
Issue Date: FoxTalk May 1999

Matchmaker, Mitchmoker... Is That a Match? Or De-
mystifying De-duplication
Andrew Coates
a.coates@civilsolutions.com

Finding duplicate entries in your data or matching records from
different tables is a problem that has plagued database designers
since databases began (and even earlier). In this article, Andrew
demonstrates some of the techniques you can use to match records.

You know the story -- two of the departments in the company have each maintained records about their customers, and now
the IT manager has decided that the databases need to be merged. The only problem is, how do you decide whether a record
from the first database matches one from the other? In this article, I'll explore some options for matching these records (or for
detecting duplicates in a data set, which is essentially the same thing). I'll discuss some concepts about what you're trying to
achieve, talk about what you can match, and delve briefly into name and address standardization. Next, I'll talk about
automating the matching process and a couple of algorithms you can use for matching the sounds, not the spelling, of words.
By the end of this article, you should at least be able to plan a matching strategy that fits your needs best.

Matching/de-duping
Matching and de-duplication are essentially the same process -- that of finding records that refer to the same entity, either in
two (or more) separate tables, which I call matching, or in one table, which I call de-duplication. If you're working with a single
table, then you've probably at least got the advantage of having the information you're examining in the same format for each
side of the comparison. When you're matching, you often need to do some pre-processing to get the information from the first
table into the same format as the information in the second table. On occasion, it's also useful to do some standardization
before attempting to de-duplicate.

Name and address standardization
How do you do this pre-processing? Well, to make sure you're comparing apples to apples, you need to carry out some form
of standardization. To standardize names, you might need to break apart names that are stored as one string into their
component parts. For example, the single field ContactName containing "Mr Andrew C Coates BE" can be broken down into
the following:

Doing this will allow you to much more easily find a match with "A.C. Coates," which you'd standardize as follows:

Break data down into the smallest units you have. For example, split names into their components, and addresses into
number, street name, city, state, and postal code.

Use standard abbreviations for common components. For example, the USPS has a comprehensive list of street types
("Street," "Lane," and so forth), common variations ("St," "Str," "Ln," "Lne," and so on), and their preferred abbreviation. Use
either the standard full title or the standard abbreviation.

Time spent on standardization is rarely wasted. Extract a set of data from your target to develop your standardization
algorithm. Extract another (completely separate) set of data from your target to test the algorithm after you're satisfied with the
algorithm. Having this second set will often reveal exceptions or expose inaccuracies that you might not have considered. It's
important to have this verification set of data as well as a development set.

For anything but the most trivial data sets, standardization is a computationally intensive task. Be prepared for the
standardization processing to take a significant amount of time. Standardization routines I've developed have turned into 100+
case statements and have taken in the order of one quarter of a second per record to process. While this isn't a lot if you're

ContactTitle "Mr"

ContactFirstname "Andrew"

ContactInitials "C"

ContactSurname "Coates"

ContactPostNom "BE"

ContactTitle ""

ContactFirstname "A"

ContactInitials "C"

ContactSurname "Coates"

ContactPostNom ""

Seite 1 von 6Print Article

30.01.06http://foxtalknewsletter.com/ME2/Audiences/Segments/Publications/Print.asp?Module=...

only processing a thousand or so records (although there's still time to make a cup of coffee), 250,000 records will take more
than 17 hours.

As a final standardization remark, I should note that there are commercially available standardization packages, as well as
mailing houses that will take your data and return it appropriately compartmentalized. You might consider using these services
if you have a single job and can't justify developing your own routine or if you have so much data that you just don't have the
resources to handle it.

What to match
Once you've got your data in a standard format, you need to decide what constitutes a match. Is the A. Coates living in
Sydney the same as the Anthony Coats from Maroubra in New South Wales? The answer to that question is "possibly." What
the probability is of a match is something you need to determine.

