you add a new version of that
function in your code IntelliSense immediately sees
and shows it.

The advantage of function overload is obvious.
You need less code per function since your checks
are less complicated. Less lines of code means eas-
ier maintenance. Keep in mind that there are 10
types of programming code, one with no obvious
mistakes and the other with obviously no mistakes.
The latter has most likely less lines of code and is
less complicated. Also, speaking about mainte-
nance, creating easy to read code is also having

 messagebox(Transform(Seconds() ;
 - nSeconds))
ENDPROC

The first piece of code is easy recognized as
VFP code, with a few minor exceptions, being the
parameters:

The first parameter is a reference to the •
object calling this code (the sender)
The second parameter (e as •
System::EventArgs) uses directly a Net
class.

The second piece of code has the TLOCALS
keyword. With that, you tell the compiler that these
variables following that word are strong typed
variables.

In contrast with the first block of code I do not
assign a value to the “i” variable.

Since I have strong typed variables the compil-
er itself assigns values. In this case a value of zero.

In the for … endfor loop I increase nValue from
1 to 5,000,000 (five million, 1st block) or 500,000,000
(five hundred million, 2nd block)

The first block of code runs for nearly 4 sec-
onds, meaning 1,250,000 (one million two hundred
and fifty thousand) increments per second.

The second block of code runs in about 2 sec-
onds. Meaning 250,000,000 (two hundred and fifty
million) increments per second. Using strong typed
variables makes your code quite a bit faster. (in this
case nearly 200 times faster).

The machine I tested this code on is a laptop,
running windows 7 ultimate with a premium Dual
Core CPU running at 2.1 Ghz with 4Gb Memory.

Inline assigning values
One wish that was regularly heard when the wish
list could be filled for the next version of VFP, was
to have the possibility to assign values to variables
when they are declared. That is possible now as
well.

The LOCAL line in the first sample can also be
written as:
LOCAL nValue as long = 0, i as integer= 1, ;
 nSeconds as number= Int(Seconds())

There is no difference in speed. This construc-
tion saves you some lines of code.

Also it is possible to declare whether a variable
is signed or unsigned.

This can be done by simply adding the word
signed/ unsigned before the name of the variable.

Variables, having the signed or unsigned key-
words before them, are of course, of a numeric
type.

Page 9 FoxRockX December 2009

An example
In the OptionalParameters_Demo you’ll find one
program. I suggest that you study that sample to
get an idea of the possibilities. Here is a small pro-
gram that does the same, but with less code:
TLOCAL oInfo = TestingOptional()
oInfo.TestOptionalParam(„Rainerfest“,“in”,;
“Frankfurt“,“Is“,“always“,“Fantastic!“)
RETURN

This function is part of the TestingOptional
Class that is instantiated in the first line of the prg.

The TestAdditional Function looks like this:
Function TestOptionalParam
 TPARAMETERS toArguments()...
 IF ALEN(toArguments,1) > 0
 FOR lni = 1 to ALEN(toArguments,1)
 MessageBox(toArguments[;
 lni-1].ToString())
 ENDFOR
 ENDIF

And that is all there is! More than enough how-
ever to test the results of several calls to that func-
tion.

An unknown number of parameters is passed
to the function.

Next the toArguments array is created and one
by one the values in the array are read. The array is
an object.

As you can see in the Messagebox() function
the loop value lni is decremented with 1 with every
call.

Arrays in VFP.Net are now zero based, as op-
posed to arrays in VFP that are 1 based.

So for the code you have to take care of that, not
doing so will lead to errors.

mercy on the poor lad or lass that has to maintain
your code in a few years from now, and that poor
developer could very well be YOU.

XXX()…, a special kind of parameter
One special kind of parameter is the xxx(). . . pa-
rameter, where xxx stands for any name you wish
to give. Sometimes you need to write functions that
could receive an unknown number of parameters.

In VFP you could handle that with checking the
vartype and/or type of the variable and the num-
ber of parameters passed. In VFP.Net there is the
xxx() . . . parameter, where xxx stand for any name
you want to use.

