
2

5

COB Editor Extensions
for
Visual FoxPro 3.0

COB System Designs, Inc.
206 S. Hampton Dr.
Jupiter, FL 33458-8111

DREADED LEGAL, But Necessary, SECTION

COB System Designs, Inc. hereby disclaims all warranties relating to this software, whether expressed or implied, including without limitation any implied warranties of merchantability or fitness for a particular purpose. COB System Designs, Inc. will not be liable for any special, incidental, consequential, indirect or similar damages due to loss of data or any other reason, even if COB System Designs, Inc. or an agent of COB System Designs, Inc. has been advised of the possibility of such damages. In no event shall COB System Designs, Inc. liability for any damages ever exceed the price paid for the license to use this software, regardless of the form of the claim. The person using the software bears all risk as to the quality and performance of the software.

END OF DREADED LEGAL SECTION

Program & Documentation by:

Ryan Katri & Randy Wallin

Contents
COB System Designs, Inc.
3

Introduction
5

Installation
7

Running CEE
8

Configuring CEE
9

Options
9

Macros
9

Key Bindings
9

CEE Reference
9

Expansion Macros
9

Parameter Expansions
9

Macro Expansion Help (alt-1)
9

Procedure/Function List (alt-2)
9

Comment/Uncomment Block (alt-4)
9

Indent/Outdent Block (alt-7 / alt-8)
9

Insert Method Parameters (alt-F7)
9

Match Brace (alt-F8)
9

Flow
9

Macro Configuration
9

Cursor Position = ~ (tilde)
9

Prompt Field = ##text##
9

Expression Evaluation = <<expression>>
9

Parameter Expansions
9

Additional Information
9

COB System Designs, Inc.

CEE for FoxPro is not a new idea or concept to COB System Designs, but rather an extension of the work we did in the 1980’s. In 1984 there was Quiet Flight for Solution System’s BRIEF text editor. In 1985 there was Ryan’s dSCAR (dBase and Source Code Analyzer and Reporter). And in 1992 there was Quiet Flight for The SemWare Editor. All of these products had the same purpose in mind: make us more productive so we can enjoy an afternoon of surfing or frisbee. Hopefully, one day these tools will make us productive enough for those good old "spare" hours of fun and leisure with some of the special folks we care about.

Just so you know, we don’t just do development tools, we also provide other services like custom programming, consulting and corporate training.

You may reach COB System Designs for questions, support, and feedback through the following mediums:

	E-Mail:
	Randy Wallin
	CIS: 76557,1106 -or- randy_wallin@msn.com

	
	Ryan Katri
	CIS: 71735,141 -or- rkatri@msn.com

	
	
	

	Mail:
	206 South Hampton Drive
	

	
	Jupiter, FL 33458-8111
	

	
	
	

	Fax:
	(407) 744-9836
	

	
	
	

You may also reach us by telephone, although we prefer that you do so only as a last resort:

Telephone:
(407) 744-9835

8am - 5pm EST (Leave a message if we are not available)

Thanks and Credits

CEE wouldn’t be the tool it is today without your help and encouragement. So, we want to give you, the programmer, a hearty thanks.

Ryan and Randy want to give special recognition to our most excellent Beta Test sites, who worked hard and long to give us great feedback and suggestions. If you enjoy using this product, make sure you let them know too!

	Colin Nicholls
	Randy Brown

	Don Pollak
	Rick Strahl

	Doug Hennig
	Steven Black

	Lisa Slater Nicholls
	Walter Nicholls

The COB Subscription

Like most of you, Ryan and Randy are hard at work creating applications that will make their clients happy. To keep Randy and Ryan happy, they need to be productive. So they have created lots of utilities to make their work day go faster. You can get some of these tools for free on CompuServe, The Microsoft Network, our BBS, and soon our Web Site. But, how would you like to have:

· the most current set of our tools?
· full source code to these programs?

· “jump to the front of the line” tech support?