If you have a match on a unique identifying number like the U.S. social security number, then the probability of a match is
quite high. If you don't have the "smoking gun," then you need to use other means to make the case for a match or otherwise.
Possible fields for matching are:

n Address (but don't forget that families often live in the same house and have pretty similar names)
n Date of birth/age
n Name
n Geographical location
n Company name
n Phone numbers

Phonetic matching
One common matching option is to compare the phonetic values of strings such as people's names or street names. There
are several algorithms available that assign a value to a string based on how it sounds. Using these techniques, you'll be able
to find duplicates that might not be spelled exactly the same way, such as "Smith" and "Smythe." The algorithms I've used to a
greater or lesser extent are SOUNDEX and NYSIIS. Each of these has its pros and cons. FoxPro also includes an algorithm
called DIFFERENCE() that compares two strings. Another algorithm I found while researching this article is called Metaphone.
I've never used it in anger, and I've not been able to find the source for it, but it appears to produce a code that's similar, but
not identical, to the NYSIIS algorithm.

Phonetic algorithms basically work by suppressing the vowel information (because it's unreliable) and giving the same code to
letters or groups of letters that sound the same (for example, "PH" sounds like "F," so you give them both the same code). You
can use the code generated to find matching names in a table; for example, the following will display a browse window with all
records with surnames including SMITH, SMYTHE, SCHMIDT, SMYTH, and SCHMIT:

SOUNDEX
SOUNDEX is a phonetic coding algorithm that ignores many of the unreliable components of names, but by doing so reports
more matches. The rules for coding a name are (from Newcombe):

1. The first letter of the name is used in its un-coded form to serve as the prefix character of the code. (The rest of the code is
numerical.)

2. Thereafter, W and H are ignored entirely.

3. A, E, I, O, U, and Y aren't assigned a code number, but they do serve as "separators" (see Step 5).

4. Other letters of the name are converted to a numerical equivalent:

5. There are two exceptions: a) letters that follow prefix letters that would, if coded, have the same numerical code, are
ignored in all cases unless a "separator" (see Step 3) precedes them; and b) the second letter of any pair of consonants
having the same code number is likewise ignored (unless there's a "separator" between them in the name).

6. The final SOUNDEX code consists of the prefix letter plus three numerical characters. Longer codes are truncated to this
length, and shorter codes are extended to it by adding zeros.

Examples of names with the same SOUNDEX code are shown in Table 1.

Table 1. Names with the same SOUNDEX code.

BROWSE FOR SOUNDEX(surname) = SOUNDEX("SMITH")

1 B, P, F, V

3 D, T

4 L

5 M, N

6 R

2 All other consonants (C, G, J, K, Q, S, X, Z)

Seite 2 von 6Print Article

30.01.06http://foxtalknewsletter.com/ME2/Audiences/Segments/Publications/Print.asp?Module=...

SOUNDEX has an immediate attraction for FoxPro (and SQL Server) developers. It's implemented as a native language
function. Issuing the following from the command window will display the code S530 -- no further programming is necessary:

Compare this with the monstrosity that's NYSIIS.PRG (see the accompanying Download file). Having the function built-in also
has significant speed advantages.

NYSIIS
NYSIIS differs from SOUNDEX in that it retains information about the position of vowels in the encoded word by converting all
vowels to the letter A. It also returns a purely alpha code (no numeric components). NYSIIS isn't part of the native FoxPro
command set, nor does it seem to have been implemented by any third-party utility developers. I've coded the algorithm in the
FoxPro procedure shown in and included in the accompanying Download file, but the high-level pseudo-code for this
algorithm is shown in Listing 1.

Listing 1. High-level pseudo-code for the NYSIIS algorithm.

NYSIIS has a disadvantage in our rapidly shrinking, multicultural world of being fairly Anglo in its phonetic coding. If the names
you're matching have non-Anglo origins, it would probably be better to use a different algorithm -- for example, SOUNDEX.

Phonetic matching example
To demonstrate the use of phonetic matching, I've used the customer table in the testdata database in the sample data that
comes with VFP. The code is shown in Listing 2.

Listing 2. Phonetic matching example.