This creates a zero based array in the receiving
function or method. You can skip through that ar-
ray using the for next loop combined with the alen()
function.

Like in:
PROCEDURE SomeTesting as void
 TPARAMETERS toSomeUnknowAmountOf;
 Parameters()...
 && do NOT forget the 3 dots here.
 TLOCAL lni as integer, ;
 lcSomeString as string
 FOR lni = 1 to ALEN(;
 toSOmeUnknowAmountOfParameters,1)-1
 lcSomeString += ;
 toSOmeUnknowAmountOfParameters(lni)
 ENDFOR
ENDPROC

You could call this function like:
SomeTesting(1,2,3,4,5)

OR like:
SomeTesting(“Rainerfest”,”in”, “Frankfurt”,;
 “is”, “always”, “Deutschgruendlich”, ;
 “organized”)

Figure 3. Function overload

December 2009 FoxRockX Page 10

In the above picture you can see the values in
the array toArguments, also you can see that this is
a zero based array, something we always wanted.
Let’s explore that a bit more.

In our next call to the function we first create an
Array and fill that with values, then we make a call
to the function:

TLOCAL TestArray(6)
TestArray(1) = „Rainer“
TestArray(2) = „Is“
TestArray(3) = „The“
TestArray(4) = „Boss“
TestArray(5) = „in“
TestArray(6) = „Frankfurt“

oInfo.TestAdditional(TestArray)

The result is “not quite” what we ex-
pect (Figure 6).

We get an error saying, Index was out
of the Bounds of the array.

Looking at what happens in the de-
bugger we see that the code stopped at the
definition of the last element of the array

(Figure 7).

We put a breakpoint in the function to see what
happens to the toArguments() values, using the de-
bugger. To place a breakpoint select the line and
press F7 OR click on the gray column before the
line number. This works ONLY if there is no icon
in that gray band, if there is you will get a context
menu that allows you to:

Rename the member;•
Find overrides of that member;•
Find references to that member, or;•
Open the .Net Reflector.•

When we reach the breakpoint we can look at
the local variables (Figure 5) by pressing view →
Debug → local variables. Step through the code by
pressing F11

Figure 5. Debugging in action

Figure 4. The contextmenu of a property

Page 11 FoxRockX December 2009

Or we start filling the array at position 0 (zero)
as in:
TLOCAL TestArray(6)
TestArray(0) = „Rainer“
TestArray(1) = „Is“
TestArray(2) = „The“
TestArray(3) = „Boss“
TestArray(4) = „in“
TestArray(5) = „Frankfurt“

Either way works, with the seconds method
you are more in line with the way the compiler
works (zero based arrays)

Handling NULL values
Let’s take a closer look at the first way to handle
array elements. We define an array as having 7 el-
ements (first sample), and then make a call to the
function in our class, of course we set the debugger
so we can take a look at the elements (Figure 8).

As we can see in the debugger, the first position
in our array is not filled, thus NULL

We can handle NULL values in our code as fol-
lows:
IF ALEN(toArgs,1) > 0
 FOR lni = 1 to ALEN(toArgs,1)
 IF toArgs[lni-1] = NULL
 MessageBox(;
 „Yoh man, that is a NULL value“)
 ELSE

What this code actually shows is the fact that
Arrays in VFP.Net are zero based.

The message, “Index out of Bounds” indicates
that one element could not be found by the com-
piler.

So we can change the code in two ways.
We either make the dimension of the array big-

ger as in:
TLOCAL TestArray(7)
TestArray(1) = „Rainer“
TestArray(2) = „Is“
TestArray(3) = „The“
TestArray(4) = „Boss“
TestArray(5) = „in“
TestArray(6) = „Frankfurt“

Figure 6. Duuuhhh not quite what we expect

Figure 8. Null values in an array

Figure 7. One way of defining an array

December 2009 FoxRockX Page 12

your application single threaded for the moment.
Maybe in future versions this issue will be solved,
but that is not certain at the moment of this writing
(beginning October 2009). Making your application
Singlethreaded is as simple as can be and requires
only two lines of code.

