Extended Database Container

PAGE \# “#####” 1
Fehler! Bild-Zeichenfolge enthält ungleiche Anführungszeichen.IF PAGE<10 2

Fehler! Bild-Zeichenfolge enthält ungleiche Anführungszeichen.

 STYLEREF "Heading 2" Fehler! Formatvorlage nicht definiert.
Fehler! Formatvorlage nicht definiert.
Fehler! Formatvorlage nicht definiert.
Fehler! Formatvorlage nicht definiert.

PAGE \# “#####” 3

Extended Database Container (EDC) Class Library

for Microsoft(Visual FoxPro(3.0

Another TRUE Public Domain Enhancement for Visual FoxPro

Tom Rettig’s Utility Extensions((TRUE) are developed by Rettig Micro Corporation; designed, implemented, and documented by Tom Rettig; and tested and quality assured by Tom Rombouts.

The author and copyright holder release all rights in TRUE programs, structures, and documentation to the public domain subject to the Warranty Disclaimer below. Although they are in the public domain, we maintain and upgrade them regularly because they are relied upon in commercial software products from our company and many others.

Other TRUE class libraries include Program To Visual (PrgToVcx) that converts program class libraries like this one to visual class libraries in VCX files, Environment (ENV) that saves and restores the SET, ON, open table, and other environments, and Info that gathers various FoxPro information. We hope you find TRUE useful and welcome any comments you may have.

Rettig Micro Corporation (RMC)

2532 Lincoln Boulevard, Suite 110

Marina del Rey, CA 90291-5978

Fax: 310-821-1162

CompuServe: 75066,352 in the Microsoft FOXUSER forum’s 3rd-Party section or CIS MAIL

Telephone: 310-301-0911

Product Information: 800-742-7843

TRUE Warranty Disclaimer: No Warranty!

THE AUTHOR RELEASES TO THE PUBLIC DOMAIN ALL CLAIMS TO ANY RIGHTS IN THIS PROGRAM AND DOCUMENTATION, AND FREELY PROVIDES THEM “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THIS PROGRAM AND DOCUMENTATION, BE LIABLE FOR ANY COMMERCIAL, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM INCLUDING, BUT NOT LIMITED TO, LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS, EVEN IF YOU OR OTHER PARTIES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Commercial Product Information

If you have serious application needs, you will find our commercial software very helpful and we would be delighted to send you our product information. Since 1991, Rettig Micro Corporation has developed and published Tom Rettig's Office((TRO), a suite of rapid application development (RAD) tools for FoxPro(plus an integrated business application including accounting and full source code. TRO's pre-written programs, menus, forms, and reports implement a generic, reusable “foundation” for FoxPro on top of which you easily build all kinds of applications in record time. TRO for Visual FoxPro(is a rich collection of class libraries, builders, wizards, and projects, fully object oriented, and takes maximum advantage of new VFP features to get your application up and running faster than any other tool on the market, guaranteed! TRO for FoxPro 2.6 is a complete cross-platform solution running under Microsoft(Windows(, MS-DOS(, Macintosh(, and UNIX(as a single code base written in 100% pure FoxPro using the FoxPro design tools and unmodified templates. Visual or cross-platform, TRO is the most reliable, robust, and fully-featured FoxPro development environment money can buy with megabytes of functionality ready to use right out of the box. Contact us today for complete product literature and discover why thousands of developers worldwide, including the largest corporate and government organizations, trust their applications to TRO.

Technical Support

Technical support is not officially provided because all TRUE software is free. However, the author is very interested in hearing about bugs, usability problems, or enhancement requests you may have and will try to be helpful within reasonable limits. All TRUE support is handled in writing via CompuServe, fax, or postal mail. TRUE support is not available by telephone.

Acknowledgments

The author appreciates acknowledgment in commercial products and publications that use or learn from TRUE software. The author acknowledges the following people for their contributions.

· Dave Fulton and Bill Gates for the vision and the tenacity to make it reality.

· Janet Walker, Glenn Hart, and Tod Neilson for keeping the vision alive and the community together.

· Eric Rudder and Morris Sim for the VFP design. Erik Svenson for the database design and extensibility.

· The entire VFP development team for the implementation.

· Susan Graham and all the beta sysops for the hard work, long hours, and patience while we learned.

· Richard McAniff and all the program and product managers for the goal to make VFP the very best.

· Dawn Trudeau for making the vision salable.

· Tom Kemm and David Kalman for teaching and promoting relational database design in FoxPro before it became fashionable.

· George Goley, Alan Schwartz, Y. Alan Griver, Mike Feltman, Doug Hennig, and all other 3rd-party data dictionary developers for doing it at least once from scratch.

· Ken Levy for contributing code and ideas to make PrgToVcx work with VFP’s Class Browser, and the suggestion for EDC to write directly to the DBC.

· Andy Neil for ideas about EDC’s registry.

· Drew Speedie for a beta forum Tip Of The Day that inspired EnvLib.

· Lisa Slater Nicholls for ENV saving properties and system memory variables, and for creating resource files.

About Tom Rettig

Tom Rettig is President and Software Architect of Rettig Micro Corporation. He worked on the design and implementation of dBASE III(as a member of Ashton-Tate's(development team, independently wrote the original Clipper(Extend Library, and released two award-winning software products, Tom Rettig’s Library(and Tom Rettig’s Help(. Since 1990, his products, including Tom Rettig’s Office are exclusively for FoxPro and Visual FoxPro.

An Xbase evangelist since 1981, Tom is internationally recognized as an authority on the language and its various dialects and implementations. He presents at computer shows and user groups, contributes to magazines and the public domain, has written several books, is active on Microsoft’s FoxPro forums, participates in FoxPro pre-release programs, and has presented at every Microsoft FoxPro DevCon.

Table of Contents

Extended Database Container (EDC) Class Library

for Microsoft(Visual FoxPro(3.0
1

Another TRUE Public Domain Enhancement for Visual FoxPro
1

TRUE Warranty Disclaimer: No Warranty!
1

Commercial Product Information
1

Technical Support
2

Acknowledgments
2

About Tom Rettig
2

Table of Contents
3

User’s Guide
4

Getting Started
4

EDC Extended Properties
4

Advanced Features
4

EDC Registry
4

Updating Other Properties
4

EDC Demonstration Program
4

Your Contributions are Important!
4

Developer’s Guide
4

New in This Release
4

Cross Platform
4

Documentation
4

Enhancements
4

Errors
4

Files
4

International
4

Limits
4

Messages
4

Requirements
4

Shared Access
4

Technical Reference
4

Error Handling
4

File Structures
4

Analyze
4

EDC
4

How Visual FoxPro's Database Container Works
4

How EDC Works
4

Named Constants: True.h
4

Naming Conventions
4

Constant Scope
4

Constant Type
4

General
4

Objects
4

EDC
4

Message
4

Language Reference
4

Exposed Properties
4

nExecTime Property
4

aObjectError Property
4

cPropHead Property
4

Exposed Methods
4

cAnalyzeDbcProp() Function
4

Close Procedure
4

lCurrent() Function
4

lDbcFindObject() Function
4

cDbcGetProp() Function
4

lDbcSetProp() Function
4

cEdc() Function
4

cGetDbcAlias() Function
4

cGetEdcAlias() Function
4

lGetExecTime() Function
4

uGetProp() Function
4

lGetPropLock() Function
4

nGetRelation() Function
4

lGetShowErrors() Function
4

lGetShowMessages() Function
4

lGetTestParameters() Function
4

uIncProp() Function
4

lOpen() Function
4

lPack() Function
4

lRemoveField() Function
4

SetExecTime Procedure
4

uSetProp() Function
4

SetPropHead Procedure
4

SetPropLock Procedure
4

SetShowErrors Procedure
4

SetShowMessages Procedure
4

SetTestParameters Procedure
4

nShow() Function
4

lValidate() Function
4

cVersion() Function
4

Protected Properties
4

aAlternate Property
4

cBoundAlias Property
4

cBoundFullPath Property
4

cDbcAlias Property
4

cDbcFullPath Property
4

cEdcAlias Property
4

cEdcField Property
4

cEdcFileExt Property
4

cEdcFullPath Property
4

cErrorEdcInvalid Property
4

cErrorEdcNotOpen Property
4

cErrorFieldLock Property
4

cErrorFieldMax Property
4

cErrorFieldNameLen Property
4

cErrorMarkConflict Property
4

cErrorNameLineMark Property
4

cErrorNamePropMark Property
4

cErrorPropNameLen Property
4

cErrorTitle Property
4

cErrorValueLineMark Property
4

lExecTime Property
4

cLineMark Property
4

cLineName Property
4

cMapName Property
4

nMaxPropLen Property
4

nMaxStrLen Property
4

cMethodName Property
4

cMsgAddField Property
4

cMsgBoxTitle Property
4

cMsgCreateEdc Property
4

cMsgOverwriteFile Property
4

cMsgRemoveField Property
4

aObject Property
4

nObjectNameSize Property
4

nObjectTypeSize Property
4

lPropLock Property
4

cPropMark Property
4

cRegAlias Property
4

cRegFullPath Property
4

aRelation Property
4

tRelation Property
4

cReserveName Property
4

cSetPropHead Property
4

lShowErrors Property
4

lShowMessages Property
4

cSourceName Property
4

lTestParameters Property
4

cTypeName Property
4

cUniqueIdentifier Property
4

Protected Events
4

Destroy Event Procedure
4

Error Event Procedure
4

Init() Event Function
4

Protected Methods
4

uConvertProp() Function
4

cDbcGetOneProp() Function
4

lDbcSetOneProp() Function
4

lEdcSetProp() Function
4

cGetUniqueID() Function
4

cOpenDbc() Function
4

lOpenEdc() Function
4

lSearchDbc() Function
4

cSetArg() Function
4

SetRegistryDefault Procedure
4

SetSameName Procedure
4

cSetUniqueID() Function
4

cValueToString() Function
4

User’s Guide

You use the Extended Database Container (EDC) whenever you want to add information to Visual FoxPro’s Database Container (DBC) or any other VFP structure, object, or logical view. The following lists a few ways in which this is useful, and surely you’ll think of others as you use VFP.

· Store metadata information that allows you to recreate any table whether free or in a database

· Store metadata information that allows you to recreate corrupted indexes

· Store an automatically incrementing number to a field in a table, like the last check number written or last invoice number assigned

· Store a data mask that you can call from any input or output form at runtime or design time

· Store additional referential integrity rules like NULLIFY, or implement referential integrity between tables in different DBCs and free tables

· Store additional help information like context-specific tags

· Store additional view information like outer join expressions and “common” names that can contain embedded spaces

· Store user permissions for access to read, write, add, or delete at the table or field level

· Store user notes about any data item

· Store a set of tables or views to be opened at one time

Getting Started

We use all the VFP naming conventions as documented in VFP’s Windows Help file in the Technical Reference under Programming. In addition, we add a few of our own conventions that are defined in our Technical Reference under Naming Conventions. You’ll understand this material more easily if you look up any conventions that you don’t know.

The DBC objects referred to in our examples and in EdcDemo.prg are all found in VFP's example database, TestData.dbc.

The EDC class definitions are stored in EdcLib.prg and Edc.vcx. They contain the exact same information. The .PRG file is the programmatic definition and the .VCX file is the visual definition. You only need one or the other to instantiate an object from the EDC class. Both of the definition files require the named constant file, True.h, at compile time. Edc.vcx is not shipped with EdcLib.prg. Use TRUE’s PrgToVcx to convert EdcLib.prg to a visual class library.

* Using program class.

