Web Services: where to begin?

Remi Caron

Web-services are the talk of the town since a year or so. But what is it? Can I do this today or do I need to develop in C# or any other .NET language? What do I need? Where do I start? Next to these practical questions are the commercial questions like how to market and what is a useful service to build?

In a series of articles on this new phenomenon I’ll hope to address all of these topics. In this first of these articles I start at the very bottom of it all. Samples used in the articles contain VBScript, Jscript, ASP, COM+ and Visual FoxPro code. As in all my articles the technologies used here can be ‘copied’ to all other programming languages.

The first thing you’ll notice when you start to explore this new buzzword, is that it is not an out of the box product. It is a definition for fulfilling a service by means of a URL. Having said this the practical questions asked earlier don’t become any easier to answer.

What is a Web Service?
A Web Service is a website that exposes services without a user interface. Data exchange between the server and the client is XML-based. You can invoke a web service by sending a SOAP-request to the server, and the answer you'll receive will be a SOAP-response. This is shown in the next figure.

	Client
	 --> soap-request --->

 <-- soap-response <--
	Server

Both on the client and the server-side the SOAP-messages will be transformed by a SOAP-handler into processable function calls. The SOAP-Handler can be an ASP or JSP page, a CGI script or an ISAPI filter. These are just a few of the options available.
	Client
	
	Server

	Function
	 --> 1) function call ---->

 <-- 6) function return <--
	Soap Handler
	 --> 2) soap-request --->

 <-- 5) soap-response <--
	Soap Handler
	 --> 3) function call ---->

 <-- 4) function return <--
	Function

In (very) short this describes what a web-service is, how it works and how to invoke it from your own development projects. (Notice that these projects don’t need to be web based projects). I mentioned SOAP and since there has been a lot of talk about SOAP in our magazine and many others, I will address the matter briefly in the context of this article.

What is SOAP?

SOAP stands for Simple Object Access Protocol. SOAP is a standard defined by the W3C to invoke a service that is hosted on a website. SOAP is based on XML. A service request is issued by means of a SOAP-request. The answers to this request will be received as a SOAP-response. A SOAP message can be sent via HTTP and HTTPS and several other protocols.

A SOAP message contains 3 sections:

1. The envelope
The envelope is a required part of the message.
2. The header
The header is optional.
When a header is used, it will always be the first element in the envelope. The header is used to provide extra information in the message this information is not required for processing the message.

3. The body
The body contains all the information needed to process the request.
If shown in a figure, the skeleton of a SOAP message looks like this:
	<SOAP:Envelope

 xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope”
 SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
	ENVELOPE

	 <SOAP:Header>
	HEADER

	 [info in Xml format]
	

	 </SOAP:Header>
	HEADER

	 <SOAP:Body>
	BODY

	 [info in Xml format]
	

	 </SOAP:Body>
	BODY

	</SOAP:Envelope>
	ENVELOPE

The sample below shows SOAP communication between a server and a client, where the server exposes a calculator as a service. The sample here invokes the add method of the service.

First the client sends the following SOAP request:

SOAP Request:
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SOAPSDK1:Add mlns:SOAPSDK1="http://tempuri.org/message/">
 <A>10
 90
 </SOAPSDK1:Add>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Then it could receive the following SOAP response:

SOAP response:
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SOAPSDK1:AddResponse xmlns:SOAPSDK1="http://tempuri.org/message/">
 <Result>100</Result>
 </SOAPSDK1:AddResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
What is next?

Now that we’ve seen (a little bit of) what a web-service is and how to invoke it, let’s take a closer look at what is running on the server to answer an incoming request. To keep it simple I’ve created a COM+ component in VFP 7, that doesn’t do very much, but it is the first step to get your mind around the whole idea of a web-service.

DEFINE CLASS ContentMgr AS Session OLEPUBLIC

 FUNCTION EchoString (tcString AS String) AS String

 *--

 * Abstract....: Echos string (Soap Test Method)

 * Parameters..: tcString

* Returns.....: tcString

*---

 RETURN UPPER(tcString)

 ENDPROC

ENDDEFINE

Basically, this routine does nothing very special: it retrieves a string and passes it back (pretty useful <bg>). But the goal is to see it work now, and making it more difficult and useful is the next step in this process. Compile this into a DLL and install it on the server.

WSDL and SOAP listeners

Next we need a WSDL file and a SOAP listener, which can be either an ISAPI filter or an ASP page (or one of its equivalents like JSP, PHP, …). For this article I’ve installed the MS Soap toolkit (downloadable from the Microsoft site) on the server, and this automatically installs an ISAPI filter for you on the web server. (Next time we’ll take a look at the ASP page option for handling requests.) The SOAP listener is the SOAP handler on the server side, as explained above.