All you need for that is a few lines of code at
your startup application:
USING NAMESPACE System

[STAThread];
PROCEDURE Main as void

These lines make your application behave as a
STA (Single Threaded Application).

That is all that is needed to prevent any prob-
lem with any type of ActiveX control.

_Screen is not available
This is a problem and an opportunity, first of all
_screen is not available. You have to make your
own _screen object.

You can use any form, be it a base form or a
class you design for this purpose. And that is your
opportunity to FINALLY create your own _screen
object. FYI, _screen has a form base class. Take a
look at the property sheet. The basis for you code
is pretty simple.
LOCAL oForm = CreateObject(„form“) && Screen
oForm.WindowState = 2
oForm.Show()

Toplevel forms
Every now and then applications do exist of one
form only. For those applications a top level form is
a good solution which is possible in VFP.Net as well.
Keep in mind that using the “DO FORM XYZ”is the
only syntax that will work for those forms. Creat-
ing those forms as objects and then showing them
will give errors. So don’t do that. Also, setting the
ShowWindow property to 2 (as top level form) is
not strictly necessary. The form will show anyway.
The SetBack is that no matter what BackColor you
give the form, it will take the backcolor you define
for your applications in the system.

The mean beast called DataEnviron-
ment
Many applications written in VFP and using the na-
tive database container, do open the tables through
the DataEnvironment. From my experience the
DataEnvironment is a mean beast that never was
tamed really, it will bite you when you least expect
it.

Using these tables and automatically opening
them in the DataEnvironment will lead to errors.
Use the load event for opening the tables.

 MessageBox(;
 toArgs[lni-1].ToString())
 ENDIF
 ENDFOR
ENDIF

In the 3rd Line we check whether the value in
the toArguments array is NULL

As soon as the code runs into a NULL value it
displays:

So, now we have two options for checking for
NULL values, we can do that with an operator as
in the above code and with the ISNULL() function.
You now have a choice.

In the subject on weak vs strong typed param-
eters I told already that you can assign values in the
same line where you declare the variable. There is
no exception for arrays. You can assign values to an
array like this:
TLOCAL laSomeArray[9] = {“The”,”German”,;
”DevCon”,“is“,“the“,“event“,“of”,”the”,”year”}

This fills position 0 to 8, being an array with
NINE positions.

Including your VFP forms in your Net-
Compiler apps
It would be an absolute waste of time and effort if
you could not include your VFP forms in a .Net ap-
plication. All the wisdom you did put in it would
go down the drain if you were not able to reuse it
in .Net. No company board or manager thinking
wisely would do that. (OK, I know, being wise is
much asked for “managers”).

There are however several issues at the mo-
ment you have to take care for.

Single threaded application
On an application level you have to make sure that
your application is single threaded. This is neces-
sary at the moment when you use OLE controls.

Not really obvious but nonetheless very true is
the fact that functions like GetFile(), GetPict(), Get-
Font() also use OLE controls. To stay on the safe
side of things you are strongly advised to make

Figure 9. Handling NULL values

Page 13 FoxRockX December 2009

SQL Select not yet implemented
So be aware that using CursorAdapters will not
work yet. Use other means for this. Also, Cursor-
ToXML and XMLToCursor are not yet implement-
ed so you need to work out other ways of doing
things.

I am pleased though to tell you that the
SQLXXX() (SQLConnect(), SQLDisConnect(), SQL-
Exec() etc) functions are already implemented, so
accessing remote data is possible.

Obsolete commands
Every function you define in files in your project
become available for use whereever you see fit.
There is no need to “set path” or to “set procedure”,
as you used to do in VFP projects.