· your enhancement requests to be given higher priority?

· an all over good feeling that you have contributed to the life cycle of our utilities?

CEE and many of our other tools are still free for you to use but a lot of good folks have told us that they would like to contribute to the cause. So, we are implementing the COB Subscription to provide you with the aforementioned benefits. A subscription costs $129 for one user, and only $50 for each additional user within a company. A subscription entitles you to the following for a period of two years:

Source Code

Get the full FoxPro source code of the released versions of our products. Not only will you be able to make your own modifications, but you may find it to be a valuable learning tool.

Immediate Availability

Get the tools as soon as they go to beta-testing. This is usually a month or two before public release. You will be notified via e-mail when a new public release becomes available.

Premier Technical Support

Subscribers get first priority in technical support. This means that we will not discourage you from calling us on the phone (although, we still prefer e-mail and it's an easier way to get hold of us).

More & Better Product

Your subscription allows us to devote more time to creating high-quality development utilities. You will get more of the features you want incorporated and we will be able to keep up with maintaining compatibility with future releases of FoxPro.

To subscribe, select the “Register” option from the CEE Menu or from the CEE About Box.

Introduction

Welcome to CEE 3.0, the COB Editor Extensions for Visual FoxPro. There are a lot of new and exciting features in Visual FoxPro--but alas, we still have the same old text editor. Fortunately, the COB Editor Extensions provide all the same functionality as the original CEE for FP 2.x, and much more.

The following is an overview of the new and enhanced features in CEE:

· Keyword Expansion (Enhanced!)
Type a keyword and CEE automatically expands it to a full expression when you press the spacebar. Users familiar with Microsoft Word 6.0 AutoText may want to think of this feature as “AutoText on steroids!”. And new to this version is Parameter Expansion.

· Right-click Menu (New!)
Quickly access all CEE functions using the right mouse button.

· FLOW (New!)
Flow is a mini version of Beautify that will re-indent your source code (with tabs or spaces--your preference). This is especially important since Beautify is longer available via the Program menu.

· Insert Method Parameters (New!)
Retrieve the parameters of the parent method from within the Class Designer.

· Tabs to Spaces (New!)
CEE can optionally insert spaces in place of a tab when you press the TAB key.

· Function Lister (Enhanced!)
Display a list of all the functions/procedures/methods in the current file, and optionally jump to a specific one.

· Compressed View (New!)
Filter your file to display only selected lines of text with the compressed view.

· Quick Variable Scoping (New!)
With the press of a key, create a PRIVATE or LOCAL declaration for a variable.

· Upper/Lower/Proper (New!)
Change the case of entire blocks of text with a single command.

· Fast Open #include Files (New!)
Open the #include file specified on the current line with the press of a key.

· Smart Buffer Cycling (New!)
When cycling through windows, avoid the command window, property sheet, and other non-editing windows using CEE’s smart buffer cycling.

· Brace Matching (New!)
When creating complex expressions, use CEE’s Brace Matching feature to locate the opening or closing parenthesis, braces or brackets.

· Quick Comment/Uncomment
Comment and uncomment selected blocks of code.

· Block Indent/Outdent
Indent or outdent selected text using spaces rather than tabs.

· Plus all the other features you used in the original CEE for FoxPro 2.x

Installation

To install CEE 3.0, execute the CEE30 file. When prompted for a destination, choose your FoxPro startup directory or a directory in your FoxPro path. We highly recommend you put it in a directory called \CEE3 beneath your VFP home directory (e.g. \VFP\CEE3) and include that location in your standard VFP path.

TIP: To set up a path in FoxPro 3.0, go to the Options dialog (via the Tools menu). In the File Locations tab, you’ll find is a place to set the search path. Be sure to select the Set as Default button before exiting, otherwise you will not save your changes.

The following files are required by CEE to operate:

CEE3.APP

CEE3.FLL

EXPAND.DBF

EXPAND.FPT

EXPAND.CDX

The EXPAND.* files will be created if they are not found, but if you are already using CEE for FoxPro 2.x you have the option of using your existing EXPAND table or create a new one.