SET PROCEDURE TO EdcLib.prg ADDITIVE

oEdc = CREATEOBJECT("EDC")

...

RELEASE PROCEDURE EdcLib

* Using visual class.

SET CLASSLIB TO Edc.vcx ADDITIVE

oEdc = CREATEOBJECT("EDC")

...

RELEASE CLASSLIB EdcLib

Once you have created an EDC object, you can access any of the EDC's Exposed Methods and Exposed Properties. The first method you want to call is the lOpen() Function to create or open your EDC file. Pass just the name of your EDC extension to bind your EDC to a DBC. This creates an EDC with the same name as the DBC but with “.EDC” as the file extension. If the EDC file or field do not exist, you are prompted to create them. If no database is open or set as the current database, you are prompted to select one.

* Using VFP TestData as an example.

OPEN DATABASE SYS(2004)+"samples\data\TestData"

IF oEdc.lOpen("MyEdcField")

 ...

ENDIF

You create a “free” EDC that is not bound to a DBC by passing a second argument that is the EDC file name. It may optionally include a path.

IF oEdc.lOpen("MyEdcField", "EdcFile.Foo")

 ...

ENDIF

IF oEdc.lOpen("MyEdcField", "..\Edc\EdcFile.Foo")

 ...

ENDIF

Once you have your extended field in the EDC file you can assign extended properties to any object, either in a DBC or user-defined, with the EDC methods, uSetProp() Function and uGetProp() Function. These methods’ syntax is identical to the VFP functions, DBSETPROP() and DBGETPROP() and enhanced with the SQL “database!” reference. The following examples use VFP’s TestData.dbc.

* Using VFP TestData as an example.

* Set the property in an EDC bound to TestData.

IF oEdc.uSetProp("Customer.Company", "Field", "Input Mask", "@!")

 * Get the property.

 ? oEdc.uGetProp("Customer.Company", "Field", "Input Mask")

ENDIF

* Set a DBC property in a free EDC or in an EDC bound to a different DBC.

IF oEdc.uSetProp("TestData!Customer.Company", "Field", "Input Mask", "@!")

 * Get the property.

 ? oEdc.uGetProp("TestData!Customer.Company", "Field", "Input Mask")

ENDIF

The following examples create user-defined objects that can relate to any logical view for which you want to have properties.

* Set a property for a field in a free table.

IF oEdc.uSetProp("Names.Company", "FreeField", "Input Mask", "@!")

 * Get the property.

 ? oEdc.uGetProp("Names.Company", "FreeField", "Input Mask")

ENDIF

* Set a property for a field in a report.

IF oEdc.uSetProp("Names.Company", "Report", "Output Mask", "@!")

 * Get the property.

 ? oEdc.uGetProp("Names.Company", "Report", "Output Mask")

ENDIF

* Set a property for a menu prompt.

IF oEdc.uSetProp("Games.Puzzle", "Bar", "Prompt", "IsOJGuilty...")

 * Get the property.

 ? oEdc.uGetProp("Games.Puzzle", "Bar", "Prompt")

ENDIF

* Set properties for referential integrity between free tables.

IF oEdc.uSetProp("Names.Name_ID", "FreeTable", "Relation1", "Pets.Name_ID")

 * Get the property.

 ? oEdc.uGetProp("Names.Name_ID ", "FreeTable", "Relation1")

ENDIF

The object types used in the above examples are simply examples and may be anything you want to use provided that they are different from these which are reserved by VFP for DBC objects: Database, Table, Field, Index, View, Relation, and Connection. User-defined object types are limited to ten characters, the same as DBC object types, but otherwise can contain spaces or any character other than a period or exclamation mark.

The property name can contain any characters and embedded spaces. The property type can be any valid VFP expression of data type Character, Currency, Date, DateTime, Logical, or Numeric including Integer, Double, and Float. The maximum extended property name length is 128 characters and character type property value length is 4096 characters. Both of these can be increased or decreased by subclassing the protected properties, nMaxPropLen Property and nMaxStrLen Property.

When the EDC object is destroyed, its DBC and EDC file aliases are automatically closed. An object is destroyed when it goes out of scope or when you explicitly release it.

RETURN && from procedure or function in which the EDC object is created

RELEASE oEdc && explicit release of object

EDC Extended Properties

You can do more with EDC properties than simply setting and getting them.

· Get groups of an object's extended properties into an array using the “ALL” keyword or the asterisk “*” wildcard character.

? oEdc.uSetProp("TestData!Customer.Company", "Field",;

 "InputMask", "@!")

? oEdc.uSetProp("Customer.Company", "Field",;

 "InputColor", RGB(0,0,128))

? oEdc.uSetProp("Customer.Company", "Field",;

 "InputForm", "CustForm")

? oEdc.uSetProp("Customer.Company", "Field",;

 "OutputForm", "CustRept")

* Get one property.

? oEdc.uGetProp("Customer.Company", "Field",;

 "InputMask")

* Get all properties.

LOCAL laAllProps[1]

? oEdc.uGetProp("Customer.Company", "Field",;

 "ALL", @laAllProps)

* Get wildcard properties.

LOCAL laInputProps[1]

? oEdc.uGetProp("Customer.Company", "Field",;

 "Input*", @laInputProps)

·
Store and retrieve a .NULL. value to any valid data type.

· Remove an entire extended field with lRemoveField() Function.

· Lock a property's header to prevent reading, writing, or removing.

 * Lock the property from writing or removing.

 #INCLUDE "True.h"

 =oEdc.uSetProp("Customer.Company", "Field", "InputMask",;

 ccHEAD_ON, cnHEAD_WRITELOCK)

 =oEdc.uSetProp("Customer.Company", "Field", "InputMask",;

 ccHEAD_ON, cnHEAD_REMOVELOCK)

·
Increment and decrement numeric, currency, date, and datetime property values with uIncProp() Function.

· Instantiate multiple EDC objects to manage properties in multiple fields or multiple EDC files.

oEdcTRO = CREATEOBJECT("EDC")

= oEdcTRO.lOpen("TRO")

oEdcTRUE = CREATEOBJECT("EDC")

= oEdcTRUE.lOpen("TRUE")

oEdcFoo = CREATEOBJECT("EDC")

= oEdcFoo.lOpen("Foo", "FreeEdc.edc")
Advanced Features

You can do even more with advanced EDC exposed properties and methods.

· Read the extended property header directly with the cPropHead Property
· Measure the performance of most exposed methods with the nExecTime Property
· Read any error details directly with the aObjectError Property
· Analyze the DBC Property field contents with the cAnalyzeDbcProp() Function
· Read and write the DBC Property field contents directly with the cDbcGetProp() Function and lDbcSetProp() Function. This enables you to write to read-only DBC properties like the table Path.

· Learn whether the DBC file has changed after the EDC with the lCurrent() Function
· Enable/disable showing errors with the SetShowErrors Procedure
· Enable/disable showing messages with the SetShowMessages Procedure
· Enable/disable testing parameters with the SetTestParameters Procedure
· Pack the entire EDC or just its memo fields with the lPack() Function
· Set property headers to allow updating and being updated from other extensions’ properties that have the same name or different names. See Updating Other Properties.

· Assign properties to the EDC registry that are specific to your extension’s set up. Built-in registry properties let you use an alternate or private EDC table or register your own or someone else’s class library, methods, and syntax for setting and getting properties. This allows you to use EDC with any other DBC or property extension system, even if it uses non-EDC tables and non-VFP syntax. See EDC Registry.

· Get referential integrity information specific to one table and all its cascading children with the nGetRelation() Function
EDC Registry

All EDC files, bound or free, have a unique “registry” row that holds information about your extension. The registry always contains the following 13 built-in properties, and you can add any additional properties you want. Built-in registry defaults are set by SetRegistryDefault Procedure when an extension is added.

	Property Name
	Definition in True.h
	Description

	cEdcAlternate
	ccEDC_REG_ALTERNATE
	Alternate or private EDC file location

	tEdcCreate
	ccEDC_REG_CREATE
	DateTime extension was added

	cDBC
	ccEDC_REG_DBC
	Back link to bound DBC, if any

	lRemoveLock
	ccEDC_REG_REMOVELOCK
	Default true prevents field removal

	cEdcVersion
	ccEDC_REG_VERSION
	EDC version

	cEdcExtensionName
	ccEDC_REG_EXTENSIONNAME
	Extension’s long name, if any

	cEdcVendorName
	ccEDC_REG_VENDORNAME
	Vendor name, if any

	cMethodOpen
	ccEDC_REG_METHODOPEN
	Alternate lOpen() method, if any

	cMethodGet
	ccEDC_REG_METHODGET
	Alternate uGetProp() method, if any

	cMethodSet
	ccEDC_REG_METHODSET
	Alternate uSetProp() method, if any

	cMethodLib
	ccEDC_REG_METHODLIB
	Alternate method class library, if any

	cMethodClass
	ccEDC_REG_METHODCLASS
	Alternate method class name, if any

	cMethodInit
	ccEDC_REG_METHODINIT
	Alternate method Init parameter, if any

You access the registry row with uGetProp() and uSetProp() by passing “EdcUnique” as the object type and “Registry” as the object name. These are defined in True.h as ccEDC_OBJ_UNIQUETYPE and ccEDC_OBJ_REGISTRY.

? oEdc.uGetProp(cc_EDC_OBJ_REGISTRY, cc_EDC_OBJ_UNIQUETYPE,;

 cc_EDC_REG_VERSION)

? oEdc.uSetProp(cc_EDC_OBJ_REGISTRY, cc_EDC_OBJ_UNIQUETYPE,;

 cc_EDC_REG_VENDORNAME, "Rettig Micro Corporation")

? oEdc.uSetProp(cc_EDC_OBJ_REGISTRY, cc_EDC_OBJ_UNIQUETYPE,;

 "MyNewRegistryProperty", "Whatever")

Using Alternate EDCs

We recommend that you keep your EDC properties in the main registry EDC to minimize the number of file handles used. However, if you absolutely must have a private EDC file, you can do so by setting the ccEDC_REG_ALTERNATE property to another file name so that EDC will place your extensions there and keep the main registry EDC open for registry access. Registry rows in alternate EDCs are ignored.

? oEdc.uSetProp(cc_EDC_OBJ_REGISTRY, cc_EDC_OBJ_UNIQUETYPE,;

 cc_EDC_REG_ALTERNATE, "..\Private\MyOwnEdc.edc")

= oEdc.Close() && close and reopen to create/open the new alternate

? oEdc.lOpen("MyExtens")

Using Alternate Class Methods

Alternate class methods are necessary only when you want to link to a DBC or property extension system that does not use EDC files. Perhaps you’ve created your own system or have used an add-on product or extension that is not EDC compatible. In that case, you can switch to the more powerful and flexible EDC and still maintain any foreign extensions by adding an EDC field and supplying their class and method information to their EDC registry. uGetProp() and uSetProp each call the appropriate alternate method when one is present. This also applies to Updating Other Properties, which means that even foreign extensions can be maintained in sync with EDC. Another way in which this is useful is to maintain data dictionaries in older FoxPro versions from VFP by providing methods to access the structures of those older tables.

? oEdc.uSetProp(cc_EDC_OBJ_REGISTRY, cc_EDC_OBJ_UNIQUETYPE,;

 cc_EDC_REG_METHODLIB, "ClassLib.vcx") && may be ".prg"

? oEdc.uSetProp(cc_EDC_OBJ_REGISTRY, cc_EDC_OBJ_UNIQUETYPE,;

 cc_EDC_REG_METHODCLASS, "MyClassName ")

? oEdc.uSetProp(cc_EDC_OBJ_REGISTRY, cc_EDC_OBJ_UNIQUETYPE,;

 cc_EDC_REG_METHODGET,;

 "MyGetMethod(<property value>, <property name>,"+;

 "<object name>, <object value>,"+;

 "<dbc>)")

Note that in setting the syntax template for MyGetMethod(), the bracketed values can go anywhere the foreign method’s syntax requires.