The VFP menu
Every now and then you need to add a procedure
to the VFP Menu. This results in a line of code like:
ON SELECTION PAD _2re1cj2u4 OF _MSYSMENU ;
 DO _2re1cj2u5 ;
 IN LOCFILE(“MICROSOFT VISUAL FOXPRO 9\” + ;
 “TESTING“ ,“MPX;MPR|FXP;PRG“ ,;
 “WHERE is TESTING?“)

This definetely will lead to errors in your appli-
cation. As with everything, there is a way around
this.

Andrew MacNeill created, years ago, the Gen-
MenuX tool. That is your salvation for this situa-
tion.

All you need to do is add one simple line to
your config.fpw
_noloc=ON

When you install the GenMenuX in your home()
folder set the Menu Builder to this file.

Open the tools - > options and select the File
Locations tab (Figure 10).

Select the Menu Builder and set it to the Gen-
MenuX.prg

On the conference CD you will find the (adjust-
ed) version of this tool.

Since it was written with VFP3 in mind it need-
ed some tweaking. I did that for you, BTW with
many thanks to Steven Black who found this small,
albeit headaching, bug.

The afore mentioned config.fpw adjustment
completely removes the LOCFILE() function.

Mix and mingle WinForms and VFP
Forms
If you choose not to use the VFP menu but the .Net
Menu Strip you are better of using a WinForm as
your top level form. This gives you the possibility
to visually design your menu. The setback is that
WinForms have at least two files to deal with, the
actual form.prg and the form.designer.prg.

However, you can use the CreateObject() func-
tion to start your forms. All your forms are objects
in the .Net world, meaning that you can instantiate

your forms as objects.

Visual inheritance
One thing I never could
get a grip on in the .Net
languages was the fact
that creating classes took
so much effort. You need
so much code and so lit-
tle visual stuff.

VFP.Net is chang-
ing that in a way we, as
darned spoiled VFP ad-
dicts, are so used to.

In this chapter I will
show you some basic
ways of doing things.
And yes, for the business
logic there is of course
such a thing as typing
your code. Believe me,
I tried sitting in lotus in
front of my computer,
singing AUM for hours,
I had a painful butt and
a sore throat, but no code
saw the light.Figure 10. Adjusting the menubuilder

December 2009 FoxRockX Page 14

So, here is what I did for this white paper.
First of all I created a form with several proper-

ties. This is (part of) that code.
DEFINE CLASS baseform AS Form
 cTable AS string=““
 cDBC AS string=““
 cDataPath AS string=““
 lShared as boolean = .T.
 Height=186

This code, and that should not be a surprise for
you, adds some properties to the form. Switching to
the property sheet and setting that to the category
brings you the following view:

We leave this form for now and create a new
form, based on this basic form.

Select the projects tab, right click on the project
(NOT the solution) and add new Item. Select the
VFPForms class.

Double click that one and the code you get is:
DEFINE CLASS MyInheritedForm AS Form

Change that to:
DEFINE CLASS MyInheritedForm AS BaseForm

Once we have this done we can take a look at the
properties. It should be no surprise that the prop-
erties are indeed available (Figure 12). We always
had that with VFP, so why not with VFP.Net?

By simply adjusting one line of code you inherit
all the PEMs of a base form.

Filling the base form with methods and events
shows these as well in the sub classed forms.

Adding custom controls to a form.
Just as you can create a base form and subclass that,
likewise you can create your own custom controls.
In the following example I will create a set of navi-
gation tools. And add them to the form in the next
step.

Creating a custom control (navigation
buttons.)
Right click on the project and select add → New
Item.

In the dialog that appears select the class tem-
plate (Figure 13).

We add 4 buttons to it by dragging them from
the windows tools to the form. Next we adjust the
captions to “|<”, ”<”, ”>” and ”>|”

The names are cmdTop, cmdPrev, cmdNext
and cmdLast (Figure 14).

In this picture, you see the designer surface with
the properties. The methods are simply the naviga-
tion stuff you created probably several times. I will
not bore you with that.