If you are not using Widows 95 or Windows NT, CEE setup will also create CEE3.INI as a configuration file. If this file is not found, it is automatically created in the Windows directory whose location varies depending on the version of Windows you are running.

Windows 95 or Windows NT users will have their configuration settings saved in the registry.

Running CEE

To load CEE, simply type DO CEE3 in the VFP command window. CEE3.APP must be available in the current directory or in your FoxPro path (refer to the Installation section for more information). If you wish to have CEE3 load automatically every time you start FoxPro, you can modify the file VFPSTART.PRG which you’ll find in your VFP home directory.

NOTE: The VFPSTART.PRG file is used to add the Class Browser to your Tools menu in the Professional version of VFP. If you change the COMMAND= line in CONFIG.FPW from VFPSTART to some other file, then the Class Browser will not be added to the menu.

To have CEE load from VFPSTART, add DO <path>\CEE3 to the beginning of PROCEDURE doit. Here’s an excerpt from our VFPSTART program:

.

.

PROC doit

DO (HOME() + “CEE3\CEE3”) && we added this line

IF TYPE("_BROWSER")='C' AND FILE(_BROWSER) AND...

.

.

CEE features (and associated key commands) are only active inside editing windows either through the hot keys, right click menu or the CEE menu. The table below defines the default key assignments.

	Keystroke
	Function

	Right-Click
	CEE Menu

	alt+1
	Expansion Macro Listing

	alt+2
	Function/Procedure list

	alt+3
	Open #include file

	alt+4
	Comment/Uncomment selected text

	alt+6
	Create LOCAL declaration of variable at cursor

	alt+7
	Indent selected text

	alt+8
	Outdent selected text

	alt+9
	Match Braces, brackets or parenthesis

	alt+0
	Display hotkey help

	alt+F8
	Insert method parameters

	alt+backspace
	Unconditionally expand macro left of cursor

	spacebar
	Expand word left of cursor if it is at beginning of line

These default key assignments may be overridden with your own preferences. Refer to the section “Configuring CEE” for instructions.

Configuring CEE

To configure CEE, you must first load CEE by following the directions in the section entitled “Running CEE”. From the CEE menu, choose Configuration. A tabbed dialog form appears. We’ve documented each of the tabs and their options in the following sections.

Options

This page contains many miscellaneous CEE features, as detailed below.

General CEE options:

· Expand in Command Window
Turn this off if you do not want macros to expand in the command window.

· Expand on Spacebar
Turn this off if you do not want macro expansions to be invoked when the spacebar is pressed. If you choose to turn this off, you must use alt+backspace to expand macros.

· Convert TAB to spaces
CEE can optionally change the behavior of the TAB key to insert spaces rather than a tab character.

· Comment string
Select a comment string to use when commenting out code, or type in a custom one of your own.

Flow options:

· Use tabs for indentation
Select this checkbox to use tab characters when re-indenting code with Flow, or deselect it to use spaces for indentation.

· Warn if target more than x lines
The Flow option of CEE is primarily implemented in Xbase code. This works fine as long as it is a reasonable sized code file. If you were to have CEE try this on a large file, i.e. over 250 lines, you may be in for quite a wait. We don’t expect you to always know how big a file you’re working in -- so we prompt you for confirmation before we begin to flow a file that’s larger than a specified number of lines. Set this option to 0 to disable warnings.

If you have a large procedure or method you need to flow, we recommend using the Documenting Wizard.

· Case Style
Select one of two different CASE styles for Flow to use when re-indenting code.

File Locations:

· Local Expansion Table
Specify the name and location of the primary expansion table--usually EXPAND.DBF.

· Team Expansion Table
Specify the name and location of a shared expansion table. This is empty by default but can be used if you work with a team. This allows you to have a set of macros which are shared by everyone--such as common program and procedure headers. This table is normally found on a network drive where everyone has access to it.