WSDL stands for Web Service Description Language. It is used to descrive what methods a web service has to offer and what kind of parameters it expects. If you want to provide an web service, you must also provide a WSDL file. You can type it in any editor, but fortunately the WSDL file can be also generated with a tool that ships with the MS-SOAP toolkit called the WSDL Generator (on the Programs menu).

The WSDL snippet below is used to make the sample in this article work.

<definitions name ='ContentMgr' targetNamespace='http://bizzview.com/wsdl/'

 xmlns:wsdlns='http://bizzview.com/wsdl/'

 xmlns:typens='http://bizzview.com/type/'

 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'

 xmlns:stk='http://schemas.microsoft.com/soap-toolkit/wsdl-extension'

 xmlns='http://schemas.xmlsoap.org/wsdl/'>

 <types>

 <schema targetNamespace='http://bizzview.com/type/'

 xmlns='http://www.w3.org/2001/XMLSchema'

 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'

 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'>

 </schema>

 </types>

 <message name='ContentMgr.EchoString'>

 <part name='cString' type='xsd:string'/>

 </message>

 <message name='ContentMgr.EchoStringResponse'>

 <part name='Result' type='xsd:string'/>

 </message>

 <portType name='ContentMgrSoapPort'>

 <operation name='EchoString' parameterOrder='cString'>

 <input message='wsdlns:ContentMgr.EchoString' />

 <output message='wsdlns:ContentMgr.EchoStringResponse' />

 </operation>

 </portType>

 <binding name='ContentMgrSoapBinding' type='wsdlns:ContentMgrSoapPort' >

 <stk:binding preferredEncoding='UTF-8'/>

 <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http' />

 <operation name='EchoString' >

 <soap:operation soapAction='http://bizzview.com/action/ContentMgr.EchoString' />

 <input>

 <soap:body use='encoded' namespace='http://bizzview.com/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </input>

 <output>

 <soap:body use='encoded' namespace='http://bizzview.com/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </output>

 </operation>

 </binding>

 <service name='ContentMgr' >

 <port name='ContentMgrSoapPort' binding='wsdlns:ContentMgrSoapBinding' >

 <soap:address location='http://test.bizzview.com/_contentmgr/ContentMgr.wsdl' />

 </port>

 </service>

</definitions>

After seeing this you might get discouraged but don’t be: just use the WSDL generator, it’ll do all the work for you. But if you analyze this closely, you’ll see there is no real rocket science in there. It ‘defines’ a web service that is running somewhere inside the www.bizzview.com website, that is called ContentMgr and provides the same EchoString functionality as descrived above.

If your using the MS-SOAP toolkit, there is an MS specific file that needs to be in place as well. It is called WSML, which stands for Web Service <???> Languiage. It will also be generated for you by the MS-SOAP toolkit, and for our sample, it will look like this:

<servicemapping name='ContentMgr'>

 <service name='ContentMgr'>

 <using PROGID='ContentMgrV2.Viewer' cachable='0' ID='ContentMgrObject' />

 <port name='ContentMgrSoapPort'>

 <operation name='EchoString'>

 <execute uses='ContentMgrObject' method='EchoString'>

 <parameter callIndex='1' name='cString' elementName='cString' />

 <parameter callIndex='-1' name='retval' elementName='Result' />

 </execute>

 </operation>

</port>

 </service>

</servicemapping>

Using a web service

After having done all this it’s time to start calling our first web service. It is the web service described in the before mentioned WSDL and WSML file.

To use this wwb service, I’ve worked out 4 samples:

1. Using the SOAP-toolkit (from your development environment)

2. Using the MSXML Parser (from your development environment)

3. Using the SOAP-Toolkit
(from a webpage)

4. Using the MSXML parser (from a webpage)

Sample 1: Using the SOAP toolkit from your development environment

Notice that you need to have the MS-SOAP toolkit 2.0 installed on your machine to get this working. If you do have this installed, the (VFP) sample here will work right away: I’ve left the Web-service used in this sample on the bizzview websit for you to test it yourself.

cServer = "http://www.test.bizzview.com/_contentmgr/contentmgr.wsdl"

cService= "ContentMgr"

oSoap = CREATEOBJECT("mssoap.soapclient")

oSoap.MsSoapInit(cServer, cService)

MessageBox(oSoap.echostring("Hello World"))

Sample 2: Using the MSXML Parser from your development environment
The following sample is based on the MSXML parser version 3. Running this sample will show two message boxes, one displaying what is sent to the server and the other one telling your what is received as an answer from the server. This sample will help you understand the way the client and the server communicate with each other.

