
http://www.pinpub.com 1FoxTalk Extended Article: February 2000

FoxTalk
Solutions for Microsoft® FoxPro® and Visual FoxPro® Developers

This is an exclusive supplement for
FoxTalk subscribers. For more

information about FoxTalk, call us at
1-800-788-1900 or visit our Web

site at www.pinpub .com/foxtalk.

Extended Article

So the Data is too Large...
Jim Booth 6.06.0

Perhaps you’ve run into the 2G file size limitation in Visual
FoxPro, or you’re having a problem because your table needs
more than the allowed number of fields. Managing huge data
sets has its own unique set of problems. Even with VFP’s
Rushmore technology, accessing huge data sets can take a
long time. Jim Booth offers some suggestions of what can be
done to help in managing huge data sets.

HUGE is a relative term. There’s no fixed definition
for the word huge, other than very large. Within
the area of database design, huge refers to

extremely large data sets. The term huge has to be applied
in the context of the database management system you’re
using. A huge data set for Microsoft Access isn’t the same
as a huge data set for Visual FoxPro, which in turn isn’t
the same as a huge data set for Microsoft SQL Server (or
Oracle or any other client/server database system). In the
context of this column we’ll be considering Visual FoxPro
databases specifically; however, the same principles apply
for all other database managers as well.

In Visual FoxPro we might consider the word huge to
apply when the record count reaches a few hundred
million records. Tables smaller than that are generally
managed quite well by VFP without special handling.
Another criterion for a huge data set is the actual size of
the data file on disk. VFP has a file size limitation that no
file may exceed 2G in size. If a table has a relatively large
record size, it might approach the file size limit before it
approaches the record count mentioned above. Be
warned—using these techniques for data sets that aren’t
suffering from the problems they address can complicate
your data design with little or no benefit.

What’s the problem?
There are two major problems associated with huge data
sets. The first is performance. It usually takes longer to
retrieve information from huge data tables. The second is
limitations. Some database managers have a fixed limit on

the size of the files they can manage. Visual FoxPro’s file
size limitation is 2G. A record in a Visual FoxPro table is
limited to no more than 255 fields. A specific design
requirement could exceed either of these capacities.

You might think that you’ll never reach the
limitations of VFP, but you can still encounter the
performance problems at file sizes considerably less than
the limitation. You might also encounter situations where
the data that would normally be stored in a single record
is relatively large—that is, many fields of data.

Okay, so where are you going with this?
Let’s discuss a design approach that can address the
problems associated with huge data sets. This solution is
called data partitioning. Data partitioning is dividing the
data between multiple tables. There are two types of
partitioning that are available: horizontal and vertical.
We’ll discuss each of these separately. Each approach has
situations where it does well, and other instances where
the alternative would be better.

Horizontal partitioning
Regardless of whether your problem is files or records
that are too large, horizontal partitioning offers the best
improvement when the data in the record is easily
divided in a logical manner into groups of fields that are
often used together. Figure 1 shows an example table
design that we’ll use in the discussion that follows.

For the sake of readability, the table design in Figure 1
isn’t actually a huge record at all. It would be unfair to
make my column longer than all the others in this issue
because the figures have over 255 fields listed in them
(never mind that I can’t think of 255 fields that I’d want in
one table). The principal points of partitioning can be
described and understood even though the table design
doesn’t require the process at all.

The idea of partitioning a table is to divide the single
table into two or more tables. The horizontal concept is

2 http://www.pinpub.comFoxTalk Extended Article: February 2000

that the division is accomplished by dividing a record into
two or more tables by putting some of the fields in each
table. If you picture how data looks in a grid, then
horizontal and vertical take on a clearer meaning. With
horizontal we divide the fields into multiple tables. Figure
2 is an example of the table in Figure 1 having been
partitioned horizontally.

As the figure demonstrates, horizontal partitioning is
accomplished by dividing the fields between, in this case,
two tables that each contain a subset of the fields. Notice
that the CustID primary key of the Customer1 table exists
in the Customer2 table as a foreign key to allow the
relationship between these two tables to exist. The two
new tables will have a one-to-one relationship.

