Creating Reusable Objects
This document is reprinted from the Microsoft DevCon 95 Speaker materials and is provided "as-is." This document and any associated demo files were created using Visual FoxPro 3.0. Some features discussed may have changed in Visual FoxPro 5.0.

Menachem Bazian, CPA
Flash Creative Management, Inc
Introduction
Visual FoxPro presents us with a radically new way of looking at building applications. With the addition of object orientation to the product, FoxPro has matured into a development language that allows us to build arsenals of classes to speed us along the road to building bullet-proof applications quicker than we ever thought possible.

The watchword in FoxPro 2.x development was reusability. Still, FoxPro 2.x’s modular style of development did not enforce this practice. Frequently, modules built in FoxPro 2.x were first built “specific” and only later made generic.

The core of software development in an object oriented environment is creating base classes and then building additional classes and objects from those classes. This, by definition, forces us to think in terms of reusability.

Visual FoxPro is a “hybrid” language. Like C++, FoxPro does not require that you use OOP in your systems. Software may still be developed modularly as it was done in the past. OOP, however, adds a powerful new dimension to our software development efforts.

This session will discuss creating classes for reusability with Visual FoxPro 3.0.

An Introduction to Object Orientation

Before we go into creating reusable classes in Visual FoxPro, let’s take a quick look at the basics of Object Orientation.

Introduction
OOP is not really a new method of programming. It really is a new way of looking at programming. When you get into it, you will find that these new concepts are really based in things we already know. All it takes is an understanding of what all the terminology and ten-dollar words mean, how these concepts can affect your system design and how they add tremendous power to the development language.

Objects
The base unit we will be working with is called an object. In real terms, an object can be anything. For example, a computer is an object. So is a house, a car, a telephone, a candle, you name it.

Sometimes an object is a collection of other objects. For example, a computer may be an object but it is made up of a keyboard, processor, disk drives, etc. each of which are objects on their own as well.

The common denominator of all objects is that they know everything they need to know to do what they do. For example, a car has everything it needs to do what it has to do. For example, the steering mechanism accepts information from the driver and the car knows how to interpret the drivers actions into the movement of the car. The shocks adjust to the input of the road, the engine drives the wheels, etc.

Objects used in software development are more abstract than the examples presented here. For example, we can define an object called customer in which we define what the object contains and does. Another object used in OOP would be an object used in a form (called a control). Typical examples of these objects would be pushbuttons, radio buttons, text boxes (GET fields), and more.

We’ll look at the customer and pushbutton objects some more as we go through each topic in our discussion of OOP.

Characteristics of an Object--It's Properties
Look at your average candle. How would you describe it? You might say that it is three inches long, red in color, tapered, with a cotton wick at the top. Each of these descriptive characteristics is what is known in OOP terminology as a property (also known as an instance variable) of the object. Each object has properties which describe it.

To move back to programming concepts, for a minute, take a look at the old FoxPro 2.6 pushbutton. What might the properties of that be? Well, for a few, the caption (e.g. OK, CANCEL), width and height of the button, location on the screen (a/k/a/ form), etc. are all properties of the pushbutton.

That’s all there is to properties.

Going back to our customer example, where we define what the object is, we could have many properties for a customer. For example, the customer’s name, address, telephone number, credit limit, etc. would all be properties of a customer.

The beauty of the OOP model is that properties become directly referenceable as part of the object. Let’s take the example of changing the prompt (i.e. the Caption) of a push button. In FoxPro 2.6, we would modify the button attached to the variable, lhOk, with the following command:
SHOW GET m.lhOk,1 PROMPT “It’s OK”

In an OOP programming environment, you access the property directly as part of the object. For example, here’s a common syntax for this:
lhOk.Caption = “It’s OK”

Notice the use of the dot operator. The idea behind this bit of code says that there is an object on the screen called lhOk which has a property called Caption (which controls what the user sees as the prompt for that object). This line of code sets the caption property to “It’s OK”, which will then automatically update the display of the object on the form.
Here’s another one. Disabling an object is also likely done is a similar manner. In the old way, an object on a screen is disabled with:
SHOW GET lhOk DISABLE

as opposed to the OOP way which would be something like:
lhOk.ENABLED = .F.

which would automatically disable the object. You could also hide an object with:
lhOk.VISIBLE = .F.

Note the change in approach to modifying the characteristics of an object. In the old way, we did it indirectly using commands that work on the screen. Now, we are working directly on the object itself.
Changing the properties of a customer object work the same way. For example, to set the name of a customer, we could modify the customer’s NAME property as follows:
Customer.Name = “Flash Creative Management, Inc.”

Actions Associated with Objects--Methods
A premier concept in OOP programming is called encapsulation. This means is that an object has attached to it everything it needs to handle itself. We have already seen, for example, that the characteristics of an object are bound to it as properties. In addition to properties, an object can also have actions attached to it to perform specific functions. For example, if you had a light switch, you would need to have some way of toggling the light on and off when the user flips the switch. To put it in more “computerish” terms, if you had an invoice object, the procedure to print that invoice would be bound to the invoice object.

These actions which are attached to objects are known as methods.

The key here, now, is that we can attach code to any object. Going back to the light switch example, we could have a method called Toggle that turns (toggles) the light on and off. Something like this (written in pseudo-code, of course).
Procedure Toggle

IF light_is_on

Turn_Light_Off

ELSE

Turn_Light_On

ENDIF

ENDPROC

If we were to assume that we had a light switch in the kitchen (we’ll call the name of the object Kitchen_Light), we could fire the method to toggle the light on and off by issuing:
Kitchen_Light.Toggle

In our customer object, we could have a method to move from one record to the next when in a form. We could call this method, Nextit, in the following manner:
Customer.Nextitf

This is a very powerful way of working with code. By having a method called Nextit which moves on to the next record, you can make your code more generic. For example, you could have a “Next” button on a toolbar which always calls a method called Nextit. The object currently being worked on (e.g. a Customer, an Invoice, etc.) could be passed through as a parameter. Thus, by executing a single line of code like:
toObject.Nextit

where toObject is the name of the parameter variable accepting the object, you could always execute the method appropriate for the current table.
Let’s take the next step and look at events.