? oEdc.uSetProp(cc_EDC_OBJ_REGISTRY, cc_EDC_OBJ_UNIQUETYPE,;

 cc_EDC_REG_METHODGET,;

 "MyGetMethod(PADR(<property name> + <property value>,"+;

 "32), <dbc>!<object name>, <object value>")

All the bracketed items shown in the previous examples, plus others, are defined in True.h as follows and are substituted for known values at runtime.

	Template string
	Definition in True.h
	Description

	<dbc>
	ccARG_DBC
	DBC full path specification

	<dbc id>
	ccARG_DBCID
	EDC unique ID from DBC User field

	<edc>
	ccARG_EDC
	EDC full path specification

	<registry>
	ccARG_REGISTRY
	EDC registry full path specification

	<object type>
	ccARG_OBJTYPE
	Object type

	<object name>
	ccARG_OBJNAME
	Object name

	<property name>
	ccARG_PROPNAME
	Property name

	<property value>
	ccARG_PROPVALUE
	Property value

All extensions’ alternate EDCs and class methods are stored in the aAlternate Property and aObject Property arrays by the lOpen() Function so that they are always available for updating if necessary.

If EDC detects that it has been instantiated from ccEDC_REG_METHODCLASS, it references its PARENT object, otherwise it instantiates ccEDC_REG_METHODCLASS from ccEDC_REG_METHODLIB and adds it as an object into itself.

Updating Other Properties

EDC properties are easily set to update other properties or be updated from other properties by turning on the property header switch, cnHEAD_UPDATE. This is useful for keeping different extensions in sync where they have the same property value for an object like a table’s field size.

Simply turning on cnHEAD_UPDATE causes all extensions of the same name that also have cnHEAD_UPDATE turned on to be updated when one is changed. This works even if alternate EDCs and/or alternate class methods are involved.

IF oEdc.uSetProp("Customer.Company", "Field", "Size", 10)

 =oEdc.uSetProp("Customer.Company", "Field", "Size",;

 ccHEAD_ON, cnHEAD_UPDATE)

ENDIF

To update properties of different names, you set a “map” property with a value of the property name you want to update. EDC map properties have the same property name as the original property but with “Map” plus any additional characters you want as a suffix on the property name.

IF oEdc.uSetProp("Customer.Company", "Field", "Size", 10)

 =oEdc.uSetProp("Customer.Company", "Field", "Size",;

 ccHEAD_ON, cnHEAD_UPDATE)

 ? oEdc.uSetProp("Customer.Company", "Field", "SizeMap", "Width")

 ? oEdc.uSetProp("Customer.Company", "Field", "SizeMap2", "Length")

 ? oEdc.uSetProp("Customer.Company", "Field", "SizeMapFoo", "FooSize")

ENDIF

 “Map” is defined in cMapName Property and can be changed by subclassing.

Updates are handled by uSetProp() Function and SetSameName Procedure.

EDC Demonstration Program

EdcDemo.prg has a variety of EDC calls that we use for testing syntax and performance. It contains lots of examples.

Your Contributions are Important!

We designed EDC to grow for its users and you can play an important part in that growth by sending us your contributions in the following three categories.

1. Property names for EDC’s suggested property lists, like “nFieldSize” for a table’s field size

2. Techniques, tips, and tricks using EDC you’ve found useful that we can add to this documentation

3. EDC feature extensions that you’d like to see in a future release

All contributions except number 3 must include either the TRUE Warranty Disclaimer: No Warranty! wording from page 1 or the following words, “This contribution is made to the public domain and EDC according to the published TRUE Warranty Disclaimer.”

All contributions must be in writing and sent to us via Email, fax, or snail mail to the following address. We will contact you for additional details and confirmation if we decide to publish it, and you will receive full credit for it.

EDC Contributions

Rettig Micro Corporation (RMC)

2532 Lincoln Boulevard, Suite 110

Marina del Rey, CA 90291-5978

Fax: 310-821-1162

CompuServe: 75066,352 in the Microsoft FOXUSER forum’s 3rd-Party section or CIS MAIL

Developer’s Guide

New in This Release

Cross Platform

Additional capability will be added as necessary when VFP is ported to other platforms.

· The availability of MESSAGEBOX() is unknown.

· Path specs containing spaces have not been tested.

Documentation

Documentation is provided in a Microsoft Word 6.0 file. This can be easily printed, translated, and/or written to a Rich Text Format (RTF) file for compilation into a Windows help file. Windows help formatting is under construction!
This document prints 4
 pages.

This document uses Word bookmarks and REF fields extensively. If the document is changed, you should update all fields before printing or saving as RTF. To update all fields, Select All from the Edit menu and then press F9.

This document uses the True.dot template file.

Caution! This help file uses forward and backward quote marks “ ” in text including syntax. If you cut and paste any text with these marks into a program, you will get a syntax error unless you change these to straight quote marks " ".
Enhancements

These enhancements are either planned or under consideration for implementation in a future upgrade. If you write any of them before we do, please consider submitting them as a contribution.

· Add an EDC file with suggested property names and functionality for various logical views. We’ll plant several seeds and user contributions will grow it dynamically.

· Add a visual Print() method to report on EDC contents through a report form

· Add a visual Show() method to input into an EDC through a visual form and access the suggested property names

· Add an EDC builder for the VFP Database Designer

· Add EDC button(s) to the DBC toolbar

· Add trigger methods using RiInfo

· Add a header switch to enable automatic EVALUATE() of a character property value in uGetProp()

· Add a nGetAllProp() method to get properties in all objects of one object type

· Add a nSetAllProp() method to set properties in all objects of one object type

· Add a lSetBackLink() method to change the back link in DBC tables

· Add a TableBuild() method to build tables and indexes from EDC properties

· Add a TableGetBuild() method to set EDC build properties for DBC and free tables

· Add c???GetProp() and c???SetProp() methods to read/write directly to VFP structures like PJX, FRX, LBX, MNX, etc., where ??? is the structure extension. Possibly analyze them as we do the DBC.

· Add a method or utility program for updating EDCs from earlier versions as necessary

Errors

All user-defined error messages are protected properties that can be subclassed for other languages.

Use the SetShowErrors Procedure to enable/disable showing errors.

oEdc.SetShowErrors(.T.) && enable (default)

oEdc.SetShowErrors(.F.) && disable

When errors are disabled, they are shown as Messages if messages are enabled. If messages are disabled, the error does not show at all.

Error message properties can contain up to 3 insertion points. These are defined in True.h as ccMSG_INSERT1, ccMSG_INSERT2, and ccMSG_INSERT3, and are substituted at runtime for names specific to the error message.

Use the SetTestParameters Procedure to enable/disable checking parameters for errors in exposed methods.

oEdc.SetTestParameters(.T.) && enable (default)

oEdc.SetTestParameters(.F.) && disable

Files

These files make up this class library.

	File
	Description

	EdcLib.prg
	Program class definitions

	Edc.vcx
	Use TRUE's PrgToVcx to convert EdcLib.prg to a visual class library

	True.h
	Named constant definitions (required by all TRUE libraries)

	EdcDemo.prg
	Demonstration and test program

	Edc.doc
	Documentation in Word 6.0 format

	True.dot
	Word 6.0 template file used by all TRUE documentation

You may modify, subclass, and distribute any or all files in any form you like.

Only two files are required, True.h plus one of the class definition files, EdcLib.prg or the visual class library that you make with TRUE's PrgToVcx. You may distribute the source files if you wish, but you do not have to if they are compiled into your application.

International

All codepages and international characters are supported. They may be included in extended property names and string values.

All errors, prompts, and messages are protected properties that can be subclassed for other languages.

Limits

All limits are defined in True.h. The following limits are imposed by VFP.

· One EDC table has a maximum of 253 extension fields because VFP has a limit of 255 fields and EDC reserves two for its own use.

· Extended field names have a maximum length of 10 characters because EDC tables are free tables.

· User-defined object type + object name have a combined maximum length of 240 characters for VFP's maximum index key length.

· Numeric and currency type property values have the VFP maximum precision of 16 digits.

We set the following limits by default, but they can be changed to anything you like by subclassing their protected property defaults.

· Extended property names have a maximum length of 128 characters in nMaxPropLen.

· Extended property string values have a maximum length of 4096 characters in nMaxStrLen.

Messages

All messages are protected properties that can be subclassed for other languages.

Use the SetShowMessages Procedure to enable/disable showing messages and prompts.

oEdc.SetShowMessages(.T.) && enable (default)

oEdc.SetShowMessages(.F.) && disable

Message properties can contain up to 3 insertion points. These are defined in True.h as ccMSG_INSERT1, ccMSG_INSERT2, and ccMSG_INSERT3, and are substituted at runtime for names specific to the message.

Requirements

1. Visual FoxPro for Windows, version 3.0 or greater.

2. Compiling EdcLib.prg or Edc.vcx requires the named constant file, True.h.

Shared Access

We always lock only a single record at a time, using the manual LOCK() function. You can use SET REPROCESS to change how VFP responds to a failed LOCK() attempt.

Technical Reference

Error Handling

The EDC Error Event Procedure looks to see if the lShowErrors Property is true or false. If false, it calls Message.nShow() Function to display the error.

If true and a parent object exists, it calls the parent object’s Error method. If the parent object has no Error method defined, the error will not show, otherwise the parent’s Error method can look at aObjectError Property for all the details.

If there is no parent object but an ON ERROR expression exists, the expression is evaluated.

If there is no ON ERROR or it is a command, a new ERROR is triggered to show it.

All user defined errors use messages that are protected EDC properties. You can change them by subclassing the property default.

Many errors, like “Too few arguments” are triggered as VFP errors instead of user defined. They are automatically translated in localized international VFP versions.

File Structures

Analyze

The DBC analysis cursor or table is created with cAnalyzeDbcProp() Function and has one record for every record in the DBC, even deleted ones. It has one memo field called Analyze.

EDC

The EDC file structure is created with lOpen() Function and consists of the foreign key field, cUniqueID, which links to the unique ID placed in the DBC User field, plus the memo field, mEdcObject, plus one memo field for each set of extended properties. cUniqueID is Character type, ten characters, populated by the SYS(2015) function, and has an ascending index tag. mEdcObject holds user-defined objects that are not VFP DBC objects and is indexed on which is indexed PADR(LOWER(mEdcObject), 138), where 138 is the combined total maximum length of object type plus object name.

In most cases, one extended property field for the user and one for each third-party product should be adequate.

How Visual FoxPro's Database Container Works

The DBC object’s ID is always the same as the object’s record number and its parent ID is the object ID of its parent object.

The main Database object is always record number one and has itself as its parent. Other Database objects include TransactionLog, StoredProceduresSource, and StoredProceduresObject, which occupy records 2 through 4 and all have the main Database object (record 1) as their parent.

Tables, Views, and Connections all have the main Database object (record 1) as their parent and are always located after the Database object records.

Indexes and Relations have Tables as their parent and are always located after their parent record.

Fields have both Tables and Views as their parent(s) and are always located after their parent record.

