Migrating Your 2.x Applications to Visual FoxPro 3.0
Joseph A. Gotthelf
August Technologies, Inc
Introduction
Visual FoxPro 3.0 is a giant leap forward for FoxPro. It comes with an entirely new set of tools, commands & functions, programming constructs, expanded system capacities and an entirely new programming paradigm. Even with all of these changes, practically all existing FoxPro applications can be migrated to 3.0 with almost no effort.

This session will focus on getting FoxPro 2.x applications to run in 3.0, how the FoxPro 2.x model maps to the Visual FoxPro 3.0 model, areas of conversion which may not work 100%, and things to look out for in general.

Migrating from FoxPro 2.x and VFP 3.0
There are four areas that need to be dealt with when converting applications to Visual FoxPro 3.0. They are procedural code, design surfaces, API Libraries and Third Party Libraries/Programs
“Procedural code” refers to manually coded programs. It is found in .PRGs and Snippets, and requires very little, if any, modification to run in 3.0.

“Design Surfaces” refers to the screen builder, menu builder, report/label writer and query builder. Visual FoxPro 3.0 automatically converts these to their new format. There are, however, some cases where the conversion needs a little nudge from the developer.

“API Libraries” are .FLLs/.PLBs (Windows/DOS) which are written in C or assembly language and compiled with the FoxPro Library Construction Kit. These will need to be recompiled for Visual FoxPro 3.0

“Third Party Libraries/Programs” refers to FoxPro code and libraries provided by an external source. They may be written in FoxPro, or C, and the source code may or may not be available.

Procedural Code (.PRG/Snippet) Issues
New Functions
Since there is no syntactical difference between how arrays, UDFs, and internal FoxPro functions are referenced, they must all have unique names. For example, consider the following code:

1
? Upper("bobcat")

2
dimension SubStr[2, 1]

3
**

4
function Upper

5
*

6
parameter lcUpper

7
return "Upper" + lcUpper

1. Line #1 is trying to call the UDF which begins on line 4, but will not be successful. Instead of calling the UDF FoxPro will call it’s internal UPPER function. The result of line #1 will be “BOBCAT”
2. Line #2 will cause FoxPro to produce an ‘Attempt t use FoxPro function as array’, since SUBSTR is an internal FoxPro function.

UDFs and Arrays in 2.x code that have the same name as functions new to Visual FoxPro 3.0 will not work; the arrays will cause errors, and the UDFs will be ignored.

One example is the new VFP function, OLDVAL().

In FoxPro 2.x, you could:

dimension OldVal[10]

In 3.0 this causes an error. Also, any UDFs named ‘OldVal’ will no longer work. Consult the Visual FoxPro documentation for new commands and functions which might collide with your code.

Workareas
Consider the following two code blocks:

close data

use somefile in SELECT(1)

select 225

? field_name

and

declare laTables[225, 2]

lnY = 0

for lnX = 1 to 225

if used(lnX)

lnY = lnY + 1

laTables[lnY, 1] = dbf[lnX]

laTables[lnY, 2] = lnX

endif

endfor

Both are fairly straight forward FoxPro 2.x code. Neither will work in VFP 3.0! Why? In FP 2.x

? select(1)

returns 225, but in VFP 3.0 it returns 32767! There are 32,767 work areas in VFP3.0!

Tip The second code segment can be replaced in VFP3.0 with the AUSED() function.

Hot-Keys

Some hot-key assignments have changed in VFP3.0. This was done to maintain keyboard compatibility with other Microsoft products. Unfortunately it can cause problems with some code. In FoxPro 2.x to add a new record to a BROWSE the hot-key is [Ctrl-N]. In 3.0 [Ctrl-N] is a hot-key for ‘File-New’. The hot key for adding a new record to a browse is now [Ctrl-Y]. This breaks three things:

1. User Training

2. User Documentation

3. Code which stuffs the keyboard with [Ctrl-N] to add new records to a browse.

Also of note: CTRL-G, (Find Again), is gone...

Long Variable Names
In FoxPro 2.x variables were only significant to 10 characters. Longer variable names could be used, but characters beyond the 10 character limit were simply ignored. In VFP 3.0 variables are significant to 254 characters! Variables that differ after the 10th position are treated as the same variable in FoxPro 2.x, they are treated as different variables in 3.0.