Events
Events are just that—things that happen automatically. For example, clicking the mouse is an event. When using objects on a Windows form (like a pushbutton), you can attach code (i.e. methods) to these events. When the event happens (i.e., the user clicks the mouse on the object) the associated method is automatically called.

Events are nothing new. We have been using them the since the advent of FoxPro 2.0. Valid clauses, for example, are simply procedures which are attached to an event (attempting to exit a modified field or clicking on a push button). The power of using objects comes in attaching procedures to an object which automatically fire when something specific happens. In Visual FoxPro, for example, you can attach methods to all kinds of events: when the mouse is clicked down, when the mouse is released, etc.

There is one major difference between events in an object oriented development environment and the old valid and when clauses. In FoxPro 2.6 there was no direct method of manually firing the code snippet attached to an event (there is a way, but it is a kludge). In other words, there is no single command that says Run the procedure attached to a screen object’s Valid event. In an object oriented development environment, you can do this easily by calling the event as you would a method. For example, if you had a pushbutton called cmdOK, you could fire the Click event (which happens automatically when the user clicks the mouse on the pushbutton) at any time by issuing:
cmdOk.Click

By attaching code to the Windows events we greatly increase the control we have over the behavior of a form.
So far, we have seen that we can create objects, assign properties to them and create methods for them. If we have to write code to fine tune an object every time we create it, we would be in for a lot of coding. Fortunately, OOP has the answer for this as well—CLASSES.

Understanding Classes
Earlier in this article, I discussed a candle as an object. The candle had certain properties such as its color, length, width, etc. However, how is a candle created?

A candle is created by pouring molten wax into a mold (with a wick inside, of course). When the wax cools, you open the mold and out pops the candle. Using a mold, you can create many candles all with the same characteristics.

A class is, in effect, a mold. All objects are created from classes. When a class is defined, you specify what the properties are (color, height, width, position, etc.) and what the methods are. Objects are then created by instantiating them (a fancy word for pouring the wax into the mold and waiting for it to cool) from the class.

Let’s take a quick look at how we can define a class. For the purposes of this example, I will return to the light switch example:
DEFINE CLASS light AS custom

 status = "OFF"

 PROCEDURE LightSwitch

 IF this.status = "OFF"

 this.status = "ON"

 ELSE

 this.status = "OFF"

 ENDIF

 ENDPROC

ENDDEFINE

This piece of code creates a class called LIGHT. Light has one property, called Status, which is initialized to OFF. The PROCEDURE code is a method which is attached to the class.
In effect, what we have just done, is defined what a “light” object will have and do.

We instantiate, or create, the object from the class using a command or function which says, basically, “create an object with the characteristics of the class and give it a name”.
x = CREATEOBJECT(“light”)

This code, for example, will create an object based on the class called “light” and give the object a name called X. Once we have run this code, we can access all the properties of the object as described before. For example...
? x.Status && Returns "OFF"

x.LightSwitch && Run method "lightswitch" defined in the class

? x.Status && After running lightswitch, this would return "ON"

Basing a class on another class--Subclassing
So far we have discussed just about all there is to know about objects. We have discussed what objects, properties, methods and events are. We have also discussed how we create an object’s blueprint with a class which we then use to instantiate the object. One more important piece remains—the real exciting part as it turns out. Creating classes based on prior classes.

In our LIGHT class, we created an object which basically had one property and one method. This works real well for all the light switches in the world that just turn the light on and off. Suppose I want to create a light switch that dims as well? What do I do? Do I have to write a whole new class? The toggle is still applicable; you can still turn the light on and off. All I need is a modified version of the LIGHT class which has all the capabilities of the LIGHT class and one additional capability: dimming the light.

For the purposes of this illustration, I’ll set the following rules. When you attempt to use the dimmer, it will go from full light to half light and then back again. In order to turn the light off or on, you still need to use the original lightswitch method.

Here’s how we could accomplish this using an OOP model.
DEFINE CLASS dimmer AS light

 intensity = "FULL"

 PROCEDURE DimmIt

 IF this.status = "OFF"

 RETURN

 ENDIF

 this.intensity = IIF(this.intensity = "FULL", ;

 "HALF", "FULL")

 WAIT WINDOW "Lights are now "+this.intensity+" power."

 ENDPROC

ENDDEFINE

Note the original DEFINE of the class. In the original define (class LIGHT), we used CUSTOM as the base class. CUSTOM basically means that there is no base class, we are creating one from scratch. In the DEFINE we use here, the base class is LIGHT. This means that DIMMER automatically gets everything that LIGHT has. Thus, although no code exists in the DIMMER class to handle the LIGHTSWITCH method and the status property, DIMMER gets it automatically by virtue of it being a subclass of LIGHT.
In effect, a subclass (e.g. DIMMER) is a more specialized version of the “super class” (e.g. LIGHT).

This is known as Inheritance.

Understanding Polymorphism
The final point to be made here is Polymorphism. All this means is the ability to call methods with the same name and have it mean different things based on the object you are working on.

For example, let’s take our Light objects. All have a method called Toggle which turns the light on and off. Support, now, that I were to create an entirely different object: a telephone. The telephone object may or may not have anything to do with a light object but there is a method attached to it which is also called Toggle which does something.