Visual FoxPro only changes the DBC objects Database, Table, and Connection. Any changes made to Field, Index, and View objects, either visually or programmatically, cause existing records to be marked DELETED() and new records added to replace them. For example, when you rename one field, all that table’s field entries in the DBC are deleted and new entries are written for each field, even the ones that did not change. When the database container is packed from the Database menu or with PACK DATABASE, or if you USE it and PACK, all the ObjectID entries are renumbered to match the record number and all the ParentID numbers are renumbered to match their parent’s new ObjectID.

Properties are always at least 8 bytes and include a binary property code that is always exactly 8 bytes. The code’s first 4 bytes store the property size (including the property code) in base 256 where the first byte is least-significant. Byte 5 is the size of the property type, which may be either 1 or 2 and tells the size of the property name in bytes 6 and 7. If byte 5 is 1, the property name is contained in byte 7, otherwise it occupies both bytes 6 and 7. Byte 8 is the terminating byte. If the property size is exactly 8 bytes, byte 8 is both the property value and the terminating byte, otherwise the property value is stored between byte 7 and the terminating byte, in which case the terminating byte may or may not be significant depending on the property. Properties are unique within the property field. I.e., each property appears only once per object.

Code for searching the DBC is in lSearchDbc() and code for reading/writing DBC properties is in cGetOneDbcProp() and lSetOneDbcProp().

How EDC Works

The two types of EDC files are “bound” and “free.” Both types can assign properties to a DBC object or to a user-defined object, and a bound EDC can reference objects in DBCs other than the one to which it is bound. The main difference is that a bound EDC always references the DBC to which it is bound unless it is passed a different DBC name, whereas a free EDC always references the last passed DBC until passed a different DBC name. The other difference is that a bound EDC creates a separate file in the same location and with the same name as the DBC file but with a “.EDC” extension, whereas a free EDC creates a separate file in the location and with the name, and optionally extension, that you specify to lOpen().

EDC properties for DBC object types are related to their DBCs by a unique ID number that is stored in the DBC’s User field when the first extended property is set to that object. This prevents bloating the User field with everybody’s extensions and avoids exclusive use and maintenance conflicts of adding additional fields directly to the DBC. The DBC file is searched for a valid object. If found, the unique ID is used to search the EDC file for an entry. If the EDC does not have an entry for this DBC object, a new EDC record is created with the uSetProp() Function.

EDC properties for user-defined objects do not reference a DBC and their defined object type and name is stored in the mEdcObject field as PADR(cObjectType, 10) + cObjectName and its index is used for searching instead of cUniqueId. To maintain the uniqueness of the candidate key on cUniqueId, it is given a value which is otherwise ignored for user-defined objects.

Extended properties are stored in the extension’s EDC memo field in the format: LineMark + Name + PropertyMark + Header + Value + LineMark. See cPropHead Property for a full description of the property header. EDC stores properties in memo fields as does Visual FoxPro in the DBC, Forms (SCX), and Classes (VCX). This architecture provides the most flexibility and extensibility in property names, formats, value types, and even lets you give your properties their own properties like read-only or protected. EDC never limits you to pre-defined property lists, specific naming conventions, or short property names without spaces and case distinction.

Named Constants: True.h

True.h includes FoxPro.h, plus it defines these groups of named constants.

· EDC control codes

· EDC reserved keywords and names

· EDC property header dimensions

· EDC file structures and array dimensions

· EDC built-in registry properties

· Syntax substitution strings for registered alternate methods

· VFP limits

· VFP DBC object types

· VFP DBC property field binary codes (property names)

· VFP AERROR() array dimensions

· VFP ERROR numbers used

· VFP SYS() functions used

· VFP ADBOBJECTS("RELATION") array columns

· Constants used by other TRUE software

Naming Conventions

We use VFP naming conventions for everything. In addition, we add the following conventions.

Constant Scope

Constants are scoped to the precompiler at design time and do not have a run-time scope.

	Description
	Prefix
	Example

	Constant (#DEFINE)
	c
	ccERR_PROMPT

Constant Type

We use VFP variable naming conventions for our constant data type. In addition, we add the following for literal string constants.

	Description
	Prefix
	Example

	Literal (character without quotes)
	x
	cxFIELD_NAME

General

We use a triple forward slash “///” to indicate something to do or consider in a future release.

Objects

All method parameters and variables are local.

EDC

The EDC object is based on the VFP Custom class. It adds the Message object with ADD OBJECT.

Message

The Message object is based on the VFP Custom class and is added to the EDC object with ADD OBJECT.

Language Reference

Exposed Properties

Exposed Properties are set on event or method execution. Changing their value does not affect our methods or operation. You view exposed properties with the syntax, Object.PropertyName

nExecTime Property

Contains the elapsed time in seconds of the last-executed exposed method.

Syntax
Object.nExecTime

Settings
Set to the extended property’s header by many exposed methods including uGetProp() and uSetProp().

Remarks
Operational only when lExecTime is set true.

Not reset on errors or not found.

Example
= oEdc.SetExecTime(.T.)

? oEdc.uSetProp("Customer", "Table", "MyProp", "Whatever"),;

 oEdc.nExecTime

See Also
lExecTime Property, SetExecTime Procedure, lGetExecTime() Function
aObjectError Property

Contains an array of information about the last error event.

Syntax
Object.aObjectError[nElement]

Settings
Set on an error event by the Error Procedure.

	Element
	#DEFINE in True.h
	Description

	1
	cnVF_AERR_NUMBER
	Error number from AERROR()

	2
	cnVF_AERR_MESSAGE
	Error message from AERROR()

	3
	cnVF_AERR_OBJECT
	Error object from AERROR()

	4
	cnVF_AERR_WORKAREA
	Error workarea from AERROR()

	5
	cnVF_AERR_TRIGGER
	Error trigger from AERROR()

	6
	cnVF_AERR_EXTRA1
	Error extra from AERROR()

	7
	cnVF_AERR_EXTRA2
	Error extra from AERROR()

	8
	cnAERR_METHOD
	Method name from Error Procedure

	9
	cnAERR_LINE
	Line number from Error Procedure

	10
	cnAERR_SOURCE
	Source code from Error Procedure

Remarks
This array is reset on an Error event even if lShowErrors Property is false.

Example
? oEdc.aObjectError[8] && get the method name

See Also
lShowErrors Property, Error Event Procedure, SetShowErrors Procedure, lGetShowErrors() Function
cPropHead Property

Contains the header of the last-accessed extended property.

Syntax
Object.cPropHead

Settings
Set to the extended property’s header by the methods, uSetProp() Function and uGetProp() Function
	Byte
	#DEFINE in True.h
	Description

	1
	cnHEAD_TYPE
	Data type (C, D, L, N, T, or Y)

	2
	cnHEAD_NULL
	.NULL. value (on or off)

	3
	cnHEAD_READLOCK
	Prevent reading (on or off)

	4
	cnHEAD_WRITELOCK
	Prevent changing (on or off)

	5
	cnHEAD_REMOVELOCK
	Prevent removing (on or off)

	6
	cnHEAD_UPDATE
	Enable updating (on or off)

	7
	cnHEAD_RESERVED4
	Reserved for future use

	8
	cnHEAD_RESERVED3
	Reserved for future use

	9
	cnHEAD_RESERVED2
	Reserved for future use

	10
	cnHEAD_RESERVED1
	Reserved for future use

	11
	cnHEAD_USER4
	User defined

	12
	cnHEAD_USER3
	User defined

	13
	cnHEAD_USER2
	User defined

	14
	cnHEAD_USER1
	User defined

	15..36
	
	DateTime of last update

On and off characters used in header bytes 2 to 10.

	Character
	#DEFINE in True.h
	Description

	“.”
	ccHEAD_OFF
	Period = off

	“+”
	ccHEAD_ON
	Plus sign = on

Remarks
Not reset on errors or not found.

Use the user-defined bytes when you want to give your properties additional meaning.

cnHEAD_WRITELOCK overrides the setting of cnHEAD_UPDATE.

Example
? oEdc.cPropHead && view entire string

* Compare one byte.

#INCLUDE "True.h"

IF SUBSTR(oEDC.cPropHead, cnHEAD_READLOCK, 1) == ccHEAD_ON

 ...

ENDIF

See Also
uSetProp() Function, uGetProp() Function, uIncProp() Function, SetPropHead Procedure, cSetPropHead Property
Exposed Methods

You execute exposed methods with the syntax, Object.MethodName([ParameterList]). Exposed methods can be added or modified by subclassing.

cAnalyzeDbcProp() Function

Create a cursor or table with one memo field that contains a readable string of the DBC property field including its binary codes.

Syntax
Object.cAnalyzeDbcProp([cCursorName [, cCursorType [, cAction]]])

Return
Character type. The cursor or table name created.

Arguments
cCursorName

Optional alias name of the created cursor or table, case insensitive. If no cursor name is passed, a unique alias name from SYS(2015) is used.
cCursorType
Optional cursor type is a VFP cursor by default. To create a table instead of a cursor, pass “table” in cCursorType.
cAction
Optional action to take after analyzing, case insensitive. To view the DBC and cursor in a related browse, pass “browse” in cAction. To include empty property records in the browse, pass “browse all” in cAction.
Remarks
The cursor contains the same number of records as the DBC, and each one has the same record number as the DBC. Deleted records are included and marked deleted.

The memo field contains the DBC property field with binary codes translated to readable numbers representing the binary code's ASCII character numbers.

Example
lcCursorAlias = oEdc.cAnalyzeDbcProp()

SELECT (oEdc.cGetDbcAlias())

SET RELATION TO RECNO() INTO (lcCursorAlias)

BROWSE FIELDS ObjectName, ObjectType, &lcCursorAlias..Analyze

* That browse is similar to doing the following.

lcCursorAlias = oEdc.cAnalyzeDbcProp("", "", "browse all")

See Also
cDbcGetProp() Function
Close Procedure

Close this object’s use of the DBC and EDC tables.

Syntax
Object.Close()

Remarks
Called by the Destroy Event Procedure.

See Also
lOpen() Function, Destroy Event Procedure
lCurrent() Function

Syntax
Object.lCurrent()

Return
Logical true if the last EDC update DateTime value is greater than or equal to the DBC DateTime, otherwise false. Returns logical .NULL. if a not-open error occurs.

Remarks
Does not check the memo or index file.

Example
IF NOT oEdc.lCurrent()

 =MESSAGEBOX("The database container has changed. " +;

 "You may need to update your extensions.")

ENDIF

See Also
lValidate() Function
lDbcFindObject() Function

Search the DBC for an object.

Syntax
Object.lDbcFindObject(cObjectName, cObjectType)

Return
Logical true if found, otherwise false.

Arguments
cObjectName

Name of the DBC object you want to find.

To find a field, index, or relation in a table, preface the name of the field, index, or relation with the name of the table that contains it and a period. To find a field in a view, preface the name of the field with the name of the view that contains it and a period. For example, to find the Cust_Id field in the Customer table, specify “Customer.Cust_Id” for cObjectName.
cObjectType
Type of the DBC object you want to find.
Remarks
This is just an exposed method for access to the protected method, lSearchDbc().

Example
IF oEDC.lDbcFindObject("Customer", "Table")

 ? "Customer table exists in " + DBC()

ENDIF

See Also
lSearchDbc() Function
cDbcGetProp() Function

Search the DBC for a property.

Syntax
Object.cDbcGetProp([cDatabase!]cObjectName, cObjectType, cPropertyType)

Return
Character type DBC property string. Returns .NULL. if the object or property is not found.

Arguments
cDatabase

Optional name of the DBC that has the property, separated from the object name by an exclamation mark.
cObjectName

Name of the DBC object that has the property.
cObjectType
Type of the DBC object that has the property.
cPropertyType
Type of the DBC property you want.