NOTE: If you choose to use the Team Expansion Table option, you will not be able to add or edit in the macro monitor (defaults to ALT+1). You can edit them via the Configuration / Macro option.

Macros

Under this tab you can maintain your set of macros. Use this option group (Local vs. Shared) to switch between update your local expansion table and the team expansion table.

Refer to the section titled “Macro Configuration” for details on creating your own macros.

Key Bindings

Select this page to configure the CEE hotkeys. Select the CEE function from the listbox, and then press the Assign button to bind it to a key. Use the Clear button to remove a key binding.

NOTE: CEE does not use any error checking on your key assignments. This means you can have duplicates i.e. ALT+1 can be requested to do 2 separate CEE functions. So be cautious in your choice of key assignments.

CEE Reference

Expansion Macros

The heart of CEE are the expansion macros. The macros allow you to type a short abbreviation, such as "DOC", and automatically expand it to its full text:

 DO CASE

 CASE

 CASE

 ENDCASE

CEE tries to do an expansion if spacebar or alt+backspace is pressed. These rules are followed when determining whether or not to do an expansion on what was just typed:

· You're in an editing window (includes the command window).

· There is an abbreviation immediately to the left of the cursor.

· If <spacebar> was pressed, the abbreviation is the first word on the line.

· The character length of the abbreviation is 3 or greater.

If all of these rules hold true, then CEE checks the EXPAND table to determine if there is an expansion for this abbreviation. If not, FoxPro continues as normal; otherwise, the abbreviation is expanded.

Note that <spacebar> is a hotkey for expansion only for the first word on the line. If you want to expand an abbreviation that occurs within a line, use the alt+backspace keystroke.

The expansion templates of CEE are very flexible. We include numerous abbreviations for you to use, which may be freely modified (refer to the section "Macro Configuration" for help on how to create and edit your own abbreviations). However, we suggest you try the following abbreviations to get a feel for what CEE can do:

	Keyword
	Description (expands to)

	IFF
	IF/ENDIF construct

	DOW
	DO WHILE construct

	MOC
	MODIFY COMMAND (execute from the command window

	BLDA
	BUILD APP (execute from the command window)

	HEADER
	File header

	PRO
	Procedure header

	DEFC
	DEFINE CLASS template

	.ERROR
	Error Event template

Note: The macros supplied with CEE use spaces for indentation. If you prefer to indent using tabs then you need to modify the appropriate macros.

Parameter Expansions

Consider the parameter expansions a special form of macro expansions. A parameter expansion makes it simple to do type-checking or set defaults on your parameter lists.

As an example, let’s assume you’ve typed in the following code:

LPARAMETERS cMsg, lWait

Right below this text you execute the PARAMS macro by typing PARAMS and then spacebar (this is a macro which is supplied in the default expansion table). You are then prompted with a dialog box:

Type for cMsg:
You type in “C” (without the quotes), and you are prompted again--this time for the type for lWait. You enter “L”.

The resulting code would be similar to the following:

IF TYPE("cMsg") <> "C"

 WAIT WINDOW "Wrong type passed for cMsg ('C' expected)"

 RETURN

ENDIF

IF TYPE("lWait") <> "L"

 WAIT WINDOW "Wrong type passed for lWait ('L' expected)"

 RETURN

ENDIF
Parameter expansion works equally well for in-line parameters, such as the following:

FUNCTION ShowMsg(cMsg, lWait)

To learn how to setup and configure your own parameter expansions, refer to the “Macro Configuration” section.

Macro Expansion Help (alt-1)

Once you get the hang of the macro expansion, you can really get attached to this feature and soon you’ll have more macros than you or we can remember.

The Macro Expansion feature helps us to remember all the great macros we built. The hot key deploys a pop-up window which displays all the defined abbreviations and a short description of each. After selecting an abbreviation from the list, the full expansion is automatically inserted into your text.