Now, let’s take a look at this bit of code:
oLight = CREATEOBJECT("Light")

oPhone = CREATEOBJECT("Telephone")

oLight.Toggle && Runs the Toggle method from the Light object

oPhone.Toggle && Runs the Toggle method from the Phone object

Encapsulation Revisited
Taking the concepts that we have seen here, encapsulation becomes clearer. Basically, encapsulation means that an object is a self contained unit. It contains data, in the form of properties (also called instance variables), and methods associated with it to perform whatever actions the object needs to do what it needs to do.

We saw this with the Light class of objects.

We can also create a Customer class if we wanted to and associate data and methods with it that encapsulate customer information and actions within.

A customer object’s data would be such items as Name, Address, Phone Number, Credit Limit, etc. Methods associated with the object could be actions related to displaying customer data, allowing the user to edit/add customers, printing a customer, etc. If you develop naming conventions for your object methods, using the objects become a breeze. The following example will use two mythical classes, customer and invoice. Note how the code, at this level, can be exceedingly similar. In fact, using OOP, the developer who takes objects and puts them together in the form of a system, will have a much easier job.
oCust = CREATEOBJECT("Customer")

oCust.Display && Show the customer

oCust.Edit && Edit the Customer

oCust.Save && Save Customer

oCust.Print && Print the customer

oInv = CREATEOBJECT("Invoice")

oInv.Display && Show the Invoice

oInv.Edit && Edit the Invoice

oInv.Save && Save Invoice

oInv.Print && Print the Invoice

Messages, Messages, Messages
If you read any literature on OOP, the concept of “messages” is littered throughout. When working on OOP based systems, everything we have just discussed is described as “sending a message.” If we look at the examples of working with objects listed above, we can define them as follows:

Creating an Object
oInv = CREATEOBJECT(“Invoice”)

This line of code sends a message to the Invoice class telling it to create an object based on itself called oInv.
Getting the value of a property
lnAmount = oInv.nAmount

This can be described as sending a message to the oInv object telling it to get the value of the nAmount property and to return it to lnAmount.
Calling a method
oInv.Display && Show the Invoice

Calling a method can be termed as sending a message to the oInv object to execute its method called Display.
If we understand the concept of a message, a great deal of the gobbledygook we read in OOP literature becomes understandable. For example, Polymorphism has been defined as “The ability to send the same message to different objects and have different actions take place”. Put into English, this means that I can have the same method name in multiple objects that do different things.

The moral of this story is: don’t let the language throw you.

OOP and its Effect on Development
So, now that we have seen what objects are and what all the ten dollar words mean, the next question is “Big deal. What does this do for me?”
OOP will shift the focus of development from coding procedures to the designing and defining classes. Since Objects are, in effect, complete and independent “modules” it is possible to have developers just working on classes of objects. The application developers can then use these classes, either directly or by subclassing them, and put them together to form a system.

Does this mean that once you have a library of classes that you will never need to write code again? Not quite, but it will make your life a lot easier once you have the class library developed, debugged and ready to go.

System Maintenance with OOP
Users like to change things, right? Suppose, using our light example, the user changed the base definition of a light switch. In our example, a light switch only has one property (called status) and one method (called Lightswitch). Suppose the company redefined the base light switch (class LIGHT) to have an additional feature. Now, when the user turns the light off or on, the system will tell them what they have done.

In order to accomplish this, all we need to do is modify the Class definition of the light as follows:
DEFINE CLASS light AS custom

 status = "OFF"

 PROCEDURE LightSwitch

 IF this.status = "OFF"

 this.status = "ON"

 ELSE

 this.status = "OFF"

 ENDIF

 WAIT WINDOW "Light is now " + this.status
 RETURN

ENDDEFINE

From this point on, all object instantiated from the class LIGHT will get the changed method. In effect, we have changed the behavior of every object based on this class by adding one line of code to the class definition.
But wait, there’s more. Not only have we modified all the objects based on class LIGHT, we have also modified every object based on subclasses of light (e.g. Dimmer). This makes for a powerful way of developing reusable code. The flip side to this is if you break a class, you may also break all the subclasses (regardless of which application you have used it in) based on it. If you have used the class in a production application, you’ll need to be very careful with this.

Creating Reusable Classes
Now that we have seen some OOP basics, let’s move on to the practical side of OOP. We’ll also delve deeper into the world of creating reusable classes, when, how and why we would do it and show some practical examples.

Why Create Classes?

The first question to ask is: why should I create a class? Seems like a silly question given our discussion, but the question bears another quick look.

We create classes for four possible reasons:

1. Multiple Use

2. Extending Functionality

3. Easier Use of Existing Functionality

4. Maintenance

While many of these reasons are somewhat related, let’s look at each one’s merits on an individual basis.

Creating Classes for Reuse
We frequently will create a class for something that we will use many times. For example, we could create a generic “OK” button that simply closes a form. If we create a class once, we can reuse that button as many times as we want without having to write a single line of code.

Classes can be more complex than a simple OK button. For example, we can create a drop down list object (comparable to the popup list in FoxPro 2.6) that would get a list of all drives on the system and allow the user to select one. This type of object (we’ll see an example of one later on), is more complex than a simple OK button and benefits more from the object oriented approach.

Coding classes for reuse is one of the primary reasons we create classes. In fact, the majority of the classes we create in our applications will probably fall into this category. In addition to creating Visual Classes (classes that we use for our application’s GUI), we can also create classes that model the business entities in our applications such as customers, invoices and so on. Again, the idea is that we would model the behaviors of these objects only once and then could reuse them, either by instantiating objects directly from the classes or using the classes as bases for other subclasses.