These are binary codes that uniquely identify each DBC property. Known codes are defined in True.h.
Remarks
This provides direct access to the DBC's properties for any goodies to which VFP does not grant access from DBGETPROP().

Use cAnalyzeDbcProp() Function to get a readable list of properties and their binary code prefixes, or use the known defined codes from True.h as in the example below.

Example
#INCLUDE "True.h"

? oEDC.cDbcGetProp("TestData!Customer",;

 "Table", ccVF_TAB_FILEPATH)

? oEDC.cDbcGetProp("Customer",;

 "Table", ccVF_TAB_PRIMARYTAG)

? oEDC.cDbcGetProp("Customer.Cust_ID",;

 "Index", ccVF_IND_TAGTYPE)

See Also
lDbcSetProp() Function, cAnalyzeDbcProp() Function, True.h
lDbcSetProp() Function

Set a DBC property.

Syntax
Object.cDbcSetProp([cDatabase!]cObjectName, cObjectType, cPropertyType,

cPropertyValue)

Return
Logical true if the property is set, otherwise false. Returns .NULL. if the object or property is not found.

Arguments
cDatabase

Optional name of the DBC that has the property, separated from the object name by an exclamation mark.
cObjectName

Name of the DBC object that has the property.
cObjectType
Type of the DBC object that has the property.
cPropertyType
Type of the DBC property you want.

These are binary codes that uniquely identify each DBC property. Known codes are defined in True.h.
cPropertyValue
Value you want to assign to the property. The value data type must be Character. .NULL. values are not allowed.

Remarks
This provides direct access to the DBC's properties for any goodies to which VFP does not grant access from DBSETPROP(), including read-only properties.

Warning! Writing to property fields without DBSETPROP() can be hazardous to your DBC's health! Always test thoroughly with a temporary copy and know what you're doing. Setting DBC properties to a value VFP doesn’t expect, or setting them to a correct value when VFP has the old value buffered in memory, can have unpredictable results.

Use cAnalyzeDbcProp() Function to get a readable list of properties and their binary code prefixes, or use the known defined codes from True.h as in the example below.

Example
#INCLUDE "True.h"

? oEDC.cDbcSetProp("TestData!Customer", "Table",;

 ccVF_TAB_FILEPATH, "..\Data\Test\")

See Also
cDbcGetProp() Function, cAnalyzeDbcProp() Function, True.h
cEdc() Function

Get full path spec of the EDC table.

Syntax
Object.cEdc()

Return
Character type. EDC table’s full path spec.

Remarks
Path is in the VFP format uppercase with backslashes. It is up to the calling program to use SYS(2027) to display properly on other platforms and to protect from spaces in path names.

The EDC path is always the same as the DBC path because they both live in the same location.

Example
? oEdc.cEdc()

See Also
cGetEdcAlias() Function
cGetDbcAlias() Function

Get our alias name for the DBC table.

Syntax
Object.cGetDbcAlias()

Return
Character type alias name, or empty string if not open.

Remarks
This is a VFP unique name generated with SYS(2015).

Example
SELECT User FROM (oEdc.cGetDbcAlias()) INTO CURSOR Temp;

 WHERE NOT EMPTY(User)

See Also
cGetEdcAlias() Function
cGetEdcAlias() Function

Get our alias name for the EDC table.

Syntax
Object.cGetEdcAlias()

Return
Character type alias name, or empty string if not open.

Remarks
This is a VFP unique name generated with SYS(2015).

Example
SELECT MyField FROM (oEdc.cGetEdcAlias()) INTO CURSOR Temp

See Also
cGetDbcAlias() Function, cEdc() Function
lGetExecTime() Function

Get the setting of the lExecTime property.

Syntax
Object.lGetExecTime()

Return
Logical true or false.

Remarks
The lExecTime property enables/disables timing a method’s execution time for performance testing.

Each routine’s elapsed time is stored in seconds in the exposed property, nExecTime.

Example
llExecTime = oEdc.lGetExecTime()

=oEdc.SetExecTime(.T.) && turn on time measurement

? oEdc.uSetProp("Customer", "Table", "MyProp", "Whatever"),;

 oEdc.nExecTime

? oEdc.uGetProp("Customer", "Table", "MyProp"),;

 oEdc.nExecTime

=oEdc.SetExecTime(llExecTime)

See Also
SetExecTime Procedure, nExecTime Property
uGetProp() Function

Get an extended property’s value.

Syntax
Object.uGetProp([cDatabase!]cObjectName, cObjectType, cPropertyName

[, aReturnArray])

Return
Type varies and can be Character, Currency, Date, DateTime, Logical, or Numeric. Property value if successful, otherwise logical .NULL. value.

Returns numeric number of properties found when “ALL” or wildcard properties are requested.

Arguments
cDatabase

Optional name of the DBC that has the object, separated from the object name by an exclamation mark.

cObjectName

Name of the DBC object that has the property.
To get extended property information about a field, index, or relation in a table, preface the name of the field, index, or relation with the name of the table that contains it and a period. To get extended property information about a field in a view, preface the name of the field with the name of the view that contains it and a period. For example, to get extended property information about the Cust_ID field in the Customer table, specify “Customer.Cust_Id” for cObjectName.
cObjectType
Type of the DBC object that has the property.
cPropertyName
Name of the EDC property whose value you want returned. The name can contain any character or embedded spaces and is not case sensitive.

The name cannot contain the line or property separator marks as stored in cLineMark Property and cPropMark Property.

You can pass the keyword, “ALL” to get a group of all extended properties for a particular object.

You can use the wildcard character “*” (asterisk) to get a group of like-named properties for a particular object. E.g., pass cPropertyName “Filter*” to get all properties with names like FilterStartUp, FilterUser, and FilterWindow. Anything in the name after the wildcard character is ignored.

aReturnArray
Array to hold multiple properties and values is required only when cPropertyName is passed “ALL” or contains the wildcard character. Otherwise it is unused. Must be passed by reference.

The return array has one row and three columns for each property.

	Column
	Description

	1
	Property name

	2
	Property value

	3
	Property header

Remarks
To protect from reading, lock the property header with uSetProp() Function. Header locks do not prevent reading the property header.

This method puts the property header in the exposed property, cPropHead. The header structure is documented in cPropHead Property.

To lock the EDC record at the time of reading the property, set lPropLock Property to true with SetPropLock Procedure.

Example
? oEdc.uSetProp("TestData!Customer.Company", "Field",;

 "InputMask", "@!")

? oEdc.uSetProp("Customer.Company", "Field",;

 "InputColor", RGB(0,0,128))

? oEdc.uSetProp("Customer.Company", "Field",;

 "InputForm", "CustForm")

? oEdc.uSetProp("Customer.Company", "Field",;

 "OutputForm", "CustRept")

* Get one property.

? oEdc.uGetProp("Customer.Company", "Field",;

 "InputMask")

* Get all properties.

LOCAL laAllProps[1]

? oEdc.uGetProp("Customer.Company", "Field",;

 "ALL", @laAllProps)

* Get wildcard properties.

LOCAL laInputProps[1]

? oEdc.uGetProp("Customer.Company", "Field",;

 "Input*", @laInputProps)

See Also
uSetProp() Function, uIncProp() Function, cPropHead Property, cLineMark Property, cPropMark Property, lPropLock Property, SetPropLock Procedure
lGetPropLock() Function

Get setting of the lPropLock property.

Syntax
Object.lGetPropLock()

Return
Logical true or false.

Remarks
The lPropLock property enables/disables locking the EDC record when an extended property is read. The result of the LOCK() attempt is stored in lPropLock.

This is useful when a property is to be changed right away without the possibility of anyone else changing it before you can write the new value.

Example
llPropLock = oEdc.lGetPropLock()

=oEdc.SetPropLock(.T.) && lock it in uGetProp()

lnNumber = oEdc.uGetProp("Customer", "Table", "LastNumber")

* uSetProp unlocks it.

=oEdc.uSetProp("Customer", "Table", "LastNumber", lnNumber+1)

=oEdc.SetPropLock(llPropLock) && restore old setting

See Also
SetPropLock Procedure, lPropLock Property, uGetProp() Function
nGetRelation() Function

Get specific relational information about one table and all its cascading child relations from aRelation Property.

Syntax
Object.nGetRelation(cTableName, aReturnArray)

Return
Numeric number of rows in aReturnArray.

Arguments
cTableName

Name of the DBC parent table that starts the relation chain.
aReturnArray
Array to hold the table's relational children. Must be passed by reference.
Remarks
aRelation Property stores the entire array returned by ADBOBJECTS(aRelation, “RELATION”). tRelation Property stores the datetime of the last refresh. If the DBC changes, nGetRelation() automatically refreshes its relation properties.

Under construction!

Example
Under construction!
See Also
aRelation Property, tRelation Property
lGetShowErrors() Function

Get setting of the lShowErrors property.

Syntax
Object.lGetShowErrors()

Return
Logical true or false.

Remarks
The lShowErrors property enables/disables showing errors.

Example
llShowErrors = oEdc.lGetShowErrors()

=oEdc.SetShowErrors(.F.) && turn off error display

...

=oEdc.SetShowErrors(llShowErrors)

See Also
SetShowErrors Procedure, lShowErrors Property, Error Event Procedure
lGetShowMessages() Function

Get setting of the lShowMessages property.

Syntax
Object.lGetShowMessages()

Return
Logical true or false.

Remarks
The lShowMessages property enables/disables showing messages and prompts.

Example
llShowMessages = oEdc.lGetShowMessages()

=oEdc.SetShowMessages(.F.) && turn off message display

...

=oEdc.SetShowMessages(llShowMessages)

See Also
SetShowMessages Procedure, lShowMessages Property
lGetTestParameters() Function

Get setting of the lTestParameters property.

Syntax
Object.lGetTestParameters()

Return
Logical true or false.

Remarks
The lTestParameters property enables/disables testing parameters for errors.

Example
llTestParameters = oEdc.lGetTestParameters()

=oEdc.SetTestParameters(.F.) && turn off parameter testing

...

=oEdc.SetTestParameters(llTestParameters)

See Also
SetTestParameters Procedure, lTestParameters Property
uIncProp() Function

Increment an extended numeric, currency, or date type property.

Syntax
Object.uIncProp([cDatabase!]cObjectName, cObjectType, cPropertyName,

[nIncValue])

Return
Numeric, Currency, Date, or DateTime types. Incremented property value if successful, otherwise .NULL. value.

Arguments
cDatabase

Optional name of the DBC that has the object, separated from the object name by an exclamation mark.

cObjectName

Name of the DBC object that has the property.
To increment an extended property for a field, index, or relation in a table, preface the name of the field, index, or relation with the name of the table that contains it and a period. To increment an extended property for a field in a view, preface the name of the field with the name of the view that contains it and a period. For example, to increment an extended property for the Cust_Id field in the Customer table, specify “Customer.Cust_Id” for cObjectName.
cObjectType
Type of the DBC object that has the property.
cPropertyName
Name of the DBC property whose value you want incremented.

nIncValue
Optional increment value. If not passed, the extended property is incremented by one. To decrement, pass a negative number.

Remarks
This wrapper method calls uGetProp(), increments the property, and calls uSetProp().

Example
lnNumber = 1

lnNumber = oEdc.uIncProp("Customer", "Table", "LastNumber")

? lnNumber && displays 2

lnNumber = oEdc.uIncProp("Customer", "Table", "LastNumber", 10)

? lnNumber && displays 12

lnNumber = oEdc.uIncProp("Customer", "Table", "LastNumber", -22)

? lnNumber && displays -10

See Also
uGetProp() Function, uSetProp() Function
lOpen() Function

Open this object’s use of the DBC and EDC tables.