What’s the impact on the code?
The biggest impact on your code has to do with how you
can see all of a customer’s fields at once. If the horizontal
partitioning was done because the number of fields
exceeded the maximum allowed for a table, then you’re
limited in how you can combine the fields to get them all
together. The reason is that no matter what you do, you
can’t get all of the fields into one table or cursor. In this
situation you need to relate the two tables to each other
and then show fields from each table. This can be done
relatively easily using the SET RELATION command
in VFP.

Here’s an example of using the SET RELATION to
retrieve data from these two tables:

SELECT 0

* Open the Customer1 table with the alias of Customer.
* Set the order for the sequencing of the records in
* alphabetical order.
USE Customer1 ORDER LastName ALIAS Customer

* Open the Customer2 table with the alias of
* CustomerExtension in a free work area.
* Set the order for the relationship.
USE Customer2 ORDER CustID ALIAS CustomerExtension IN 0

* Establish the relationship between the tables.
SET RELATION TO CustID INTO CustomerExtension

* Move the record pointer to the first record.
LOCATE

* Show some data from each table together.
WAIT WINDOW "Customer: " + ;
 Customer.LastName + ;
 " Credit Limit: " + ;
 ALLTRIM(STR(CustomerExtension.CreditLimit,10,0))

If the horizontal partitioning was done because the
total size of the table was approaching the file size limit
but the record size was well within the limits, then SQL
SELECT can be used to retrieve data for display and
manipulation. The following code example would get you
all of the fields from both tables for those customers in the
state of New York:

SELECT Cust1.*, Cust2.* ;
 FROM Customer1 Cust1 JOIN Customer2 Cust2 ;
 ON Cust1.CustID = Cust2.CustID ;
 WHERE Cust1.State = "NY" ;
 ORDER BY LastName ;
 INTO CURSOR Customers

This will provide you with a cursor named
Customers that has all of the fields from the two tables in
a single cursor.

If I can combine the fields together into a cursor, why
did I need the partitioning in the first place? Well, it’s
possible that, if you combine the fields from the two
tables into one table for all of the records, the table’s
size would exceed the database manager’s limitation

Figure 1. A table with
large records.

Figure 2. The example table after horizontal partitioning.

http://www.pinpub.com 3FoxTalk Extended Article: February 2000

on file size.
Also, sometimes you find that your queries are taking

a very long time to finish. In cases where the data fields
can be logically divided into groups that work together,
it’s possible to create horizontal partitioning where the
combination of fields from the partitioned tables seldom
needs to occur or at least is limited.

For example, the partitioning in the customer
example in Figure 2 has the demographic fields in
Customer1 and the financial fields in Customer2. It’s
possible that, when working with the financial data, we’d
only need a small number of fields from the other table.

Vertical partitioning
As opposed to horizontal partitioning, where we divided
the fields between multiple tables, with vertical
partitioning we divide the records between two or more
tables. Vertical partitioning works well in situations where
the record size (number of fields per record) isn’t
approaching the limits of the database manager, but the
record size combined with the number of records is
approaching the file size limit.

When we approach the file size limit, we must make
multiple smaller files in order to continue to record
information. Figure 3 is an example of using vertical
partitioning on the customer data from Figure 1.

It has partitioned the data based on the spelling of the
customer’s LastName. Although this might be a
questionable way to vertically partition the data because

of the retrieval requirements, it does demonstrate how to
accomplish vertical partitioning. Some partitioning
boundaries that might make more sense would be: on
State, on AccountRep, on City, and so on. Essentially,
using some logical dividing factor that relates to the
retrieval of data from the Customers would make more
sense as the partition boundary. The reason that the
LastName was used here is simply that drawing the
diagram of vertical partitioning on State would require
that there be 50 tables, one for each state, and wouldn’t
take into account the possibility of records that are outside
the 50 states.