Extending Functionality
Another reason to create a class would be to create something that simply does not exist. A good example of this would be a class that combines controls to create a new type of control. For example, we could create a text box and a timer control to create a stop watch. Either object, working on its own, cannot provide the full functionality a stop watch would require. If we put them together, we come up with a new control called a Stop Watch that would track the time and display it for use. We’ll see an example of a stop watch object in our discussion of how to model an entity, define responsibilities and finally code the class.

Easier Use of Existing Functionality
Sometimes, we will create a class that represents functionality that we have traditionally been able to do with functions. This class will wrap around the functions to encapsulate the functionality and make it easier to use. These classes are known as “Wrapper Classes”, or classes that are wrapped around something that we can do without a class. The only benefit of wrapping a class around it is to make the implementation of the functionality easier in our systems.

A good example of this kind of class is a class that encapsulates the functionality of FoxTools or even SYS() functions. By creating a class with methods to handle the individual functions we can not only forget the cryptic and often unrecognizable names for functions, but we can also encapsulate the error handling associated with the objects.

We’ll look at a wrapper class for FoxTools later.

Maintenance
Maintenance is one of the primary benefits of OOP. All the code for objects instantiated from a class is in one place. This makes maintenance a breeze.

Class and Object Syntax
Here’s the basic syntax associated with creating classes manually in Visual FoxPro 3.0.

Defining a Class
Defining a class is accomplished using the Define Class/EndDefine construct. Let’s take a look at the structure of the construct as a whole and then we’ll take it apart piece by piece.
DEFINE CLASS AS

*-- Declaration Code Here

PROTECTED

PROCEDURE (param1, param2)

LOCAL

*-- Procedure Code Here

ENDPROC

FUNCTION (param1, param2)

LOCAL

*-- Function code here

RETURN

ENDFUNC

ENDDEFINE

DEFINE CLASS <classname> AS <baseclass>
This line of code tells FoxPro that we are creating a class. All code between the DEFINE and the ENDDEFINE relates to this class. <Classname> is the name of the class. <Baseclass> is the name of the class upon which the class is based. This can be a built in class provided with Visual FoxPro 3.0 or a class that you create or purchase.

Visual FoxPro 3.0 comes with the following base classes.

	Class Name
	Description

	CheckBox
	A standard checkbox control. Similar to the checkbox created in FoxPro 2.x.

	Column
	A column on a Grid Control.

	ComboBox
	A combobox is akin to a popup control in FoxPro 2.x.

	CommandButton
	Equivalent to a push button in FoxPro 2.x

	CommandGroup
	A group of command buttons that operate together. Equivalent to a group of push buttons in FoxPro 2.x that are controlled by one variable.

	Container
	A generic object that is designed to hold other objects. This is useful when you are creating a class that has more than one object on it.

	Control
	The same as the container class with one major difference. In a container class, when the object is instantiated from the class, you can address all objects with in the container. The control class hides all internal objects and only allows communication with the control class.

	Custom
	This class is primarily used for objects that are not visual. It may contain visual objects as members.

	EditBox
	Equivalent of a FoxPro 2.6 Edit Region

	Form
	A single “screen”. This is a container object in that it may (and usually does) contain other objects. The equivalent of a FoxPro 2.x Screen.

	FormSet
	A container type object that has one or more forms as members. This is the equivalent to a FoxPro 2.x screen set.

	Grid
	A container type object that allows display and editing of information in browse type format.

	Header
	The Header of a Grid Column

	Image
	A picture.

	Label
	Equivalent of placing text on a screen in a FoxPro 2.x screen.

	Line
	A drawn line.

	ListBox
	Equivalent of the FoxPro 2.x scrolling list control.

	OleControl
	A control based on an OLE2 object.

	OptionButton
	A single radio button type object.

	OptionGroup
	Multiple radio buttons that operate as a single control. This is the equivalent to a FoxPro 2.x radio button object.

	Page
	A single page within a page frame.

	PageFrame
	A tabbed type control. Each tab within a tab control is a separate page. The PageFrame control is a container type control because it may (and usually does) contain many objects.

	Shape
	A shape (such as a circle or a box).

	Spinner
	Equivalent of the FoxPro 2.x Spinner Control.

	TextBox
	Equivalent of a FoxPro 2.x “plain” GET control.

	Timer
	A visual object that does not display on a form. This control is designed to allow for actions at certain timed intervals.

	ToolBar
	ToolBar A toolbar. Toolbars are groups of objects that can be docked at the top, bottom or on the sides. When not docked, looks somewhat like a form.

While it is beyond the scope of this article to go into each class in detail, understanding each of these classes, their properties and methods, is critical to properly using them when defining classes in Visual FoxPro 3.0.

In addition to the base classes included with Visual FoxPro 3.0, you can base classes on your own classes. The stop watch example will illustrate this.

*--Declaration Code Here/PROTECTED <list of member variables>

Declaration Code is the code you use to declare your member variables in the class. Only the memory variables listed here are available within the class. If a member variable is an array, you would DECLARE the array in this section of code.

Another important piece in this section is the declaration of PROTECTED members. A protected member is a member variable that is not visible outside of the class. In other words, methods within the class can access and modify that variable but the variable does not exist as far as the outside world (anything that is not a method of the class) is concerned.

An example of a member variable that would be declared PROTECTED would be a member that saves the state of the environment when the object is instantiated. The variable may be used to reset the environment when the object is released but it serves no purpose to programs instantiating the object and interacting with it. As a matter of fact, you would not want this member variable to be changed by the outside world. Hence, you would PROTECT it in the declaration section of code.

PROCEDURE <methodproc> (param1, param2)/ENDPROC

This line of code define a procedure method (a method that is a procedure as opposed to one that is a function). <Methodproc> refers to the name of the method. Parameters are accepted by enclosing the parameter variables in parens as shown above.