Syntax
Object.lOpen(cEdcFieldName [, [cDrive][cPath]cFreeEdcFileName[cExtension]])

Return
Logical true if successful, otherwise false.

Arguments
cEdcFieldName

The EDC field you want to access. Maximum ten characters

cFreeEdcFileName

Optional file name creates/opens the free EDC file you want to access.

Remarks
Prompts to open a database container if cFreeEdcFileName is not passed.

Prompts to create the EDC if it does not exist. Prompts to add the extended field to the EDC if it does not exist.

To open more than once or use more than one extended field simultaneously, instantiate another EDC object.

Generally you will use only one EDC memo field to hold all your properties. You should not use a new field for each property because you would limit yourself to 253 properties per file and could neither set nor retrieve them using wildcard characters and the “ALL” keyword.

Example
* Bound EDC.

IF EMPTY(DBC())

 OPEN DATABASE SYS(2004)+"samples\data\TestData"

ENDIF

IF oEdc.lOpen("TRO")

 ...

ENDIF

* Free EDC.

IF oEdc.lOpen("TRO", "TRO_app.edc")

 ...

ENDIF

See Also
Close Procedure
lPack() Function

Pack the entire EDC table or just the memo fields.

Syntax
Object.lPack([cPackMethod])

Return
Logical true if successful, otherwise false.

Arguments
cPackMethod
Optional and case insensitive.

Pass “memo” or do not pass anything to PACK MEMO.

Pass “pack” to remove deleted records with PACK.

Pass “copy” to remove deleted records with COPY and RENAME.

Remarks
The EDC table must be able to be opened exclusively.

Example
=oEdc.lPack() && pack memos only

See Also
lValidate() Function
lRemoveField() Function

Remove an extended field from the EDC.

Syntax
Object.lRemoveField(cEdcFieldName)

Return
Logical true if successful, otherwise false.

Arguments
cEdcFieldName

Name of the EDC field you want to remove

Remarks
To protect a field from removal, set the logical extended property in the EDC registry called lRemoveLock to false. If this property is set true, the field will be removed. lRemoveLock is defined as ccEDC_REG_REMOVELOCK in True.h.

You can also lock this property’s header with uSetProp() Function to prevent changing or removing the property. This method does not check for read lock in the property header.

Example
IF oEdc.lOpen("MyField")

 =oEdc.lRemoveField("MyField")

ENDIF

* To protect field from removal.

* #INCLUDE "True.h"

=oEdc.uSetProp(ccEDC_OBJ_REGISTRY, ccEDC_OBJ_UNIQUETYPE,;

 ccEDC_REG_REMOVELOCK, .T.)

=oEdc.uSetProp(ccEDC_OBJ_REGISTRY, ccEDC_OBJ_UNIQUETYPE,;

 ccEDC_REG_REMOVELOCK,;

 ccHEAD_ON, cnHEAD_WRITELOCK)

=oEdc.uSetProp(ccEDC_OBJ_REGISTRY, ccEDC_OBJ_UNIQUETYPE,;

 ccEDC_REG_REMOVELOCK,;

 ccHEAD_ON, cnHEAD_REMOVELOCK)

See Also
lOpen() Function, uSetProp() Function, EDC Registry, True.h
SetExecTime Procedure

Set the lExecTime Property.

Syntax
Object.SetExecTime(lSetting)

Arguments
lSetting
Logical true or false

Remarks
The lExecTime property enables/disables timing a method’s execution time for performance testing.

Each routine’s elapsed time is stored in seconds in the nExecTime Property.

Setting this property resets the nExecTime Property to zero.

Example
llExecTime = oEdc.lGetExecTime()

=oEdc.SetExecTime(.T.) && turn on time measurement

? oEdc.uSetProp("Customer", "Table", "MyProp", "Whatever"),;

 oEdc.nExecTime

? oEdc.uGetProp("Customer", "Table", "MyProp"),;

 oEdc.nExecTime

=oEdc.SetExecTime(llExecTime)

See Also
lGetExecTime() Function, nExecTime Property, lExecTime Property
uSetProp() Function

Create or change an extended property.

Syntax
Object.uSetProp([cDatabase!]cObjectName, cObjectType, cPropertyName,

uPropertyValue [, nAction])

Return
Logical true if successful, otherwise false. If an array is passed to set more than one property, the numeric number of properties set is returned.

Arguments
cDatabase

Optional name of the DBC that has the object, separated from the object name by an exclamation mark.

cObjectName

Name of the DBC object that has the property.
To set an extended property for a field, index, or relation in a table, preface the name of the field, index, or relation with the name of the table that contains it and a period. To set an extended property for a field in a view, preface the name of the field with the name of the view that contains it and a period. For example, to set an extended property for the Cust_Id field in the Customer table, specify “Customer.Cust_Id” for cObjectName.
cObjectType
Type of the DBC object that has the property.
cPropertyName
Name of the EDC property whose value or header you want to set. The name can contain any character or embedded spaces and is not case sensitive.

The name cannot contain the line or property separator marks as stored in cLineMark Property and cPropMark Property.

You can pass the keyword, “ALL” to set a group of extended properties from an array for a particular object.

uPropertyValue
Value you want to assign to the property. The value data type can be Character, Currency, Date, DateTime, Logical, or Numeric. .NULL. values are allowed.

If the value is a character string, it cannot contain the line separator mark as stored in cLineMark Property.

To set more than one property in a call, create an array to hold multiple properties and values and pass it by reference. Also, pass “ALL” to cPropertyName.

The set array has one row and three columns for each property, the same as the return array in uGetProp(). If the property is successfully set, the cnHEAD_RESERVED1 byte is turned on in column three, otherwise column three is ignored.

	Column
	Description

	1
	Property name

	2
	Property value

	3
	Property header

To set the header for all properties in the array, use SetPropHead Procedure to set cSetPropHead Property, which this method uses when setting property values if it has anything in it.

nAction
Optional.

To remove a property, pass -1 (defined as cnPROP_REMOVE in True.h).

To set the header, pass the header byte 3, 4, 5, or 6 (cnHEAD_READLOCK, cnHEAD_WRITELOCK, cnHEAD_REMOVELOCK, or cnHEAD_UPDATE in True.h) and pass the header setting (ccHEAD_ON or ccHEAD_OFF) in uPropertyValue.

You can also set the user-defined bytes 11, 12, 13, or 14 (cnHEAD_USER1 through cnHEAD_USER4 in True.h) if you want to give your properties additional meaning for your own use.

If you create a new property by setting the header, the property type is logical and has a .NULL. value.

To set both the header and value in one call, use SetPropHead Procedure to set cSetPropHead Property, which this method uses when setting property values if it has anything in it.

Remarks
If the property exists, it is assigned the new value, otherwise it is added to the extended field.

Stores property in the format

LineMark + Name + PropertyMark + Header + Value + LineMark

Locks the EDC record with LOCK() before writing and unlocks it when done.

This method puts the current or revised property header in the exposed property, cPropHead. The header structure is documented in cPropHead Property.

To protect from writing or removing, lock the property header. Header locks do not prevent writing to the property header.

Use uIncProp() Function to increment or decrement a numeric, currency, date, or datetime type property.

Calls SetSameName Procedure to update other properties if the header switch, cnHEAD_UPDATE, is on.

Example
IF oEdc.uSetProp("Customer.Company", "Field",;

 "InputMask", "@!")

 * Lock the property from writing or removing.

 #INCLUDE "True.h"

 =oEdc.uSetProp("Customer.Company", "Field", "InputMask",;

 ccHEAD_ON, cnHEAD_WRITELOCK)

 =oEdc.uSetProp("Customer.Company", "Field", "InputMask",;

 ccHEAD_ON, cnHEAD_REMOVELOCK)

 * Get the property.

 ? oEdc.uGetProp("Customer.Company", "Field", "InputMask")

ENDIF

See Also
uGetProp() Function, uIncProp() Function, cPropHead Property, cLineMark Property, cPropMark Property, lPropLock Property, SetPropHead Procedure, SetSameName Procedure, True.h
SetPropHead Procedure

Set the cSetPropHead property, which is used by uSetProp() to set both the property header and value at the same time.

Syntax
Object.SetPropHead([cSetting])

Arguments
cSetting

Optional. Character type, the length of cnHEAD_SWITCHSIZE, which is defined in True.h. Sets cSetPropHead to the empty string if nothing or an empty value is passed.

Remarks
To retain the current header value for any header byte, put a space in that position.

uSetProp() Function resets cSetPropHead Property to an empty string unless the first header byte is set to ccHEAD_ON. This first byte is otherwise used for the property type and is set automatically according to the property value. You use this when you want to make several calls to uSetProp(), or pass an array to uSetProp(), and change the header in all of the value settings.

See cPropHead Property for the property header structure and settings.

Example
* Turn all values off and turn one on.

=oEdc.SetPropHead(STUFF(REPLICATE(ccHEAD_OFF,;

 cnHEAD_SWITCHSIZE),;

 cnHEAD_REMOVELOCK, 1, ccHEAD_ON))

* Retain all current values and turn one on.

=oEdc.SetPropHead(STUFF(REPLICATE(" ",;

 cnHEAD_SWITCHSIZE),;

 cnHEAD_UPDATE, 1, ccHEAD_ON))

* Prevent uSetProp() from resetting cSetPropHead.

=oEdc.SetPropHead(STUFF(ccHEAD_ON +;

 REPLICATE(" ",;

 cnHEAD_SWITCHSIZE - 1),;

 cnHEAD_UPDATE, 1, ccHEAD_ON))

* Reset cSetPropHead empty after multiple uSetProp() calls.

* where you prevented uSetProp() from resetting.

=oEdc.SetPropHead()

See Also
cSetPropHead Property, cPropHead Property, uSetProp() Function
SetPropLock Procedure

Set the lPropLock property.

Syntax
Object.SetPropLock(lSetting)

Return
Logical true or false.

Arguments
lSetting
Logical true or false

Remarks
The lPropLock property enables/disables locking the EDC record when an extended property is read. The result of the LOCK() attempt is stored in lPropLock.

This is useful when a property is to be changed right away without the possibility of anyone else changing it before you can write the new value.

Example
llPropLock = oEdc.lGetPropLock()

=oEdc.SetPropLock(.T.) && lock it in uGetProp()

lnNumber = oEdc.uGetProp("Customer", "Table", "LastNumber")

* uSetProp unlocks it.

=oEdc.uSetProp("Customer", "Table", "LastNumber", lnNumber+1)

=oEdc.SetPropLock(llPropLock) && restore old setting

See Also
lGetPropLock() Function, lPropLock Property
SetShowErrors Procedure

Set the lShowErrors property.

Syntax
Object.SetShowErrors(lSetting)

Arguments
lSetting
Logical true or false

Remarks
The lShowErrors property enables/disables showing errors.

When errors are disabled, they are shown as messages if messages are enabled. If messages are disabled, the error does not show.

Example
llShowErrors = oEdc.lGetShowErrors()

=oEdc.SetShowErrors(.F.) && turn off error display

...

=oEdc.SetShowErrors(llShowErrors)

See Also
lGetShowErrors() Function, lShowErrors Property, Error Event Procedure, Errors
SetShowMessages Procedure

Set the lShowMessages property.

Syntax
Object.SetShowMessages(lSetting)

Arguments
lSetting
Logical true or false

Remarks
The lShowMessages property enables/disables showing messages and prompts.

When errors are disabled, they are shown as messages if messages are enabled. If messages are disabled, the error does not show.