You might also choose simply to divide records into
two or more tables based on a completely random factor,
and continue to split records off into new tables when the
existing tables become “full.” This is perhaps the safest
way to vertically partition, but it can potentially add
another layer of logic, as all operations have to consider
all tables as possibly containing members of a desired
record subset.

How do you work with vertically partitioned data?
Vertically partitioned data is more difficult to work with
than horizontally partitioned data simply because there
are usually more tables involved. But even with the same
number of tables, combining data from the tables is not a
simple matter of using a JOIN or relationship. You have to
use a UNION in SQL, and there’s no direct way of
combining the data from the two tables using simple
xBase syntax.

The following code sample would combine the
records from the two customer tables and retrieve all of
the customers in New York:

SELECT CustomerAtoM.* ;
 FROM CustomerAtoM ;
 WHERE State = "NY" ;
UNION
 SELECT CustomerNtoZ.* ;
 FROM CustomerNtoZ ;
 WHERE State = "NY" ;
 ORDER BY LastName ;
INTO CURSOR NYCustomers

Putting it together
Data partitioning can overcome some very real problems
in data design. Horizontal partitioning is easier to manage
than using vertical partitioning, but no matter which
partitioning you use, the overhead in your application
code will be greatly reduced if you do the partitioning
using boundaries that won’t need to be crossed often.
This requires the use of only one of the partition tables
at a time.

When you face a situation where the size of the data
will create a need for partitioning, you should first
consider using a different database manager that doesn’t have
the limitation you’re encountering. Only if using a
different database manager isn’t possible should youFigure 3. Vertical partitioning of the table in Figure 1.

4 http://www.pinpub.comFoxTalk Extended Article: February 2000

consider using partitioning.
A real-world example of one place where I used

vertical partitioning was in a software application I
developed for a local court system. The probate courts in
my home state handle a number of different types of
cases, such as decedent estates, guardianships, and
conservators. Every case in all of these types has a person
known as the fiduciary who is responsible for the case. We
initially used a single fiduciary table to store information
about these people, but the performance was terrible (this
was before Rushmore was available). The real problem
was that the performance was poor for all case types, even
though the decedent estate cases outnumbered the other
types by an order of 100-200 to 1.

I hit upon the idea that it would greatly improve the
performance of the other two case types if the decedent
estate fiduciaries were in a separate table from the other

case type fiduciaries. So we created DFid, Gfid, and CFid
tables. They all have an identical structure, but they
record fiduciaries for only one type of case. The
improvement was so noticeable that we did the same
thing for all of the case files in the system: fiduciaries,
interested parties, documents submitted, documents
produced, and so forth.

We even did some Horizontal/Vertical partitioning to
the main case data by using a single Master Case table
horizontally partitioned into multiple Secondary Case
tables. Figure 4 shows the idea of this dual partitioning.

In the diagram, there’s horizontal partitioning in the
case information being divided into fields in the Master
Case table and additional fields in one of the secondary
case tables. The secondary case tables are vertically
partitioned along the boundary of the case type.

Summary
Data partitioning is a technique that can allow you
to manage data sets that might, at first, seem outside
the capabilities of your selected tool. Partitioning can
also, though rarely, be helpful in organizing the data
in a system even when system limitations aren’t
being stressed.

It’s important to consider the ramifications of
partitioning on the data retrieval code in your application
before deciding to use it. Finally, and most importantly,
always consider using a different database manager before you
resort to data partitioning to solve problems involving
limitations of a data management tool. ▲

02BOOTSC.ZIP at www.pinpub.com/foxtalk

Jim Booth is a Visual FoxPro developer and trainer. He has spoken at

FoxPro conferences in North America and Europe. Jim has been a

recipient of the Microsoft Most Valuable Professional Award every year

since it was first presented in 1993. He is co-author of Effective Techniques

for Application Development and Visual FoxPro 3 Unleashed and is

contributing author for Special Edition Using Visual FoxPro 6.0. Jim is also

the technical editor for Database Design for Mere Mortals. 203-758-6942,

jbooth@jamesbooth.com, www.jamesbooth.com.

Figure 4. A real-world example of a combination of both
horizontal and vertical partitioning used together.