Adding the custom control to your
form.
Save that class and go back to the inherited form.
There you now type one line of code immediately
after the property settings.
Add Object cntNavigation as clsNavButtons

Figure 11. User defined properties in the property sheet

Page 15 FoxRockX December 2009

Figure 12. Inherited properties

Figure 13. Creating a new class

Figure 14. The properties of a custom control

December 2009 FoxRockX Page 16

As you type this statement you will notice that
IntelliSense kicks in:

Including .Net forms in your VFP.Net
application
Just as you don’t want to destroy any capital using
your VFP forms in your new VFP.Net application,
neither do you want to destroy any invested mon-
ey from the hard gained knowledge you now may
have about .Net forms and all that goes with it.

So, just as I explained how to include your VFP
forms in your new application, I will now explain
how to include your .Net forms in your applica-
tion.

Since you developed your forms in a separate
project you can include this project in your solution
OR, in case you created a Net Assembly you can
include that assembly in your application through
the references node of the solution treeview.

In this specific case I will show a way through
including several projects in one solution.

Figure 16. CSharp and VFP.Net combined

Since this project is all about including a .Net
form in your VFP.Net appliucation the main code
is this:

USING NAMESPACE System

TLOCAL oForm as CSharp_Lib::CSharpForm
oForm = CSharp_Lib::CSharpForm()

oForm.Show()
READ EVENTS

The CSharpForm in the Csharp_lib
is instantiated and shown in the code
you can find in the mainform.prg. This
will show the CS form in your applica-
tion.

If the form is included in an assembly the way
to achieve this is exactly the same.

Figure 17. A CSharp form in a VFP.Net app

Templates
The Developer’s Visual Studio, which is the chique
name for SharpDevelop, relies heavily on tem-
plates. In this chapter I will touch the surface of
what is possible with that. You can easily modify
existing templates to fullfil your own needs.

Templates for SharpDevelop come in two fla-
vors, as project templates and file templates. I will
take a look at file templates here.

These templates are actually XML files with
the exception that they just have a fancy exten-
sion. So they are cunningly disguished XML files.
The VFP templates are stored under: Home()+”\
Tools\eTecnologiaNETExtender\SharpDevelop\
AddIns\AddIns\BackendBindings\VFPBinding\
Templates”

A simple project template is the Windows ap-
plication template. You can find that under the tem-
plate folder for VFP templates, Home()+”Tools\
eTecnologiaNetExtender\SharpDevelop\Addins\
addins\backendbindings\VFPBinding\Tem-
plates”. The filename is FormsProject.xpt, here is
what it looks like:
<?xml version=“1.0“?>
<Template >
 <TemplateConfiguration>
 <Name>VFP Windows Application</Name>
 <Category>VFPNet</Category>
 <Subcategory>Windows Applications
 </Subcategory>
 <Description>A VFP Windows Application
 with VFP Forms and WinForms
 </Description>
 </TemplateConfiguration>
 <Actions>

Figure 15. IntelliSense kicking in

Page 17 FoxRockX December 2009

Editing a Template
Open one of the files with a straightforward edi-
tor like Notepad or any ascii editor to your liking.
Make changes in the template and save it under a
different name.

The second way of editing is this.
Select the template file you want to work on to

create a new template, copy that file and rename it.
Then start SharpDevelop.

Next you drag the copy of the template from
the windows explorer to the TITLEBAR of the
SharpDevelop IDE.

That opens the template and you can edit it.
This way you can also make changes to existing

templates.
The advantage is that you get syntax coloring

and the possibility to indent/unindent blocks of
code with the Tab / Shift+Tab key.

Keep in mind that changes to templates are
only visible after restarting SharpDevelop.

Looking under the SharpDevelop\Data\Tem-
plates\File or SharpDevelop\Data\Templates\
Project folders you will find in the Subfolders
Csharp and VBNet several templates that you can
change for VFP.Net.

On the conference CD you will find an exten-
sive whitepaper on working with and editing tem-
plates, some more examples are available in that
paper.