Example
llShowMessages = oEdc.lGetShowMessages()

=oEdc.SetShowMessages(.F.) && turn off message display

...

=oEdc.SetShowMessages(llShowMessages)

See Also
lGetShowMessages() Function, lShowMessages Property, Messages
SetTestParameters Procedure

Set the lTestParameters property.

Syntax
Object.SetTestParameters(lSetting)

Arguments
lSetting
Logical true or false

Remarks
The lTestParameters property enables/disables testing parameters for errors.

Example
llTestParameters = oEdc.lGetTestParameters()

=oEdc.SetTestParameters(.F.) && turn off parameter testing

...

=oEdc.SetTestParameters(llTestParameters)

See Also
lGetTestParameters() Function, lTestParameters Property
nShow() Function

Show the message object’s dialog.

Syntax
Object.Message.nShow(nReturn, cMessage [, nDialogType [, cTitleText]])

Return
Numeric type. Value returned by MESSAGEBOX(), or value of nReturn if lShowMessages Property is false.

Arguments
nReturn

Pass the value you want returned when messages are not shown. Named constants for these values are in FoxPro.h, which True.h includes.

cMessage
Pass the text you want displayed as a message. Same as MESSAGEBOX().

nDialogType
Optional. Determines what buttons appear on the dialog. Same as MESSAGEBOX(). Named constants for these values are in FoxPro.h, which True.h includes.

cTitleText
Optional. Determines what title appears on the dialog. Same as MESSAGEBOX().

Remarks
Requires parent object have the lShowMessages Property.

Example
#INCLUDE "True.h"

IF oEdc.Message.nShow(IDYES,;

 "The file exists. Overwrite it?",;

 MB_YESNO + MB_ICONQUESTION,;

 "My Message Box Title") == IDYES

See Also
SetShowMessages Procedure, lGetShowMessages() Function, lShowMessages Property, True.h
lValidate() Function

Validate the EDC by comparing with the DBC.

Syntax
Object.lValidate()

Return
Logical true if successful, otherwise false.

Remarks
Under construction!
Example
Under construction!
See Also
lPack() Function
cVersion() Function

Get this class definition's #DEFINE version number.

Syntax
Object.cVersion()

Return
Character type.

Remarks
The EDC version is defined as ccEDC_VERSION in True.h where all other named constants are defined.

Example
? oEdc.cVersion()

See Also
True.h
Protected Properties

You view and set protected properties with exposed methods. They can also be changed by subclassing. These are initialized in the class body instead of the Init event so that a subclass can access them with the :: scope resolution operator.

aAlternate Property

Dynamic. Set by lOpen() Function, Close Procedure.

Settings
.NULL. default or when EDC tables are closed. Otherwise, each row contains the extension’s EDC field name and the alias of the alternate EDC table registered in the EDC registry.

THIS.aAlternate[nRow ,1] = cEdcFieldName | .NULL.

THIS.aAlternate[nRow ,2] = ALIAS() | .NULL.

See Also
lOpen() Function, Close Procedure
cBoundAlias Property

Dynamic. Set by lOpen() Function, Close Procedure.

Syntax
THIS.cBoundAlias [= ALIAS() | .NULL.]

Settings
.NULL. default, in free EDCs, or when EDC tables are closed. Otherwise, the object's unique alias name of the bound DBC.

See Also
cDbcAlias Property, lOpen() Function, Close Procedure
cBoundFullPath Property

Dynamic. Set by lOpen() Function, Close Procedure.

Syntax
THIS.cBoundFullPath [= cBoundFullPathSpec | .NULL.]

Settings
.NULL. default, in free EDCs, or when EDC tables are closed. Otherwise, the full path specification of the bound DBC.

See Also
cDbcFullPath Property, lOpen() Function, Close Procedure
cDbcAlias Property

Dynamic. Set by lOpen() Function, Close Procedure.

Syntax
THIS.cDbcAlias [= ALIAS() | .NULL.]

Settings
.NULL. default or when EDC tables are closed. Otherwise, the object's unique alias name of the DBC.

See Also
cBoundAlias Property, lOpen() Function, Close Procedure
cDbcFullPath Property

Dynamic. Set by lOpen() Function, Close Procedure.

Syntax
THIS.cDbcFullPath [= cDbcFullPathSpec | .NULL.]

Settings
.NULL. default or when EDC tables are closed. In free EDCs contains the full path specification of the last accessed DBC if any. In bound EDCs, the full path specification of the bound DBC.

See Also
cBoundFullPath Property, lOpen() Function, Close Procedure
cEdcAlias Property

Dynamic. Set by lOpen() Function, Close Procedure.

Syntax
THIS.cEdcAlias [= ALIAS() | .NULL.]

Settings
.NULL. default or when EDC tables are closed. Otherwise, the object's unique alias name for the EDC table.

See Also
cDbcAlias Property, cRegAlias Property, lOpen() Function, Close Procedure
cEdcField Property

Dynamic. Set by argument to lOpen() Function and set .NULL. by Close Procedure.

Syntax
THIS.cEdcField [= cFieldName | .NULL.]

Settings
.NULL. default or when EDC tables are closed. Otherwise, the object's extended field name to access in the EDC table.

See Also
cDbcFullPath Property, lOpen() Function, Close Procedure
cEdcFileExt Property

Read-only. Change by subclassing.

Syntax
THIS.cEdcFileExt [= “EDC”

Settings
“EDC” is the file extension of bound EDC table.

Remarks
Use a free EDC to have more than one EDC table for one DBC or to use one EDC for more than on DBC's properties.

cEdcFullPath Property

Dynamic. Set by lOpen() Function, Close Procedure.

Syntax
THIS.cEdcFullPath [= cEdcFullPathSpec | .NULL.]

Settings
.NULL. default or when EDC tables are closed. Otherwise, the full path specification for the EDC table.

See Also
cRegFullPath Property, lOpen() Function, Close Procedure
cErrorEdcInvalid Property

Read-only error message. Change by subclassing.

Syntax
THIS.cErrorEdcInvalid

Settings
ccMSG_INSERT1 + “ is not a valid EDC file.”

cErrorEdcNotOpen Property

Read-only error message. Change by subclassing.

Syntax
THIS.cErrorEdcNotOpen

Settings
“Use lOpen() to open the extended database.”

cErrorFieldLock Property

Read-only error message. Change by subclassing.

Syntax
THIS.cErrorFieldLock

Settings
“Field ” + ccMSG_INSERT1 + “ is locked.”

cErrorFieldMax Property

Read-only error message. Change by subclassing.

Syntax
THIS.cErrorFieldMax

Settings
“The maximum allowable number of fields, ” +;

LTRIM(STR(cnVF_FIELD_MAXCOUNT)) +

“, has been reached. You can remove one ” +;

“with lRemoveField() or set the registry ” +;

“property, ccEDC_REG_ALTERNATE, to create ”+;

“another EDC file.”

cErrorFieldNameLen Property

Read-only error message. Change by subclassing.

Syntax
THIS.cErrorFieldNameLen

Settings
“Extended field name cannot exceed ”+;

LTRIM(STR(cnVF_FIELD_MAXNAMELEN)) + “ characters.”

cErrorMarkConflict Property

Read-only error message. Change by subclassing.

Syntax
THIS.cErrorMarkConflict

Settings
“The property and separator marks conflict. Neither can contain the other.”

cErrorNameLineMark Property

Read-only error message. Change by subclassing.

Syntax
THIS.cErrorNameLineMark

Settings
“Property name cannot contain the line separator mark.”

cErrorNamePropMark Property

Read-only error message. Change by subclassing.

Syntax
THIS.cErrorNamePropMark

Settings
“Property name cannot contain the property separator mark.”

cErrorPropNameLen Property

Read-only error message. Change by subclassing.

Syntax
THIS.cErrorNameLen

Settings
“Property name ” + ccMSG_INSERT1 + “ is too long.”

cErrorTitle Property

Read-only title for MESSAGEBOX() when called from Error Event Procedure. Change by subclassing.

Syntax
THIS.cErrorTitle

Settings
“Extended Database Container Error”

cErrorValueLineMark Property

Read-only error message. Change by subclassing.

Syntax
THIS.cErrorValueLineMark

Settings
“Property value string cannot contain he line separator mark.”

lExecTime Property

Default. Enables/disables most exposed methods from recording their execution time in the nExecTime Property. Change setting with SetExecTime Procedure. Read setting with lGetExecTime() Function.
Syntax
THIS.lExecTime

Settings
False

See Also
SetExecTime Procedure, lGetExecTime() Function, nExecTime Property
cLineMark Property

Read-only extended property delimiter separates properties. Change by subclassing.

Syntax
THIS.cLineMark

Settings
Carriage-return, line-feed, tilde, carriage-return, line-feed. CHR(13) + CHR(10) + “~” + CHR(13) + CHR(10).

Remarks
Can not be contained in an extended property name or string value.

See Also
cPropMark Property
cLineName Property

Read-only name. Change by subclassing.

Syntax
THIS.cLineName

Settings
“Line”

cMapName Property

Read-only name. Change by subclassing.

Syntax
THIS.cMapName

Settings
“Map”

nMaxPropLen Property

Read-only maximum length of an extended property name. Change by subclassing.

Syntax
THIS.nMaxPropLen

Settings
128 characters

nMaxStrLen Property

Read-only maximum length of an extended property string value. Change by subclassing.

Syntax
THIS.nMaxStrLen

Settings
4096 characters

cMethodName Property

Read-only name. Change by subclassing.

Syntax
THIS.cMethodName

Settings
“Method”

cMsgAddField Property

Read-only message. Change by subclassing.

Syntax
THIS.cMsgAddField

Settings
“Extended database file ” + ccMSG_INSERT1 +;

“ does not have a ” + ccMSG_INSERT2 +;

“ field. Add it?”

cMsgBoxTitle Property

Read-only title for MESSAGEBOX() when calling Message.nShow() Function. Change by subclassing.

Syntax
THIS.cMsgBoxTitle

Settings
“Extended Database Container”

cMsgCreateEdc Property

Read-only message. Change by subclassing.

Syntax
THIS.cMsgCreateEdc

Settings
“Extended database file ” + ccMSG_INSERT1 + “ does not exist. Create it?”

cMsgOverwriteFile Property

Read-only message. Change by subclassing.

Syntax
THIS.cMsgOverwriteFile

Settings
ccMSG_INSERT1 + “ already exists, overwrite it?”

cMsgRemoveField Property

Read-only message. Change by subclassing.

Syntax
THIS.cMsgRemoveField

Settings
‘Remove the field “’ + ccMSG_INSERT1 +;

‘” from the file ’ + ccMSG_INSERT2 +;

“? All its extended properties will be lost.”

aObject Property

Dynamic. Set by lOpen() Function, Close Procedure.

Settings
.NULL. default or when EDC tables are closed. Otherwise, each row contains an object instantiation of the extension’s class, get and set methods, and the class library name to release on closing if it wasn’t already open.

THIS.aObject[nRow, 1] = cEdcFieldName | .NULL.

THIS.aObject[nRow, 2] = oObject | .NULL.

THIS.aObject[nRow, 3] = cGetMethod | .NULL.

THIS.aObject[nRow, 4] = cSetMethod | .NULL.

THIS.aObject[nRow, 5] = cReleaseClassLibrary | .NULL.

See Also
lOpen() Function, Close Procedure
nObjectNameSize Property

Read-only maximum length of an extended object name. Change by subclassing.