LOCAL loHTTP, lcEnvelope, loReturn, lcUrl

** URL for the web service?

lcUrl = "http://www.test.bizzview.com/_contentmgr/contentmgr.wsdl"

** create a placeholder for the return message

loReturn = CREATEOBJECT("Line")

loReturn.AddProperty("FullMessage", null)

loReturn.AddProperty("Message", null)

loReturn.AddProperty("lError", .F.)

loReturn.AddProperty("ErrorMessage", null)

*** Build the SOAP:Envelope

lcEnvelope = ""

lcEnvelope = lcEnvelope + [<?xml version="1.0" encoding="UTF-8" standalone="no" ?>]

lcEnvelope = lcEnvelope + [<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">]

lcEnvelope = lcEnvelope + [<SOAP-ENV:Body>]

lcEnvelope = lcEnvelope + [<SOAPSDK1:EchoString xmlns:SOAPSDK1="http://bizzview.com/message/">]

lcEnvelope = lcEnvelope + [<cString>Hello world</cString>]

lcEnvelope = lcEnvelope + [</SOAPSDK1:EchoString>]

lcEnvelope = lcEnvelope + [</SOAP-ENV:Body>]

lcEnvelope = lcEnvelope + [</SOAP-ENV:Envelope>]

** show the message sent to the server

MESSAGEBOX(lcEnvelope)

*** Create the XMLHttp request object

loHTTP = CREATE("Microsoft.XMLHTTP")

tlAsync = .F.

IF tlAsync

 DECLARE Sleep IN WIN32API Integer nMiliSec

 * Add request headers

 loHTTP.Open("POST", lcURL, .T.)

 loHTTP.setRequestHeader("Content-Type:", "text/xml")

 loHTTP.setRequestHeader("SOAPAction:", "http://bizzview.com/action/ContentMgr.EchoString")

 loHTTP.Send(lcEnvelope)

 *** Make sure to wait fore some time to give the control the time to actually send the data

 Sleep(5000)

 loReturn.Message = ""

 loReturn.FullMessage = ""

 ELSE

 * Add request headers

 loHTTP.Open("POST", lcURL, .F.)

 loHTTP.setRequestHeader("Content-Type:", "text/xml")

 loHTTP.setRequestHeader("SOAPAction:", "http://bizzview.com/action/ContentMgr.EchoString")

 loHTTP.Send(lcEnvelope)

 IF loHTTP.Status <> 200

 loReturn.lError = .T.

 loReturn.ErrorMessage = TRANSFORM(loHTTP.Status) + " : " + loHTTP.StatusText

 loReturn.FullMessage = "<RETURN>" + TRANSFORM(loHttp.status) + "</RETURN>"

 loReturn.Message = ""

 ELSE

 loReturn.FullMessage = loHTTP.responseXML.XML

 loReturn.Message = loReturn.FullMessage

 ENDIF

ENDIF

loHTTP = .NULL.

** show the message returned from the server

MESSAGEBOX(loReturn.Fullmessage)

RETURN

The two messageboxes displayed look like this:

Message sent:

[image: image1.png]" 2<S0AP ENV:Envelope:
g /schemas smisoap.otg/soap/encoding/”

sl SOAPSDK1="hitp:/bizeview com/message"><cSting> Hello
workd¢/cSting>¢/S0APSDKT-EchoSting></STAP-ENV:Body» </SDAPENV-Envelope)

(i

Message received:

[image: image2.png]<SDAP-ENV Envelope SOAP-ENV-encodingStyle="hit//schemss slsosp ora/soap/encoding”

i SOAP-ENV="hitp:/schemas ssosp org/soap/envelope"> <SAP-ENV Body> <SDAPSDKT € choStingRlesponse
sl SOAPSDK1="hitp://bizview com/message"><ResuboHello
workd¢/Resut </SOAPSDKT-E choStingResporise> </SOAP-ENV Body></SOAP-ENV Envelope>

(i

Sample 3: Using the SOAP toolkit from a webpage

Doing the same as in sample 1 but then from within an ASP page looks like this:

<%@ Language=VBScript %>
<HTML>
<HEAD>
 <TITLE>SOAP-Toolkit 2.0 Sample 1</TITLE>
</HEAD>
<BODY>
 <P>
 <H2>Test if the connection can be made to the server and a valid response is returned</H2>
 </P>
 <%
 ' Set up some vars to use later on
 const cServer = " http://www.test.bizzview.com/_contentmgr/contentmgr.wsdl "
 const cService= "ContentMgr"

 ' Create MSSoapToolKit Soap Client
 Set oSoapClient = Server.CreateObject("MSSOAP.SoapClient")

 ' Initialiaze the soapclient by passing the name of the server and the name of the service
 oSoapClient.ClientProperty("ServerHTTPRequest") = true

 Call oSoapClient.MSSoapInit(cServer, cService)

 ' Call the test function echostring to write Hello
 Response.Write("<HR>")

 FOR lnLoop = 1 TO 3
 Response.Write("<H" & cStr(lnLoop) & ">" & oSoapClient.echoString("Hello world") & "<H" &_

 cStr(lnLoop) &"></BR>")
 NEXT
 Response.Write("<HR>")
 ' Release the object
 Set oSoapclient = Nothing
 %>
</BODY>
</HTML>
The result in your webbrowser will look like this. The “Hello world” string is written 3 times, because of the FOR NEXT loop in the code above.