 <Open filename = „Main.prg“/>
 </Actions>
 <Project language = „VFPNET“>
 <PropertyGroup>
 <OutputType>WinExe</OutputType>
 </PropertyGroup>
 <ProjectItems>
 </ProjectItems>
 <Files>
 <File name=“Main.prg“>
 <![CDATA[
USING NAMESPACE System
LOCAL oForm as MyForm
oForm = CreateObject(„MyForm“)
oForm.Show()
READ EVENTS
DEFINE CLASS MyForm AS Form
Caption = „Hello from Fox“
ENDDEFINE
]]>
 </File>
 </Files>
 </Project>
</Template>

In the above template code I underlined the
code that you will actually see once you create a
project based on this template.

In the TemplateConfiguration section you see
a name tag, a category and subcategory and a de-
scription.

These are also visible when you create a new
project, as in this picture (Figure 18):

Changing the category and/or the subcategory
has a direct effect on the above shown dialog (Fig-
ure 19).

Figure 18. Fiddling around with templates

December 2009 FoxRockX Page 18

What can we expect in the nearby
 future
Well, I can tell you that your friends at eTecnolo-
gia (hmmm, where did I hear THAT expression
before!?) have a book full of features they want to
implement.

So let’s take a short tour on soon to be expect-
ed features, but only a few of them, otherwise you
would still be reading until next week and beyond.

IntelliSense for tables
When working in VFP you can open a table in the
command window and type the name followed by
a dot (TableName.). This gives you a list with the
fieldnames. This only happens in the command
window but not in the codesnippets where it would
be really useful.

VFP.Net in a future release will have this intel-
lisense available in all code windows.

A table can also have assigned an alias to it in
the DataEnvironment or in the Project Manager, it
defaults to the table’s name. After writing MyTabl-
eAlias and dot, you will get the list of fields avail-
able. And with the optional strong typing function-
ality you can get even better results like:
? LEFT(myTable.MyNumericField,4)

you will get an error at compile time because
LEFT() (or any other string manipulation function
for that matter) expects a string and you are using a
numeric field. And of course you can catch wrong
assignments.

You can also do:
MyTable.MyNumericField = someValue

This works faster than a REPLACE command.
Mind you, when you apply buffering you still

should do a tableupdate(). Yeah, SOME work is left
for you to do!

Figure 19. Category and subcategory changed in the template

Page 19 FoxRockX December 2009

You issue a “CREATE TABLE” command in
VFP and that table is automatically created in the
remote database.

You DROP a Table in the current database and
the same table is DROPPED in the remote data-
base.

USE “myTable” and you are using your remote
table like if you did a SQLExec(nHandle, “select *
from myTable”)

If the back-end table has a lot of data it is un-
likely that you want all of that data over the line,
that would be dragging down the speed of both
your application and the network you are working
on. So the USE command will be extendable with
a SQL select command, like USE myTable Select
top 100 from my Table, thus narrowing down the
amount of data you pull over the line.

If your table has a Primary key you just change
your data and issue TableUpdate() and your remote
data is updated. No need to setup anything else in
your client side code.

You ADD TABLE and that table becomes a
Remote Table automatically uploading the data as
needed.

Offline / Online functionality and synchronize
automatically with the remote data.

A new designer for your SCX forms
eTecnologia is working on implementing a new
form designer in the VFP Developer Studio.
Once this is tested and implemented you do not
need Visual FoxPro to design VFP forms.

Your VFP forms as webcontrols
Would it not be nice AND useful if you simply
could drag your forms on a ASPX page and run
that page? With that you would have to write the
business logic only once and have it running on the
desktop and on webpages.

This would be developers’ heaven, wouldn’t it.
Well, heaven is in sight. eTecnologia is working on
it. So stay tuned, we’ll be back after the commer-
cials.

Object Oriented Reporting
One thing not yet implemented in VFP.Net is re-
porting. eTecnologia is planning on creating a fully
object oriented reporting engine. This will be avail-
able in the near future.

Pointers and Native Interop
This will be a terrific feature extending the power
of VFP.NET to the Native world, making it like a
child’s play to use classes in native libraries as if
these are VFP Objects.