A few words of note are in order here...

There is no practical difference between creating a procedure method and a procedure we used to create in FoxPro 2.x. The rules regarding memory variable scoping, coding constructs, etc. Are virtually identical. A significant difference in scoping is the addition of the LOCAL scope which scopes variables to the current procedure only.

Methods can be protected like member variables (i.e., they can only be called from other methods in the class) by adding the keyword PROTECTED before PROCEDURE (i.e. PROTECTED PROCEDURE <methodproc>).

Parameters can be accepted with the old PARAMETERS command. The syntax shown here is preferred from an OOP standpoint because it assigns a LOCAL scope to the variables. Note that there is a new LPARAMETERS command that not only accepts the parameters but also assigns them a LOCAL scope.

Procedure methods are closed with the ENDPROC command.

FUNCTION <methodfunc> (param1, param2)/ENDFUNC

This creates a method that is, in effect, a UDF and returns a value. The return value is passed back with the familiar RETURN command. Note that although there is a RETURN command, an ENDFUNC is still added to close the function.

The notes regarding procedure methods are applicable for function methods as well.

Creating Composite Classes
A composite class is a class that has members that are themselves instances of other classes. A perfect example of this is a class that is based on a container class such as a form. When you think of it, a form in and of itself is a class. Yet the objects in it are classes too. So, we have one object that has other objects contained in it (hence the name Container Class).

When using code, object members are added to the class in the INIT method using the ADDOBJECT() method. For example, I could have a class called PHONE that I wanted to have a member of class LIGHT. In the INIT method of class PHONE, I would do the following:
PROCEDURE init

 this.addobject(“oLight”, “Light”)

ENDPROC

If I instantiated an object called oPhone, it would have a member called oLight.
The syntax of the AddObject() method is:
<object>.AddObject(<Member Name>,<Class Name>)

Using a Class
Here is the syntax for using a defined class.

Instantiating an Object

Instantiating an object is accomplished using the CREATEOBJECT function:
oObject = CREATEOBJECT(<classname>)

where <classname> is the name of class upon which we are basing the object. oObject becomes an instance of the class.
Bear in mind that, in order to use a coded class, the .PRG that has the class definition must be available either by being in the calling stack or by using SET PROCEDURE (which now supports an ADDITIVE clause).

Accessing a Member Variable
A member variable of an object is treated much like any other FoxPro variable. It can be used, modified, queried, etc. The only difference is that a member variable is always referenced with its object as follows:
? oObject.<MemVarName>

oObject.<MemVarName> = <Value>

Remember, if a member variable is protected, attempting to access it outside of the class will produce an error.
Finally, you can access a member from an object that is contained within another object by accessing the variable with the full object hierarchy. For example, assume we had a member called STATUS of oLight. Assuming that oLight is a member of oPhone., we would access the STATUS member as follows:
? oPhone.oLight.Status

Accessing a Method
Methods are called and run by specifying the name of the object and name of the method to run as follows:
oObject.<methodproc>[()]

lcValue = oObject.<methodfunc>()

Note that the parenthesis are optional when calling a procedure method when there are no parameters being sent through. For example, you could call the SHOW method for an object called oForm with:
oForm.Show

or
oForm.Show()

It is good programming practice to always include the parenthesis, however, as it makes it clearer that you are calling a method.
Parameters sent through to a method are always included in the parenthesis (much like parameters are specified when calling a UDF in FoxPro 2.x).

The rules for accessing methods of object members is the same as those for members as shown above.

Accessing Methods and Member Variable Within a Class
There is a problem when it comes to calling methods and accessing member variables within a class. Specifically, what is the name of the object? It is all well and good to require the name of the object when you are dealing with an instantiated object—the program that instantiated the object knows what the name is. Within a class, we have no knowledge of what the object’s name is.

The solution is a “generic” name that is assigned to the object when working within the class. The generic name is “This”. Thus, if I wanted to call the SHOW method within the class on which oForm was instantiated, I would do it as follows:
this.show()

Similarly, I could access a member variable by using THIS. Note that this only works when you are working within a class.
A Coded Class
Now that we have looked at the structure of a coded class, and how objects are created and their components used, let’s take a look at an example of a coded class.

Earlier, we discussed wrapper classes. We saw that wrapper classes are designed to encapsulate functionality and make it easier to use.

A good candidate for a wrapper class is FOXTOOLS.FLL. This is a function library that is chock full of useful functions. There are several problems, however, when working with FoxTools. Here’s what they are:

The functions exist in an outside library that must be loaded prior to use. This means that whenever you use the functions, you must make sure that the library is loaded.

Many of the functions are cryptic and are difficult to use and learn.

Some of the functions don’t do exactly what I want them to.

By wrapping a class around the FoxTools library, we can alleviate all these issues. Let’s take a look at the code first and then we’ll discuss some of the more interesting issues the code engenders:
* Program...........: FTOOLS.PRG

* Author............: Menachem Bazian, CPA

* Project...........: COMMON

* Created...........: 11/29/1994

*) Description.......: Wrapper class for FoxTools

* Major change list.:

*-- This is a wrapper class for FoxTools. The following functions have been added as

*-- methods to this class:

*--

*-- DriveType

*-- JustFname

*-- JustStem

*-- JustPath

*-- JustDrive

*-- JustPathNoDrive

*-- AddBs

*-- IsDir

*-- CleanDir

*--

*-- A couple of quick notes here:

*--

*-- JustPath has been modified to add a backslash where necessary to the return

*-- value.

*--

*-- JustPathNoDrive is the same as JustPath except that it strips out the drive

*-- designator.

*--

*-- IsDir accepts a string and tests to see if it is a directory. Returns a logical.