You can also get a quick access to the Abbreviation list via the CEE menu.

Procedure/Function List (alt-2)
This CEE command displays a list of all procedures, functions, and classes in the current file. Next to each is listed the line number it occurs on.

A set of checkboxes allows you the option of displaying functions, procedures, classes, or any combination of these. Click on a checkbox to filter the list to what you are searching for.

To jump to a specific function, procedure or class, select the Goto button. To return to your previous position when this command was called, select Cancel.

Comment/Uncomment Block (alt-4)

To comment out a marked block of code, use the Commenter feature of CEE. Lines of code are commented out using the following comment string: *-*

To uncomment a block that has been commented out, select the block again and press ALT-4. Note that CEE only knows how to uncomment those lines that it commented out itself (e.g. those lines preceded by '*-*').

NOTE: The comment prefix is configurable. Define the comment string to your liking through Configuration (found under the CEE menu)

Indent/Outdent Block (alt-7 / alt-8)

You can quickly indent or outdent a selected block of text using this feature of CEE. Simply mark the text you want to move, and then press the appropriate hotkey (alt-7 to indent, alt-8 to outdent are the defaults).

CEE’s indenting uses spaces rather than tabs. This is in contrast to VFP’s native Indent/Remove Indent options.

NOTE: It is possible to drop characters off the left edge of the screen if you outdent too far. If this happens, FoxPro’s undo feature (ctrl-z) will recover from the error.

Insert Method Parameters (alt-F8)

If you edit a method in the Class Designer, and the base class of that method takes parameters, then the parameter list is automatically inserted. However, this is not true when overriding methods that are not inherent to the base class--you must manually edit the parent class method to determine the parameters it takes.

CEE solves this problem by providing a function which grabs the parameters of a method when overriding the method in a subclass. CEE will search up the entire class hierarchy to grab the parameters. For example, suppose your class hierarchy looks like this:

Form

 |

CForm

 |

CModalForm

 |

CDataForm

Suppose CForm has a method called ShowToolbar, which takes as a parameter the toolbar name. You then bring up CDataForm in the class designer and wish to override ShowToolbar. With the method window open you press ALT-F7 to grab the parameters. CEE will search the tree for parameters for the ShowToolbar method and then insert it at the current cursor position:

LPARAMETERS cToolbar

Once you have used this feature a couple of times you’ll wonder how you ever got along without it.

Open #include File (alt-3)

This is a simple feature that makes it quick and easy to open an #include file. When positioned on an #include line, press Alt-3 to have CEE open a new editing window with the include file loaded.

Insert LOCAL/PRIVATE Declaration (alt-6)

CEE makes it easy to add variables to your LOCAL or PRIVATE declaration lists. If you are positioned on a variable and select the function to add a LOCAL declaration, CEE will locate the LOCAL list and add the variable to the end of the list. A LOCAL list is created if one does not already exist.

NOTE: CEE is smart enough not to add a duplicate declaration. However, for this to work the variables in your LOCAL/PRIVATE list must be immediately followed by commas.

The default hotkey to add a LOCAL declaration is alt-6. Since you should almost always use LOCAL rather than PRIVATE scoping in VFP, there is not a default hotkey to add a PRIVATE declaration. You can change this in the CEE Configuration.

Match Brace (alt-9)

When positioned on a brace character -- such as [,(,{,],), or } -- this function will find the matching closing or opening brace on the same line. For example, if your cursor is positioned at ^ in the following line:

 y = (y + ((x + 2) - (10 * 3)))

 ^

Then after invoking this function your cursor will be positioned as follows:

 y = (y + ((x + 2) - (10 * 3)))

 ^

Flow

Never has it been easier to re-indent your source code. Flow is a miniature version of Beautify. With the press of a key it automatically re-indents your method code.