Visual inheritance extended to tables
Think about a table like a Designer Surface, you get
a list of all the properties of the table. The events,
methods and so forth. You customize the behavior
of your table by changing or overriding events /
methods in your table. In your table surface you
can layout fields, whether those fields are created
for your table or inherit from a fields library. A field
is just a struct (See figure 2) and therefore in your
table surface you can customize or extend them
according to your new tables. This is subclassing
taken to a level that is unseen yet in any develop-
ment tool. (OK, promise here, the eTecnologia team
will not break their hands while tapping on their
shoulders.)

Some user scenarios:
You create a Zip Field or postal code field that

stores the Zipnumber/Postal code, so it will always
have some layout predefined, Input Mask and a
validation method, and some utility methods.

Think of this as having the ability to plot a zip
code in a map using Google Maps. With that you
just put your field in your table and it inherits all
the functionality that you wrote for its class. Quite
the same as when you drag and drop a mapped
field on a form in VFP. You can extend and over-
ride its functionality.

This way you can add a button to a form and
in the click event have some code like: MyTable.
MyZipField.ShowGoogleMap() provided you cod-
ed that at the field level.

You can create a composite type field integrat-
ing two fields: Cost and SalesPrice. You can create
a rule like SalesPrice must always be greater than
or equal to Cost. You can display and error or a
warning when the rule is broken.

By Dragging the composed type to your table
you get the two fields and the relation(s) between
them that you can reuse or extend in other tables.

So the visual designer for fields is like a huge
repository of fields, both as we know them now as
well as custom types. And they have Events, prop-
erties and Methods. This is Data Access taken to a
higher level, leaving all the other .Net languages
in the cold and dark world of problematic data ac-
cess.

Oh, you think that is cool hey!? Well buckle up,
fasten your seat belts and get ready for the intro-
duction of the:

Generalized Databases
Given a handle or connectionstring representing
a connection to a remote database, you can create
your own Database layer, and then:

December 2009 FoxRockX Page 20

It is not for nothing that I subtitled this
FoxRockX special “The hope and future for VFP
Developers”.

Another side benefit is that you can do direct
pointer operations in VFP.NET that would be very,
very hard to do in plain .NET, and it will run very
fast in VFP.NET. This is part of a broader project
that is to be able to compile VFP code to native code
(object files) that can be linked and intermixed with
C++ / C code and optimized to run several times
faster than optimized .NET Code as I showed in the
LOCALS/TLOCALS sample.

Conclusion
Geez’ I wrote all this text just about VFP.Net, and I
DID plan to write a short paragraph on the NetEx-
tender as well. >sigh<, I guess you will have to visit
that session then so I can bore you with that infor-
mation, Sorry folks, there is simply so much to tell,
and I am so thrilled by this new tool that I could
go on for days on end. But then again, I guess you
would be bored soon hearing about all this new
and exciting stuff. Just know that the NetExtender
brings the classes that are trapped in a .Net into the
world of the sacred Fox, where they will live hap-
pily ever after. Just know that VFP.Net is develop-
ing rapidly and will be a tool for our future.

On-line sources
There is a google user-group for the Net compiler.
The moderator is Hank Fay, one of the first Com-
piler addicts (like I am). You can find the group at:
http://groups.google.nl/group/vfpnet-compiler-
community-support-group/

If you are really addicted then know that you
can find your peer addicts there.

Biography
Boudewijn Lutgerink is an addicted VFP developer who lives
in the Netherlands. His first contact with automation was in the
early ‘80’s of the last century. Through a project at the com-
pany he worked for at that time he came in contact with auto-
mation and was hooked since then.
“Everybody speaks about computer viruses these days, but ev-
erybody seems to forget that computers themselves are like a
virus, a dangerous addictive virus. You either get sick of them
and NEVER want to deal with them for the rest of your life OR
you get addicted and need more every day. The latter happened
to me…”I am afarid I am addicted for the rest of my life.”
He is a close friend with John Zijlstra who brought him in
contact with FoxPro. Version 2.6 at that time. Boudewijn was
thrilled by the speed of data– and stringhandling of the fox.
Pretty soon VFP version 3 came along, albeit in Beta and “not
really stable” Boudewijn was immediately hooked on the idea
of Object Oriented Programming. Through the years he was
loyal to VFP to long extend.
His company, Lutgerink Economical Software Architects, did
projects for the Royal Netherland Airforce, big companies like
Philips and Teijin, factories, banks and daytraders and for