Name Code

ANDERSON, ANDERSEN A 536

BERGMANS, BRIGHAM B 625

BIRK, BERQUE, BIRCK B 620

FISHER, FISCHER F 260

LAVOIE, LEVOY L 100

LLWELLYN L 450

? SOUNDEX('SCHMIDT')

* Program....: NYSIIS.PRG
* Version....: 1.0
* Author.....: Andrew Coates
* Date.......: March 1, 1999
* Notice.....:
* Compiler...: Visual FoxPro 6 for Windows
* Abstract...: NYSIIS phonetic encoding algorithm
* Taken from Newcombe 1988 pp182-183
* rule number and lettering as per Newcombe
* Changes....:
! 1. Change the first letter(s) of the name
! 2. Change the last letter(s) of the name
! 3. First character of the NYSIIS code is the
! first character of the name
! 4. Set the pointer to the second letter
! of the name
! 5. Change the current letter(s) of the name
! 6. Add a letter to the code
! 7. Change the last character of the NYSIIS code
! 8. Change the first character of the NYSIIS code

* Program....: PHONETICS.PRG
* Version....: 1.0
* Author.....: Andrew Coates
* Date.......: March 1, 1999
* Notice.....:
* Compiler...: Visual FoxPro 6
* Abstract...: Extracts surnames from
* the testdata!customer table and does
* phonetic comparisons.
* NB - assumes that NYSIIS.PRG is in the path
* Changes....:
clos data all
open data (home(2) + 'data\testdata.dbc')
* break the contacts' names apart
select cust_id, ;

Seite 3 von 6Print Article

30.01.06http://foxtalknewsletter.com/ME2/Audiences/Segments/Publications/Print.asp?Module=...

First, I extract the surnames from the customer name field using the assumption that the surname starts immediately after the
first space character in the name field. Note that this assumption isn't valid for all cases -- like the names "José Pedro Freyre"
and "Isabel de Castro" -- but I've ignored that problem here.

Next, I calculate the NYSIIS and SOUNDEX codes for the surnames and store them with the customer ID. Then I find all of
the codes that appear more than once (potential matches), and finally I generate a cursor with the surname and code for each
potential match. The results for SOUNDEX and NYSIIS are shown in Table 2 and Table 3, respectively.

Table 2. Potential SOUNDEX matches from the customer table.

 padr(substr(contact, at(' ',contact) + 1), 30) ;
 as Surname ;
 from customer ;
 into cursor names

* get the codes for each contact
select *, ;
 nysiis(surname) as NYSIIS, ;
 soundex(surname) as SNDX ;
 from names ;
 into cursor codes
* get a list of all the nysiis codes that appear
* more than once
select nysiis, count(*) as tot ;
 from codes ;
 group by nysiis ;
 having tot > 1 ;
 into cursor multinysiis

* get a list of all the soundex codes that appear
* more than once
select sndx, count(*) as tot ;
 from codes ;
 group by sndx ;
 having tot > 1 ;
 into cursor multisndx

* generate a list of customers with phonetically
* matching surnames
select names.surname, codes.sndx ;
 from names ;
 inner join codes on ;
 names.cust_id = codes.cust_id ;
 inner join multisndx on ;
 codes.sndx = multisndx.sndx ;
 order by codes.sndx ;
 into cursor sndx
select names.surname, codes.nysiis ;
 from names ;
 inner join codes on ;
 names.cust_id = codes.cust_id ;
 inner join multinysiis on ;
 codes.nysiis = multinysiis.nysiis ;
 order by codes.nysiis ;
 into cursor nysiis

Surname SOUNDEX

Ashworth A263

Accorti A263

Berglund B624

Bergulfsen B624

Crowther C636

Cartrain C636

Moreno M650

Moroni M650

Pereira P660

Perrier P660

Wilson W425

Seite 4 von 6Print Article

30.01.06http://foxtalknewsletter.com/ME2/Audiences/Segments/Publications/Print.asp?Module=...