For example, suppose you have written the following code (or you are asked to maintain someone else’s code!):

do case

case this.company == “COB System Designs”

if this.name == “Ryan”

 =MessageBox(“800-555-1212”)

else

 =MessageBox(“407-744-9835”)

 endif

case this.company == “GiftRap”

=MessageBox(“305-555-1212”)

 otherwise

 =MessageBox(“800-555-1212”)

endcase

After running Flow, the code would look similar to the following:

do case

case this.company == “COB System Designs”

 if this.name == “Ryan”

 =MessageBox(“800-555-1212”)

 else

 =MessageBox(“407-744-9835”)

 endif

case this.company == “GiftRap”

 =MessageBox(“305-555-1212”)

otherwise

 =MessageBox(“800-555-1234”)

endcase

If you prefer extra indentation below the DO CASE structure, you can specify that under CEE Configuration. In that case, the code would look like this:

do case

 case this.company == “COB System Designs”

 if this.name == “Ryan”

 =MessageBox(“800-555-1212”)

 else

 =MessageBox(“407-744-9835”)

 endif

 case this.company == “GiftRap”

 =MessageBox(“305-555-1212”)

 otherwise

 =MessageBox(“800-555-1234”)

endcase

You can also control whether Flow uses spaces or tab for indentation in the CEE Configuration program. If spaces are specified, Flow uses the VFP Tab Width setting as specified under Tools(Options(Edit.

If you find you are not happy with the way Flow has re-indented your code, simply select Undo to return it to the original.

NOTE: In large program files, Flow is no speed-demon. For this reason, you are cautioned if you attempt to flow a block of code that is more than 250 lines. You can increase or decrease the warning threshold in the Configuration screen.

Macro Configuration

The Editor Extension macros are fully configurable and extensible. We have provided a utility to make this as painless as possible. In the command window, press alt-5 to load the macro editor.

You are presented a list of abbreviation macros in a list box on the left side of the window. To the right of the editing command buttons is the description and expansion text for the highlighted abbreviation.

The Keyword is the abbreviation you want to use for the expansion text. For example, 'IFF' is what we use to abbreviate an IF/ENDIF block.

The Description field for macros is purely optional. If not entered, the first line of your expansion text is automatically used as the description. The description is used when displaying a popup help list of your expansion macros.

The large text box below the Keyword and Description fields is for the expansion text. There are several special codes you may use to control and customize the expansion:

Cursor Position = ~ (tilde)

A tilde in the text indicates where the cursor will be positioned following an expansion. In the following example, the cursor will be positioned indented three spaces beneath the IF statement:

IF

 ~

ENDIF

 However, if you wanted the cursor to end up on the same line

 as the IF statement so that you could begin typing in the IF

 expression, the expansion text would look like this:

IF ~

ENDIF

If a cursor position is not defined by an expansion, the cursor will be placed at the end of the expansion.

Prompt Field = ##text##

Prompt fields are a very powerful aspect of CEE. They allow you to prompt for information in the middle of an expansion, and then automatically use that information to fill in other parts of the expansion. Prompt fields are surrounded by double pound signs (##...##), and the text occurring between them is what is prompted for.

The following example will prompt for a "DO WHILE Expression?":

DO WHILE ##DO WHILE Expression##

ENDDO &&* ##DO WHILE Expression##

Suppose you enter "x < 20" when prompted. The expansion would be:

DO WHILE x < 20

ENDDO &&* x < 20

Even though we have two ##DO WHILE Expression## prompt fields in the text, you will only be prompted once. Any prompt fields which are identical (case-insensitive) are only prompted for once, and then used globally throughout the expansion.

Here is a simple example which prompts for a function name and a return value in creating a function header:

*--

* Function..: ##FUNCTION##

*

* Returns...: ##Returns##

*

* Notes.....:

*--

FUNCTION ##FUNCTION##

You may specify a default value for your prompt by separating the prompt field and the default by ‘->‘ For example, we’ll modify the above DO WHILE macro to have a default of .T.:

DO WHILE ##DO WHILE Expression->.T.##

ENDDO &&* ##DO WHILE Expression##

Notice that only the text up to the ‘->’ characters are displayed as the prompt. The text following is used for the default value (if the user just presses enter in response to the dialog).