[image: image3.png]A SOAP-Toolkit 2.0 Sample 1 osoft Intemet Explorer

Hello world

Hello world

Hello world

Sample 4: Using the MSXML Parser from a webpage
The same sample as the above, but now using the XML parser instead of the SOAP toolkit to get the result.

<%@ Language=VBScript %>

<HTML>
<TITLE>SOAP-Toolkit 2.0 Sample 1</TITLE>
<BODY>
 <P>
 <H2>Test if the connection can be made to the server and a valid response is returned</H2>
 </P>
 <%

 ' Set up some vars to use later on
 const cServer = " http://www.test.bizzview.com/_contentmgr/contentmgr.wsdl "
 const cService = "ContentMgr"

 DIM lcSOAPmessage
 ' build soap request string
 lcSOAPmessage = ""
 lcSOAPmessage = lcSOAPmessage + "<?xml version='1.0' encoding='UTF-8' standalone='no' ?>"
 lcSOAPmessage = lcSOAPmessage + "<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'

 xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'>"
 lcSOAPmessage = lcSOAPmessage + "<SOAP-ENV:Body>"
 lcSOAPmessage = lcSOAPmessage + "<SOAPSDK1:EchoString

 xmlns:SOAPSDK1='http://bizzview.com/message/'>"
 lcSOAPmessage = lcSOAPmessage + "<cString>Hello World</cString>"
 lcSOAPmessage = lcSOAPmessage + "</SOAPSDK1:EchoString>"
 lcSOAPmessage = lcSOAPmessage + "</SOAP-ENV:Body>"
 lcSOAPmessage = lcSOAPmessage + "</SOAP-ENV:Envelope>"

 ' send soap request string by ServerXmlHttp
 set oXmlHttp = server.CreateObject("MSXML2.ServerXMLHTTP")
 call oXmlHttp.open("POST" , cServer, false)
 call oXmlHttp.setRequestHeader("Content-Type:","text/xml")
 call oXmlHttp.setRequestHeader("SOAPAction:","http://bizzview.com/action/ContentMgr.EchoString")
 call oXmlHttp.send(lcSOAPmessage)

 ' Check status of the http request (200 = succes)
 if oXmlHttp.status = 200 then
 lcSOAPresponse = oXmlHttp.responseText
 else
 Response.Write("<HR>Failed to get SOAP response : " & oXmlHttp.status)
 Response.End
 end if

 ' filter useful response out of SOAP response
 SET oXmlParser = Server.CreateObject("MSXML2.DomDocument")
 oXmlParser.loadXML(lcSOAPresponse)
 set loReturn = oXmlParser.documentElement.selectNodes("//SOAPSDK1:EchoStringResponse/Result")
 if loReturn.length = 1 then
 lcReturn = loReturn.item(0).text
 else
 ' return error string
 lcReturn="<ERROR><CODE>0</CODE><DESCRIPTION>Geen soap result</DESCRIPTION></ERROR>"
 end if

 FOR lnLoop = 1 TO 3
 Response.Write("<H" & cStr(lnLoop) & ">" & lcReturn & "<H" & cStr(lnLoop) &"></BR>")
 NEXT

 Response.Write("<HR>")
 ' Release the object
 Set oXmlHttp = Nothing
 Set oXmlParser = Nothing
 %>
</BODY>
</HTML>
The result in your webbrowser will look like the same as in the previous sample.

Notice however that it takes more code than the previous sample to reach this same result. What is the best solution then? As always it depends. If you’re lazy, you’ll probably fancy the SOAP toolkit approach: less code and very high-level functions to work with. To be honest I started out that way also. But when I used the XML parser approach and benchmarked the two ways of working, the performance penalty for using the SOAP toolkit approach turned out to be high. In some cases the difference between the two was 10 seconds or more, so it pays off to do some extra work here. The SOAP toolkit though offers great debugging capabilities, which isn’t possible using the XML parser. The debugging capabilities and why it takes longer using the SOAP-Toolkit are issues I’ll address in the next article about web-services.

About the author

[image: image4.jpg]

Remi is CTO at Wantit BV which is located in Haarlem the netherlands. He is active in the information industry since 1989 and started with FoxBase as his first programming language. Has been working with all versions of FoxPro since then. With the .Net revolution he added C# to his toolset which also holds SQL-Server, XML, XSLT and ASP.Net. Remi can be reached at remi.caron@wantit.nl. He is a regular speaker at developer conferences and publisher of articles in the various magazines.