In FoxPro 2.x the following code:

set talk off

lcWednesdayStatus = 'Active'

lcWednesdayStat = 'Inactive'

? lcWednesdayStatus

? lcWednesdayStat

produces the result:

Inactive

Inactive

However, in 3.0 it produces the result:

Active

Inactive

Long Field Names

FoxPro 2.x allows 10 character field names. FoxPro 3.x allows 64 character field names (when the .DBF is part of a database). This can cause errors in converted 2.x code. It is not unusual for programs to refer to 10 character fields with longer names, i.e. If a .DBF contains the following field:

ar_acntsta

In FoxPro 2.x the following worked very nicely:

replace ar_acntstat with iif(ar_acntstat = 'Inactive', 'Canceled', 'Ok')

In VFP3.0, however, this will cause an “Variable ‘ar_acntstat’ is not found” error.

plCvtTst.PRG
The program plCvtTst.PRG has been included on the conference disk/CD. It is a VFP tool which scans programs and snippets for possible conversion errors.

Design Surface Conversion
The FoxPro Converter
Converting FoxPro 2.x design surfaces (projects, screens...) to VFP 3.0 is a simple one-step process. When an 2.x object is accessed from 3.0, the Visual FoxPro converter is invoked. Before converting, VFP creates a sub directory, and copies the to be converted 2.x objects into it. The directory will have the name OLD#, where # starts at 1, and increments until a new directory name is found. After the backup is made, VFP creates new 3.0 objects.

If a single object is referenced (i.e. MODIFY SCREEN/FORM), then just that one object is converted. If a project is referenced (i.e. MODIFY PROJECT) then that project, and all the objects contained within (Screens, Reports...) are converted.

Screens
Visual FoxPro Forms differ from 2.x screens in several ways. No .SPRs are generated from 3.0 FORMs (though a .SPR file is created during conversion for compatibility), Screens are now Forms, Screen Sets are now VFP Form Sets, VFP objects have new names, and many more attributes & methods than their 2.x equivalents, 2.x Snippets are 3.0 Methods, etc.

The Visual FoxPro Converter, written in VFP3.0, is called automatically when a 2.x screen is opened (via MODIFY SCREEN, or MODIFY PROJECT of a project holding screens). It converts 2.x screens to 3.0 form sets, moving 2.x screen/object attributes and clauses to 3.0 properties and methods. Before making this conversion the Converter makes a backup of the 2.x files (to a newly created directory), since there is no UNCONVERT utility.

.SPR
One significant change in FoxPro 3.0 forms(screens) is that FoxPro source code is no longer generated from them. While this rather dramatic change in how screens work will not stop most screens from converting easily, it does create some compatibility problems which will be shown a little later.

Since the 2.x code runs screens with the command:

DO ScrnName.SPR

an .SPR is still needed, thus the Visual FoxPro Converter creates one. It contains a command to DO the FORM, and “procedures & functions” which were contained in the “cleanup code” of the 2.x screen file.
In one example, which contained the following 2.x cleanup code:

close data

**

procedure iOk

*

* called from push-button snippet

*

clear read

**

procedure iNotOk

*

* called from push-button snippet

*

wait wind "Not OK!"

The new .SPR will look something like this:

DO FORM d:\dev\dev30\allobj30\allobj4.scx LINKED

procedure iOk

*

* called from push-button snippet

*

clear read

**

procedure iNotOk

*

* called from push-button snippet

*

wait wind "Not OK!"

Since this .SPR is created by Visual FoxPro only once, during conversion, it is OK to edit it directly. In fact, if changes need to be made to the procedures & functions that were moved there, the only way to do so is to edit the .SPR directly!

Control Name Changes
The 2.x Controls are now Classes in VFP. The following table shows the class names for each of the 2.x controls:

	FP 2.x Control
	VFP Class

	Text
	Label

	Say
	TextBox (w/o ControlSource)

	Get
	TextBox (with ControlSource)

	Edit Region
	EditBox

	Single Push Button
	CommandButton

	Push Button Set
	CommandGroupCommandGroup.CommandButton

	Radio Buttons
	OptionGroupOptionGroup.OptionButton

	Check Box
	CheckBox

	Popup
	ComboBox

	List Box
	ListBox

	Spinner
	Spinner

	Lines
	Shape

	Box
	Shape

	Picture
	Image

Attribute Destinations

The converter takes information from 2.x objects and moves it to VFP Object Properties. The following table shows where information goes:

	Level
	FP 2.x Attribute
	VFP Property

	Screen Set (From a Project)
	Open Files
	FORMSET.AutoOpenDE

	
	Close Files
	FORMSET.AutoCloseDE

	
	Define Windows
	

	
	Release Windows
	

	
	Modal Screens
	FORMSET.WindowType

	
	Border for Gets
	OBJECT.BorderStyle

	
	Cycle Through Fields
	FORMSET.ReadCycle

	
	READ NOLOCK
	FORMSET.ReadLock

	
	Execute Multiple Reads
	

	
	Windows Objects Only
	

	
	Associated Windows
	FORMSET.WindowList

	