You may also use the value that a previous macro evaluated to inside your macro prompt. To do this, enclose the previous macro in double-percent signs within the macro definition. For example, this macro prompts for a parameter name, then prompts for the data type of that parameter--it actually uses the parameter name in the data type prompt:

IF TYPE("##Parameter##") <> "##Type for %%Parameter%%##"

WAIT WINDOW "Wrong parameter type passed for ##Parameter##"

RETURN

ENDIF

If your parameter was named cMsg, the second prompt would be:

Type for cMsg:

You’ll find this feature to be especially useful in creating parameter expansions.

Expression Evaluation = <<expression>>

Text placed between double-angle brackets is evaluated as an expression. This allows you to embed FoxPro code into your expansion text. If you have ever used FoxPro's textmerge feature, then this should be second-nature to you. If not, the best explanation is an example:

We want a macro that will display today's date in a text format, with the day of the week. The following expansion meets this goal:

<< DMY(DATE()) >>, << CDOW(DATE()) >>

(Spaces are not needed inside the angle brackets, but were added for clarity)

If an expression is invalid and cannot be evaluated, a warning message is issued stating that the expression is unable to be evaluated.

All expressions must also evaluate to character values. Expressions that do not are output as-is, surrounded by exclamation marks.

As you can see, expansion macros can be as simple or as complex as you make them. Yet, they are very easy to define. It is recommended you examine the sample macros to gain a better understanding of the ways in which you may customize and control the macros.

Parameter Expansions

To create a parameter expansion (as detailed in the “CEE Reference” section) you use a special built-in macro named $PARAM. This macro is not used stand-alone, but rather embedded in other macros. When CEE encounters $PARAM while performing an expansion, it replaces the $PARAM reference with the name of the first parameter of the function or procedure your cursor is currently positioned in. It iterates the expansion for as many parameters it finds.

For example, suppose you have a macro called DEFAULT defined as:

##$PARAM## = IIF(TYPE("##$PARAM##") <> "C", "", ##$PARAM##)

The cursor is in the following function when the macro is invoked:

FUNCTION Test(cFirst, cLast, cState)

The macro would iterate 3 times--once for each parameter. The resulting code would be:

cFirst = IIF(TYPE("cFirst ") <> "C", "", cFirst)

cLast = IIF(TYPE("cLast ") <> "C", "", cLast)

cState = IIF(TYPE("cState ") <> "C", "", cState)

NOTE: If you are in a segment of code which does not contain parameter statements, a parameter expansion macro will appear to do nothing. This is because it iterates 0 times.

CEE locates parameters by searching from the current insertion point backwards towards the beginning of the file. CEE recognizes the following parameter definitions:

· In-line parameters (as in the above “FUNCTION Test”)

· PARAMETER statements

· LPARAMETER statements

Additional Information

Here are a few things to keep in mind when you are using the COB Editor Extensions:

· It is possible for the extensions to become unloaded. If you "lose" the extensions, the best way to re-load them is to type DO CEE3 from the command window or select “Load CEE” from the CEE menu.

Losing the macros is usually attributable to one of two causes:

1) You lost your ON KEY LABELs for the hotkeys.

The most common reason for losing your ON KEY LABEL settings is because you issued a PUSH KEY CLEAR without a corresponding POP KEY. This is especially prevalent if you cancel a program in the middle of execution.

2) The CEE object was removed from the _SCREEN object.

This occurs if you issue a CLEAR ALL. You may want to create a program which issues CLEAR ALL and then re-loads CEE.

The macros used by CEE are kept in a database named EXPAND.DBF. This database has a memo file (EXPAND.FPT) and structural index (EXPAND.CDX) associated with it.

The database is normally left open at all times, reducing the number of available work areas by one. If the database does get closed, CEE will automatically re-USE it when an expansion is attempted.