Let start with a sample C++ class:
class MyClass
{
public:
 int TestParameter(int x, int y);
 virtual bool IsValid();
 virtual MyClass* TestPointer();
 int* TestInteger();
};

You will be able to import that into an assem-
bly and then use the class in that assembly from
your VFP Code as:
USING NAMESPACE MyCPAssembly
TLOCAL oInfo = MyClass()
? oInfo.TestParameter(4,7)
? oInfo.IsValid()
oResult = oInfo.TestPointer()
? oResult.IsValid()
TLOCAL pnValue as integer ^ ;
 &&This is the syntax for pointers
*
* pointers point to an address in memo
*
pnValue = = oInfo.TestInteger()
^pnValue = 17 && changes the that

The line:
TLOCAL pnValue as integer ^

Ends with the caret (^) indicating a pointer.
As you can see in the last two lines first the

TestInteger function of the C++ class is called first,
then a value is assigned to the variable.

This feature will let us integrate external librar-
ies as part of VFP.NET without any trouble.

Things that will come as part of that are inte-
gration of:

Spell Checkers;•
Scanner Automation;•
OCR;•
Synonymous Dictionary;•
Advanced Image Manipulation like im-•
age filters;
Video / Audio manipulation like Con-•
version and Playback;
Computer Vision;•
Face recognition;•
Motion Detection capabilities;•
Any other kind of biometric libraries •
like fingerprints, iris scans, MRI soft-
ware and much more.

These are just a few of the hot and cool things
that you will be able to do using the NetCompiler.
And yes, it will even be easier to use that from VFP.
NET than from C++ or C# itself. This may sound
like a boasting, but it is true. And hey, pardon me
but VFP always was far superior to those other
“tools”. We always knew that, so why not boast a
bit and tell them off. . . FINALLY‼

Page 21 FoxRockX December 2009

If it ain’t a Border Collie, it’s just a dog is his favorite expres-
sion.
If not developing asskicking software for customers he can be
found in the fields training his dogs, in the kitchen cooking a
meal, singing in his quartet (Base, the lowest lifeform in the
singing world), playing the flute, dancing with his wife in the
dance-school or doing Reiki treatments. (not necessarily in that
order). If he is doing none of the above he is most likely study-
ing on how to develop even better software.
Boudewijn can be reached at B.Lutgerink@Betuwe.net

companies big and small in all kinds of businesses. Each and
every time VFP proved its worth by the speed of development,
speed in datahandling and more so, the ease of connection to
a wide variety of data sources. He was a VFP-MVP in 2007
and 2008. t
He now lives in Huissen, near Arnhem, with his wife Elina,
their six cats, Marmouzet, Gaya, Crystal, Barbara, Ginger and
Quirine and his two border Collies,General and Private, Bor-
dersand Sheep are another addiction of Boudewijn.

FoxRockX™(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor: Rainer Becker

Copyright © 2009 ISYS GmbH. This work is an independently produced pub
lication of ISYS GmbH, Kronberg, the content of which is the property of
ISYS GmbH or its affiliates or third-party licensors and which is protected by
copyright law in the U.S. and elsewhere. The right to copy and publish the
content is reserved, even for content made available for free such as sample
articles, tips, and graphics, none of which may be copied in whole or in part
or further distributed in any form or medium without the express written per
mission of ISYS GmbH. Requests for permission to copy or republish any
content may be directed to Rainer Becker.

FoxRockX, FoxTalk 2.0 and Visual Extend are trademarks of ISYS GmbH. All product names or services identified
throughout this journal are trademarks or registered trademarks of their respective companies.