Table 3. Potential NYSIIS matches from the customer table.

By comparing Tables 2 and 3, you'll notice that SOUNDEX seems to match more names than does NYSIIS. The additional
matches generated by SOUNDEX in this case don't seem to be good matches, but that's not always the case. You need to
assess your data (perhaps by pulling a sample of 100 or so matches and calculating the hit rate).

Automating matching
It's possible to assign a value based on a match on some or all of the fields in your table and then use the "matching rank" to
automatically determine whether records match. You could set up a system like the one shown in Table 4.

Table 4. Sample "matching rank" system.

Using this system, you could calculate a matching rank for each record compared with each other record. You could set a
threshold value -- say, 200 -- above which you're sure that you've got a match, and another -- say, 100 -- below which you're
sure you haven't (the actual numbers you use will depend on your data). The question is what to do with the middle range.
Generally, they have to be reviewed by a human.

Another problem you might come across with this system is multiple possible matches. You need to decide how to handle
these. Perhaps present the top n possible matches, or perhaps present all of them. You could decide to present any match
with a rank of at least 50 percent of the highest possible match. What happens if you have a definite match and a possible
match? In this case, there's a possibility that there's a duplicate in the table you're matching. It's worth de-duplicating before
you match to try to reduce this problem as much as possible.

You can write a program to automate the matching process. Listing 3 shows some pseudo-code for such a program.

Wang W520

Wong W520

Surname NYSIIS

Moreno MARAN

Moroni MARAN

Pereira PARAR

Perrier PARAR

Wilson WALSAN

Wang WANG

Wong WANG

Field Match Rank

Address All fields identical 100

Street name SOUNDEX match and Suburb and
State match 80

Suburb and State match 60

Address 1 within 50 km of address 2 30

Country doesn't match -20

Any other address configuration 0

Name All Fields identical 100

Surname identical, first letter of first name
matches 50

Surname SOUNDEX matches, first name
matches

40

No match on any field -100

Date of Birth Identical 80

Any 1 component (day, month, or year) +/-1 30

Within 18 months 10

Difference between 5 and 10 years -30

Difference > 10 years -80

Any date of birth configuration 0

Gender Matches 0

 No Match -100

Seite 5 von 6Print Article

30.01.06http://foxtalknewsletter.com/ME2/Audiences/Segments/Publications/Print.asp?Module=...

Listing 3. Pseudo-code for automatic matching process.

Avoiding duplicates during data entry
Prevention is better than cure, and if you have control of the data capture phase of your operation, you can apply the matching
algorithms suggested previously to the data as it's being keyed. Tell the user if you think they're entering duplicate data, and
you'll eliminate the need for costly and time-consuming de-duplication later.

Conclusion
This month, I've probably presented more questions than answers, but that's often the way when describing a fuzzy operation
such as matching. I hope that I've been able to point out some of the things you can do to find matching records and avoid
duplication in your data sets. Matching is an art, and one you need to practice to perfect. Criteria for determining matches
change depending on the data set, and you need to tweak your matching processes accordingly.

Next month, I'll deviate a little from the Data Bus concept and introduce a "cool tool" you can use for sending messages
between applications or instances of the same application across a TCP/IP network. I'll show you how to build a simple license
manager and a chat server.

References

I got the SOUNDEX and NYSIIS algorithms and several other concepts from the Handbook of Record Linkage, Howard B.
Newcombe, Oxford University Press, 1988.

Open Tables
For each record in table1
 For each record in table2
 Get matching rank for this record combination
 Do case
 Case matching rank < lower threshold
 No match, just go to next record
 Case matching rank > upper threshold
 Definite match - write IDs to matched record
 table
 Otherwise
 Possible match - write IDs and rank to possible
 match table
 End case
 End for && table2
End for && table1
Deal with the possibility of multiple possible matches

Seite 6 von 6Print Article

30.01.06http://foxtalknewsletter.com/ME2/Audiences/Segments/Publications/Print.asp?Module=...