	SCREEN/FORM Level
	Window Name
	FORMSET.WInName.Name

	
	Window Title
	FORMSET.WinName.Caption

	
	Width
	FORMSET.WinName.Width

	
	Height
	FORMSET.WinName.Height

	
	Left
	FORMSET.WinName.Left

	
	Top
	FORMSET.WinName.Top

	
	Center
	FORMSET.WinName.AutoCenter

	
	Border
	FORMSET.WinName.BorderStyle

	
	Close
	FORMSET.WinName.Closeable

	
	Moveable
	FORMSET.WinName.Moveable

	
	Icon
	FORMSET.WinName.Icon

	
	Half Height Title Bar
	FORMSET.WinName.HalfHeightCaption

	
	Color
	FORMSET.WinName.BackColor

	
	Wallpaper
	FORMSET.WinName.Picture

	
	Minimize
	FORMSET.WinName.MinButton

	
	Font
	FORMSET.WinName.FontName/FontSize/FontBold...

	
	Environment
	FORMSET.WinName.DataEnvironment

	

	CONTROL
	Select Field on Entry
	control.Format

	
	Refresh Output Fields
	refresh code placed in Formset.ReadShow

	
	Initially Disabled Field
	control.Enabled

	
	Input/Variable
	control.ControlSourcecontrol.Name

	
	Format
	control.Formatcontrol.InputMask

	
	Comment
	control.Comment

	
	Scroll Bars
	control.ScrollBars

	
	Allow Tabs
	control.AllowTabs

	
	Picture File
	control.Picture

	
	Options (Radio/Push)
	control.Caption

	
	Initially Checked (Check Box)
	control.Value

	
	Check Box Titles
	control.Caption

	
	Normal/Invisible
	control.Style

	
	Terminate Read
	control.TerminateRead

Snippet/Clause Destinations

The converter takes the 2.x snippets and moves them to VFP Form Methods. The following table shows where the snippets are placed:

SCREEN/FORM LEVEL
	Level
	FP 2.x Clause
	VFP Method

	SCREEN/FORM
	Screen Setup Code
	FORMSET.Load

	
	Cleanup
	FORMSET.Unload

	
	Procedures & Functions
	.SPR

	
	On Screen Entry (When)
	FORMSET.ReadWhen

	
	On Screen Exit (Valid)
	FORMSET.ReadValid

	
	On Window Activate
	FORMSET.ReadActivate

	
	On Window Deactivate
	FORMSET.ReadDeactivate

	
	On Refresh (Show Gets)
	FORMSET.ReadShow

	

	CONTROL
	Error
	object.ErrorMessage

	
	Lower
	object.LowValue

	
	Upper
	object.HighValue

	
	1st Element (popups, etc.)
	object.FirstElement

	
	Others
	Same as 2.x Clause

Environment

FoxPro 2.x screens can keep track of the tables and relations they use. This information is stored in the screen environment. When 2.x screens are generated, there are options to have GENSCRN generate code in the .SPR to open and close those tables and set relations between them. This functionality is seen in the VFP Forms Data Environment. The 2.x environment information is moved to the VFP form’s data environment, and following code is placed in the Formset’s LOAD event:

THIS.DataEnvironment.LoadEnv

which causes the tables to be open and relations set when the form is run. A nice advantage of the 3.0 data environment over the 2.x environment is its ease of maintenance. It is easy to view and change a forms data environment...much more so than in 2.x,

#DEFINEs
#DEFINEs are in effect (scoped) from the point of their declaration to the end of the program file they are stored in. Because of this 2.x #DEFINEs placed in the setup code of a screen are in effect for the entire .SPR, including Procedures & Functions found in the cleanup code. Since VFP does not use .SPRs, placing #DEFINEs in the FORMSET.Load method would not make them available to any code not found in the FORMSET.Load method.

The VFP Converter takes all the #DEFINES found in a screen and bundles them into a single file, which is marked as a global include file for the form, making the #DEFINES available to all code associated with the form. This new file must also be included in the newly created .SPR if the defines are referenced in the Procedures & functions.

The only circumstance in which this strategy can cause problems is that of the same text string being defined more than once, but differently. I.E. say the setup snippet contained:

#DEFINE TRUE 1

and one of the snippets contained:

#DEFINE TRUE .T.

The global include file would end up with both! Whichever comes last will be the one in effect, causing problems when referenced.

#INSERT
Code can be inserted into a 2.x .SPR via the #INSERT generator directive. This is very useful when the same block of code, such as a set of #DEFINES or variable declarations, needs to be placed in many screens. #INSERT is a GENSCRN directive, and GENSCRN no longer exists in VFP, therefor #INSERT does not work in 3.0. When the VFP Converter encounters a #INSERT directive, it inserts the code directly into the 3.0 Form. The insert file is only inserted one time, changes made to it after conversion will be ignored.