*-- Although IsDir is not based on FoxTools, it fits well with other FoxTools

*-- functions and, therefore, is part of this class.

*--

*-- CleanDir deals with the issue of directories specified with ..\. It returns

*-- an "adjusted" directory name.

*--

*-- In all cases when running a FoxTools function, the class will check to make sure

*-- that FoxTools is still loaded (the user may have released it on their own). If this

*-- class loads FoxTools, it released it when the object is released.

DEFINE CLASS ftools AS custom

PROTECTED lLoaded

PROCEDURE init

this.lLoaded = .F.

this.loadlib()

ENDPROC

PROCEDURE destroy

IF this.lLoaded

RELEASE LIBRARY (SYS(2004)+"foxtools.fll")

ENDIF

ENDPROC

PROCEDURE loadlib

IF !"FOXTOOLS" $ SET("library")

SET LIBRARY TO (SYS(2004)+"FOXTOOLS")

this.lLoaded = .T.

ENDIF

ENDPROC

FUNCTION drivetype(tcDrive)

LOCAL lnRetVal

lnRetVal = (drivetype(tcDrive))

RETURN lnRetVal

ENDFUNC

FUNCTION justfname(tcString)

LOCAL lcRetVal

lcRetVal = (justfname(tcString))

RETURN lcRetVal

ENDFUNC

FUNCTION juststem(tcString)

LOCAL lcRetVal

lcRetVal = (juststem(tcString))

RETURN lcRetVal

ENDFUNC

FUNCTION justpath(tcString)

LOCAL lcRetVal

lcRetVal = (this.addbs(justpath(tcString)))

RETURN lcRetVal

ENDFUNC

FUNCTION justdrive(tcString)

LOCAL lcRetVal

lcRetVal = (justdrive(tcString))

RETURN lcRetVal

ENDFUNC

FUNCTION justpathnodrive(tcString)

LOCAL
lcRetval, ;

 lnAtPos

lcRetVal = this.justpath(tcString)

lnAtPos = AT(':', lcRetVal)

IF lnAtPos > 0

IF lnAtPos < LEN(lcRetVal)

lcRetVal = this.addbs(SUBST(lcRetVal,lnAtPos+1))

ELSE

lcRetVal = ""

ENDIF

ENDIF

RETURN (lcRetVal)

ENDFUNC

FUNCTION addbs(tcString)

LOCAL lcRetVal

lcRetVal = (addbs(tcString))

RETURN lcRetVal

ENDFUNC

FUNCTION isdir(tcString)

LOCAL lcOldError, ;

 lcOldDir

PRIVATE plRetval && Need this in the error method

*-- Some quick notes about this function. FoxPro does not have a

*-- function (neither does FoxTools for that matter) that will

*-- test to see if a string represents a directory or not. For

*-- example, if the string is A:TEST, is that a FILE or a DIRECTORY?

*--

*-- The idea here is to SET DEFA to the parameter. If it generates

*-- an error, the parameter is not a directory.

*--

*-- Causing an error in a method will call the ERROR() method for the

*-- class. So, the only way to accomplish this is to set a PRIVATE

*-- variable (which would be available to the ERROR() method) and let

*-- the error method handle setting the return value.

plRetVal = .T.

lcOldDir = SET("DEFA")-CurDir()

SET DEFA TO (tcString) && Test the Parameter

SET DEFA TO (lcOldDir) && Back to where we were

RETURN plRetVal

ENDFUNC

FUNCTION cleandir(tcString)

RETURN(UPPER(sys(2027, tcString)))

ENDFUNC

PROCEDURE error (tnError, tcMethod, tnLine)

LOCAL lcMessage

tcMethod = UPPER(tcMethod)

DO CASE

CASE tcMethod = "ISDIR"

plRetval = .F.

CASE tnError = 1 && File not found -- Cause by the library not loaded

this.loadlib()

RETRY

OTHERWISE

?? CHR(7)

lcMessage = "An error has occurred:" + CHR(13) + ;

"Error Number: " + PADL(tnError,5) + CHR(13) + ;

" Method: " + tcMethod + CHR(13) + ;

" Line Number: " + PADL(tnLine,5)

=MESSAGEBOX(lcMessage, 48, "Ftools Error")

ENDCASE

ENDPROC

ENDDEFINE

For the most part, all the methods in the class represent direct calls to FoxTools functions. For example, ADDBS(), just calls the ADDBS() function in FoxTools. In effect, calling the method ADDBS() is the same as calling the ADDBS() function in FoxTools.
The class does more than just emulate the functionality of FoxTools, however. First of all, it encapsulates the process of loading the .FLL and checking for the existence of the .FLL when running a function.

The INIT method calls the LoadLib() method that loads the library (if it is not already loaded). When running a FoxTools function, the ERROR method automatically kicks in (the ERROR method of an object takes precedence over the setting of ON ERROR). If the error was caused by running a function without the .FLL loaded, the error function calls LOADLIB() and retries the function.

The function also modifies some of the behavior of FoxTools. For example, the JustPath() function is modified to make sure that a backslash is always present at the end of the path. A new function called JustPathNoDrive has been added which is the Justpath() function without the drive designator.

New functionality has been added to the list of functions as well. For example, IsDir() checks whether the string that was passed through is a directory. CleanDir uses the SYS(2027) function to clean up a directory string. “Cleaning up” means that indirect directory movement (e.g. ..\) is removed from the string and the path is adjusted. For example:
? oFtools(“c:\apps\tapcis\files\..\) && returns c:\apps\tapcis\

ISDIR uses an old trick with a twist. The idea here is to test whether the string passed through is a valid directory.
Back in FoxPro 2.x, we did that by setting ON ERROR to set a variable to false and then SET DEFAULT to the contents of the string. If the string is not a valid directory, an error would be generated thus setting the variable to .F.