VFP does have a #INCLUDE directive, which can be used in any .PRG. #INCLUDE files can ONLY contain precompiler directives (i.e. #DEFINEs, #IFs...) though, not actual code.

ARRAYS
Another side-affect of no longer having all the screen code together in one module (the .SPR) has to do with how the project manager finds array references. If an array is defined in the setup code of a 2.x screen, and referenced in a snippet, the project manager may not be able to tell that the reference is to an array, as opposed to a UDF call, and may produce an error that the array is undefined. This error can be ignored, the application will still build & run correctly. To stop the annoying message an EXTERNAL ARRAY xxxx can be placed in the .SPR.

Tricks that won't convert
Overloading Screen Builder Clauses
Some options are not available in the 2.x screen builder. For example, there is no way to create an EDIT BOX which is enabled, but not editable. With FoxPro code it is easy; add the ‘NOEDIT’ clause to the @ GET. The 2.x screen builder, however, does not offer the NOEDIT option.

A work around that has been used is to piggy-back the NOEDIT clause onto one that is available, such as the Message clause; I.E. if “Message” noedit is put in the “Message” clause, FoxPro 2.x would create the following code in the .SPR:

@ 4.692,10.000 EDIT lmMemo ;

SIZE 8.000,74.200,0.000 ;

PICTURE "@K" ;

DEFAULT " " ;

FONT "MS Sans Serif", 8 ;

SCROLL ;

MESSAGE "Message" noedit

Which compiles and runs perfectly. Unfortunately, this will not convert to VFP 3.0 very well. When converted, the VFP 3.0 edit box will be enabled, and editable. Furthermore, the Message method will be:

RETURN "Message" noedit

which clearly will not work.

In FoxPro 3.0 setting the ReadOnly property of the EDIT REGION will accomplish this.

* # USERPRECOMMAND/* # USERPOSTCOMMAND
These two screen builder pre-processor commands exist in FoxPro 2.6. They are undocumented. They also do not convert to VFP 3.0.

In a 2.x screen these could be used to place code in the middle of an .SPR. They went in the COMMENT section of an object. For example, to conditionally execute a GET, the following could be placed in the COMMENT clause of the GET in the screen builder:

*# USERPRECOMMAND if lcStatus = "Active"

*# USERPOSTCOMMAND endif

Which would cause FoxPro to generate the following .SPR:

if lcStatus = "Active"

@ 3.769,7.800 GET lcFee ;

SIZE 1.000,6.400 ;

DEFAULT " " ;

FONT "MS Sans Serif", 8 ;

PICTURE "@K"

endif

Thus, only executing the GET if the condition were true.

In VFP3.0 the *# USERPRECOMMAND and *# USERPOSTCOMMAND are simply placed in the comment section. No conditional code is created or executed.

IF and ENDIF around an entire screen
In FoxPro 2.x it was possible to take advantage of how the FoxPro created the .SPR to create conditional screens. One such example if the bracketing of an entire screen set with an IF.

An IF could be placed in the setup code of a screen, and a matching ENDIF in the cleanup code. If the IF evaluated to .F., the screen would never be executed. This will not work in VFP 3.0, because there is no .SPR—the ‘IF’ in the SETUP snippet would be contained in the FORMSET.LOAD code, and the “ENDIF” from the CLEANUP code would contained in the FORMSET.UNLOAD code, entirely separate from each other. Both would be an IF/ENDIF mismatch error.

Projects/Applications
Converting entire projects is as easy as converting individual screens. When a 2.x project is accessed from VFP 3.0, after asking permission, VFP backups all the relevant 2.x objects (the project itself, screens, reports, labels...), then converts them all to the new format. Any of the following commands will start this conversion process:

modify project xxxx
build app xxxx from xxxx
build exe xxxx from xxxx

2.x Screen sets are converted to 3.0 formsets, 2.x reports are converted to 3.0 reports, etc... The same conversion issues that apply to procedural code and screens apply to entire project conversions.

Reports, Labels, Menus, Queries
Reports, Labels, Menus and Queries move from FoxPro 2.x to Visual FoxPro easily. As long as they do not make calls to procedural code which will no longer work, they should convert seamlessly.

Third Party Libraries/Programs
Third Party Libraries and Programs provide a more difficult problem. Such software used in 2.x applications will need to be re-compiled to run in 3.0. If the source code is available it may be possible to re-compile in-house, otherwise the vendor/manufacturer of the software will need to be contacted for availability and upgrade information.