The rules are a little different with Visual FoxPro 3.0. The ERROR method of a class takes precedence over an ON ERROR routine. The idea, then, is to trap the error within the ERROR method and set the variable to .F. there.

Creating Classes Visually
The examples we have seen so far relate to creating classes with code. You can create any class you want with code. Still, wouldn’t it be nice to forget the code?

One of the primary benefits of FoxPro 2.x was the inclusion of power tools to ease the development of screens, menus and reports. Visual FoxPro 3.0 follows this tradition with the inclusion of a powerful visual class designer that allows us to create our classes (both Visual and Non-Visual) using a power tool.

There are a many benefits to using the power tools to create your classes:

· You can forget the syntax.

· Visual and non-visual classes can be grouped together.

Before we look at a visual class, let’s take a quick look at the Visual Class Designer.

The Visual Class Designer

The Visual Class Designer is a superset of the Form Designer. When creating classes visually, Visual FoxPro 3.0 allows us access to the controls toolbar, the properties window as well as the visual canvas. Figure 1 shows the Visual Class Designer when working on a commandbutton based class:

[image: image1.png]Microsoft Visual FoxPro

Conmand
Gt

o]

Figure 1 Visual Class Designer
The CREATE CLASS command allows access to the class designer. A dialog is presented to name the class, specify the base class and specify the name of the .VCX file in which to store the class. Figure 2 is a sample of this dialog.

[image: image2.png]= I T T

-
Cless Name: I
ot g =

Fuom:

Cseew]

Figure 2 Class Definition Dialog
Classes may be based on FoxPro base classes or any class you create.

Like coded classes, we can add properties and methods to classes we create, regardless of the base class. As shown in Figure 1, the Class menu has options to allow us to create a new method or property to our classes. Selecting one of these options displays the dialog shown in Figure 3. Note that checking the Protected check box will make the method or property protected.

[image: image3.png]Mame: [MyNewMethod E
bt

A new. protected. method which I can call
anytime | want within the class

K Protocted.

Figure 3 Defining a New Method
The new method or property, once defined, is automatically added to the properties dialog:

[image: image4.png]osiee

[Soban

rachvechargs o [
Kofresbven o]
LowocusEvent o]
Meagebvent o]
MowccDomEvert [erat)
Mosselove et 0iot)

o]

o]

Figure 4 Property Window with New Method
Now that we have seen the visual class designer, let’s see what we can do with it.

A Sample Visual Class--Stopwatch
Objects model the real world. Before we can create a stop watch object, we need to determine what the object is and what it does.

Consider a stop watch. If you happen to have one, take it out and look at it. Note that it has a display (usually showing the time elapsed in HH:MM:SS.SS format. The stop watch has buttons that allow you to start it, stop it, pause it (lap time) and reset the display.

Naturally, a stop watch has the ability to track time from when it is started until it is stopped.

This gives us a good list of the functionality a stop watch class would have.

Once you have the required behavior of the object, you can then work on designing the implementation of the class.

Many factors can affect how a class is implemented ranging from how the class is intended to be used to personal preference of the developer.

In this case, when designing the implementation of the Stop Watch class, the functionality is divided into two parts. The first is the engine (the portion of the stop watch that has the functionality for calculating the time, starting, stopping and pausing the stopwatch. The second class combines the engine with the display to create a full stop watch.

The Engine Class
This class may be thought of as the mechanism behind a stop watch. Based on the timer class, it basically counts time from when it is started to when it is stopped. It does not allow for any display of the data (for a stop watch with display, this is added in class SWATCH).

This class is useful when you want to track time elapsed between events.

Custom Settings:

Custom Properties:
nSecs - Number of seconds counted. Carried out to three decimal places (this is what the SECONDS() function returns).

nStart- The time the watch was started measured in seconds since midnight.

nLast - The last time the timer event fired. This is a protected property.

Custom Methods:

Start - Starts the stop watch. The counter nSecs is cleared (you are starting back from 0) and the Interval of the timer is set to 200.

Pause - Updates the value of nSecs and then Stops the timer (sets interval to 0) but tracks when it was stopped. If the timer is RESUMEd from this point, nSecs picks up as if the timer had never been stopped.

This is the equivalent of a LAP button on a stopwatch.

Resume- This restarts the stop watch. If the timer is was PAUSEd, the counter continues as if it never was stopped (i.e., all the time the timer was paused in included in nSecs). If the timer was STOPped (with the STOP method) then the counter continues at the value it left off but all the timer that the counter was idle it is ignored.

Stop - This updates the timer and then stops it.

Overridden Methods:

Timer- Increments the seconds counter.

Init - Initializes various properties to 0.

Code for Class SwatchEngine
*-- Method SwatchEngine.Init()

this.nstart = 0

this.Interval = 0

this.nSecs = 0

this.nLast = 0

*-- Method SwatchEngine.Time()

LOCAL lnSeconds

lnSeconds = SECONDS()

this.nSecs = this.nSecs + (lnSeconds - this.nLast)

this.nLast = lnSeconds

*-- Method SwatchEngine.Start()

this.nstart = SECONDS()

this.nLast = this.nStart

this.nSecs = 0

this.Interval = 200

*-- Method SwatchEngine.Stop()

this.timer()

this.Interval = 0

this.nLast = 0

*-- Method SwatchEngine.Pause()

this.timer()

this.interval = 0

*-- Method SwatchEngine.Resume()

If this.nLast = 0 && Clock was stopped

 this.nLast = SECONDS() && Pick up from now

 this.interval = 200

ELSE

 this.interval = 200

ENDIF

Combining the Engine and the Display--Class Swatch
This container based class, combines a label object (that is used to display the amount of time on the stopwatch) with a swatch engine object to complete the functional stopwatch.

Member Objects:

lblTime (CLASS: Label),

tmrSWEngine (CLASS: SwatchEngine)

Design Strategy:

The key to this class is, obviously, the SwatchEngine. The parent (i.e., the container) has properties and methods to mirror the swatchengine (nStart, nStart, Start(), Stop(), Pause() and Resume()). This allows a form using the class to have a consistent interface to control the stopwatch (i.e., the form does not have to know that there are separate objects within the container—all the form has to do is communicate with the container.

Custom Settings:

Custom Properties:
swatch.nStart - Time the watch was started measured in seconds since midnight.

swatch.nSecs - Number of seconds counted. Carried out to three decimal places (this is what the SECONDS() function returns).

The swatchengine properties in tmrSWEngine remain intact as inherited from the base class.

Custom Methods:
swatch.start - Calls tmrSWEngine.Start()

swatch.stop - Calls .Stop()

swatch.pause - Calls tmrSWEngine.Pause()

swatch.resume - Calls tmrSWEngine.Resume()

swatch.reset - Resets the counter nSecs to 0 and then calls the refresh method. This is designed to allow the display portion of the stop watch to be reset to 00:00:00.000

Overridden Methods:

swatch.refresh - Updates the container properties nStart and nSecs from the timer and converts the number of seconds counted to HH:MM:SS.SS format.

tmrSWEngine.Timer - This calls the SwatchEngine timer method followed by the container’s refresh method.

Code for Class SwatchEngine
*-- Method TmrSWEngine.Time()

Swatchengine::Timer()

this.Parent.refresh()

*-- Method Swatch.Refresh()

LOCAL lcTime, ;

 lnSecs, ;

 lnHours, ;

 lnMins, ;

 lcSecs, ;

 lnLen

this.nSecs = this.tmrSWEngine.nSecs

this.nStart = this.tmrSWEngine.nStart

*-- Take the number of seconds on the clock (nSecs property)

*-- and convert it to a string for display.

lcTime
= ""

lnSecs
= this.tmrSWEngine.nSecs

lnHours
= INT(lnSecs/3600)

lnSecs
= MOD(lnSecs,3600)

lnMins
= INT(lnSecs/60)

lnSecs
= MOD(lnSecs,60)

lcSecs = STR(lnSecs,6,3)

lnLen = LEN(ALLT(LEFT(lcSecs,AT('.', lcSecs)-1)))

lcSecs = REPL('0', 2-lnLen) + LTRIM(lcSecs)

lnLen
 = LEN(ALLT(SUBST(lcSecs,AT('.', lcSecs)+1)))

lcSecs = RTRIM(lcSecs) + REPL('0', 3-lnLen)

lcTime = PADL(lnHours,2,'0') + ":" + ;

PADL(lnMins,2,'0') + ":" + ;

lcSecs

this.lblTime.Caption = lcTime

*-- Method Swatch.Stop()

this.tmrSWEngine.Stop()

*-- Method Swatch.Start()

this.tmrSWEngine.Stop()

*-- Method Swatch.Resume()

this.tmrSWEngine.Resume()

*-- Method Swatch.Pause()

this.tmrSWEngine.Pause()

*-- Method Swatch.Reset()

this.tmrSWEngine.nSecs = 0

this.Refresh()

An Example Using the Swatch Class
Using a visual class is as simple as clicking on the class name in the project and dragging it onto a form. At this point, you can manipulate the object based on the custom visual class just like you would any other class.

Let’s take a look at a simple example of this with a form called Swatch. The form has a swatch object on it and buttons to control the stop watch.

[image: image5.png]00:00:00.000

Figure 5 Stop Watch when Stopped
[image: image6.png]00:00:04.988

start Stop!

Figure 6 Stop Watch when Running
Code in Form: Swatch

Note from the code here that the swatch object itself has no additional code behind it. All the code on this form is in the Click events of the command buttons that manage the enabled methods of the buttons and to call the appropriate Swatch object method. Here’s the code:
*-- Method cmdStart.Click()

this.enabled = .F.

thisform.cmdStop.enabled = .T.

thisform.cmdPause.enabled = .T.

thisform.cmdResume.enabled = .F.

thisform.cmdReset.enabled = .F.

thisform.Swatch1.Start()

*-- Method cmdStop.Click()

this.enabled = .F.

thisform.cmdStart.enabled = .T.

thisform.cmdPause.enabled = .F.

thisform.cmdResume.enabled = .T.

thisform.cmdReset.enabled = .T.

thisform.swatch1.stop()

*-- Method cmdPause.Click()

this.enabled = .F.

thisform.cmdStop.enabled = .T.

thisform.cmdStart.enabled = .F.

thisform.cmdResume.enabled = .T.

thisform.cmdReset.enabled = .F.

ThisForm.Swatch1.Pause()

*-- Method cmdResume.Click()

this.enabled = .F.

thisform.cmdStart.enabled = .F.

thisform.cmdPause.enabled = .T.

thisform.cmdStop.enabled = .T.

thisform.cmdResume.enabled = .F.

thisform.cmdReset.enabled = .F.

thisform.swatch1.resume()

*-- Method cmdReset.Click()

thisform.swatch1.reset()

Conclusion
Object Oriented development places a vastly different emphasis in the development process. Where, in the past, the bulk of development time was spent in creating individual modules, OOP calls for the bulk of effort to be spent in creating classes which are then combined to create a system.

Visual FoxPro 3.0’s visual tools for creating classes make the task easier allowing us to focus on modeling the objects we need to create rather than worry about the syntax.