Syntax
THIS.nObjectNameSize

Settings
128 characters, the same size as VFP’s DBC ObjectName field

Remarks
Can be any size provided that its size plus nObjectTypeSize Property does not exceed 240 characters

nObjectTypeSize Property

Read-only maximum length of an extended object name. Change by subclassing.

Syntax
THIS.nObjectTypeSize

Settings
10 characters, the same size as VFP’s DBC ObjectType field

Remarks
Can be any size provided that its size plus nObjectNameSize Property does not exceed 240 characters

lPropLock Property

Default. Enables/disables the uGetProp() Function from locking the EDC property record. Change setting with SetPropLock Procedure. Read setting with lGetPropLock() Function.

Syntax
THIS.lPropLock

Settings
False

See Also
SetPropLock Procedure, lGetPropLock() Function, uGetProp() Function
cPropMark Property

Read-only extended property delimiter separates the property name from the property value. Change by subclassing.

Syntax
THIS.cPropMark

Settings
“ ~~ ” Space, tilde, tilde, and space.

Remarks
Can not be contained in an extended property name. Can be contained in the string value.

See Also
cLineMark Property
cRegAlias Property

Dynamic. Set by lOpen() Function, Close Procedure.

Syntax
THIS.cRegAlias [= ALIAS() | .NULL.]

Settings
.NULL. default or when EDC tables are closed. Otherwise, the object's unique alias name of the EDC registry table.

See Also
cEdcAlias Property, lOpen() Function, Close Procedure
cRegFullPath Property

Dynamic. Set by lOpen() Function, Close Procedure.

Syntax
THIS.cRegFullPath [= cRegFullPathSpec | .NULL.]

Settings
.NULL. default or when EDC tables are closed. Otherwise, the full path specification of the EDC registry table.

See Also
cEdcFullPath Property, lOpen() Function, Close Procedure
aRelation Property

Dynamic. Set by nGetRelation() Function
Syntax
THIS.aRelation

Settings
Result of ADBOBJECTS(aRelation, “RELATION”)

Remarks
Stored so we don’t have to fetch it every time. nGetRelation() Function checks tRelation Property to see if the DBC changed since we last stored it, and if so, refreshes it at that time.

Under construction!

See Also
tRelation Property, nGetRelation() Function
tRelation Property

Dynamic. Set by nGetRelation() Function
Syntax
THIS.tRelation

Settings
DateTime of last calling ADBOBJECTS(aRelation, “RELATION”)

Remarks
nGetRelation() Function checks tRelation Property to see if the DBC changed since we last stored aRelation Property, and if so, refreshes it at that time.

Under construction!

See Also
aRelation Property, nGetRelation() Function
cReserveName Property

Read-only name. Change by subclassing.

Syntax
THIS.cReserveName

Settings
“reserved character or keyword”

cSetPropHead Property

Set by SetPropHead Procedure so that subsequent calls to uSetProp() Function use this setting to set the property header.

Syntax
THIS.cSetPropHead

Settings
Set to the extended property’s header by SetPropHead.

Remarks
Reset to the empty string by uSetProp().

See Also
SetPropHead Procedure, uSetProp() Function, uGetProp() Function, uIncProp() Function, cPropHead Property
lShowErrors Property

Default. Enables/disables the Error Event Procedure from showing errors as messages. Change setting with SetShowErrors Procedure. Read setting with lGetShowErrors() Function.
Syntax
THIS.lShowErrors

Settings
False

See Also
SetShowErrors Procedure, lGetShowErrors() Function, Error Event Procedure
lShowMessages Property

Default. Enables/disables the Message.nShow() Function from showing errors as messages. Change setting with SetShowMessages Procedure. Read setting with lGetShowMessages() Function.
Syntax
THIS.lShowMessages

Settings
False

See Also
SetShowMessages Procedure, lGetShowMessages() Function, nShow() Function
cSourceName Property

Read-only name. Change by subclassing.

Syntax
THIS.cSourceName

Settings
“Source”

lTestParameters Property

Default. Enables/disables most exposed members from testing passed arguments for errors. Change setting with SetTestParameters Procedure. Read setting with lGetTestParameters() Function.
Syntax
THIS.lTestParameters

Settings
False

See Also
SetTestParameters Procedure, lGetTestParameters() Function
cTypeName Property

Read-only name. Change by subclassing.

Syntax
THIS.cTypeName

Settings
“type”

cUniqueIdentifier Property

Read-only delimiter. Prefixes the EDC unique ID stored in the DBC User field. Change by subclassing.

Syntax
THIS.cUniqueIdentifier

Settings
“DO NOT REMOVE THIS LINE! EDC ID: ”

Protected Events

Protected events are triggered by VFP events only. They are never called directly.

Destroy Event Procedure

Executes when the object is destroyed.

Syntax
Triggered by VFP event when the object variable goes out of scope or is explicitly released.

Remarks
Calls Close Procedure to close the object’s use of the DBC and EDC tables.

See Also
Close Procedure
Error Event Procedure

Executes when an error occurs in the object.

Syntax
Triggered by VFP event when an error occurs.

Remarks
If this event is subclassed, the subclass must call this event or update THIS.aObjectError itself because other methods test THIS.aObjectError[cnVF_AERR_NUMBER] to see if an error occurred.

See Also
aObjectError Property, SetShowErrors Procedure, lGetShowErrors() Function, lShowErrors Property, Errors
Init() Event Function

Executes when you create an EDC object with CREATEOBJECT(“EDC”).

Syntax
Triggered at creation time.

Return
Logical true if there is no conflict between cLineMark Property and cPropMark Property, otherwise false.

Remarks
Returning false prevents the object from being created. A conflict can occur only through subclassing errors.

See Also
cLineMark Property, cPropMark Property
Protected Methods

Protected methods do not test their parameters for validation. Protected methods can be added or modified by subclassing.

uConvertProp() Function

Convert extended property string by type and value.

Syntax
THIS.uConvertProp(cString)

Return
Type varies. Converted property value if successful, otherwise logical .NULL. value.

Arguments
cString

uGetProp() Function passes the extended property value as stored in a string in the EDC table.

Remarks
Tests the exposed cPropHead Property for data type and .NULL. information.

Example
luReturn = THIS.uConvertProp(cString)

See Also
uGetProp() Function, cPropHead Property
cDbcGetOneProp() Function

Get one property from the DBC.

Syntax
THIS.cDbcSetOneProp(cPropertyType)

Return
Character type DBC property value.

Arguments
The argument is the property type passed to uSetProp().
Remarks
Internal use only. Called from exposed cDbcGetProp() Function to get one property.

See Also
cDbcGetProp() Function
lDbcSetOneProp() Function

Set one property in the DBC.

Syntax
THIS.cDbcSetOneProp(cPropertyType, cPropertyValue)

Return
Logical true if successful, otherwise false.

Arguments
The arguments are the property type and value as passed to uSetProp().
Remarks
Internal use only. Called from exposed lDbcSetProp() Function to set one property.

See Also
lDbcSetProp() Function
lEdcSetProp() Function

Set one EDC property.

Syntax
THIS.lEdcSetProp(cPropertyName, uPropertyValue, nAction,

nParameters [, cProperty])

Return
Logical true if successful, otherwise false.

Arguments
The first 3 arguments are the same as those passed to uSetProp().

nParameters

PARAMETERS() received by uSetProp().

cProperty

Optional. Entire EDC property field so that it doesn’t get fetched again.
Remarks
Internal use only. Called from exposed uSetProp() Function to set one property.

See Also
uSetProp() Function
cGetUniqueID() Function

Get EDC's unique object ID from the DBC’s User field.

Syntax
THIS.cGetUniqueID()

Return
Character type unique ID as created with SYS(2015) if there is one, otherwise an empty string.

Remarks
Expects to be on the correct DBC record.

Example
? THIS.cGetUniqueID()

See Also
cSetUniqueID() Function
cOpenDbc() Function

Open a DBC file.

Syntax
THIS.cOpenDbc(cDbcName)

Return
Character full path specification of the open DBC, or an empty string if not found.

Arguments
cDbcName

Name of the Database Container.
Remarks
Prompts for the DBC file if the passed name is not open.

Called by every exposed method that references DBC objects if no DBC is open or if the specified DBC is not open.

Example
? THIS.cOpenDbc("TestData")

See Also
lOpen() Function, uSetProp() Function, uGetProp() Function
lOpenEdc() Function

Open an EDC file.

Syntax
THIS.lOpenEdc(cEdcField)

Return
Logical true if successful, otherwise false.

Arguments
cEdcField

Name of the EDC field.
Remarks
Called from the exposed method, lOpen() Function to open the registry EDC and all registered alternate EDCs.

Example
llReturn = THIS.lOpenEdc("MyExtend")

See Also
lOpen() Function
lSearchDbc() Function

Search the DBC for an object.

Syntax
THIS.lSearchDbc(cObjectName, cObjectType)

Return
Logical true if found, otherwise false.

Arguments
cObjectName

Name of the DBC object.
cObjectType
Type of the DBC object.
Remarks
Positions DBC record pointer to the found record. Does not change the record pointer if not found.

Called by every exposed method that references DBC objects.

Example
? THIS.lSearchDbc("Customer", "Table")

See Also
lDbcFindObject() Function
cSetArg() Function

Sets the arguments for substituted methods if they exist in the EDC registry.

Syntax
THIS.cSetArg (cMethodString, cObjectName, cObjectType,

 cPropertyName, cPropertyValue, cDbcUniqueId)

Return
Character cMethodString with arguments substituted according to its syntax template.

Arguments
cMethodString

The alternate method string stored in the EDC registry.

The additional arguments are the same as those passed to uGetProp() and uSetProp().
Remarks
Called by uGetProp() Function and uSetProp() Function when alternate methods are present in the EDC registry to substitute arguments according to the alternate syntax.

See Also
EDC Registry, uGetProp() Function, uSetProp() Function, Updating Other Properties, True.h
SetRegistryDefault Procedure

Creates the built-in EDC registry properties.

Syntax
THIS.SetRegistryDefault()
Remarks
Called by lOpen() Function when adding a new extension to the EDC.

See EDC Registry for a list of built-in registry properties.

See Also
EDC Registry, lOpen() Function, True.h
SetSameName Procedure

Updates Creates the built-in EDC registry properties.

Syntax
THIS.SetSameName(cObjectName, cObjectType, cPropertyName,

 uPropertyValue nAction,

 nParameters, cSearchString, cSearchOrder, cDbcUniqueId)

Arguments
The first five parameters are the same as passed to uSetProp() Function.

nParameters

PARAMETERS() received by uSetProp().

cSearchString

Character expression on which to search the EDC.

cSearchOrder

EDC tag used for searching.

cDbcUniqueId

Used only if alternate methods are present so they know where we are.
Remarks
Called by uSetProp() Function when cnHEAD_UPDATE is turned on.

See Also
Updating Other Properties, uSetProp() Function, True.h
cSetUniqueID() Function

Set EDC's unique object ID into the DBC’s User field.

Syntax
THIS.cSetUniqueID()

Return
Character type existing unique ID if there is one, otherwise the new ID as created with SYS(2015). Returns an empty string if the set fails.

Remarks
Expects to be on the correct DBC record. Never changes an ID that already exists.

Example
? THIS.cSetUniqueID()

See Also
cGetUniqueID() Function
cValueToString() Function

Convert a property value to a string.

Syntax
THIS.cValueToString (cPropertyName, uPropertyValue [, cPropertyType])

Return
Character type representation of uPropertyValue.

Arguments
cPropertyName

Name of the property.

uPropertyValue

Character expression on which to search the EDC.

cPropertyType

Optional where value type is known to prevent multiple usage of TYPE().
Remarks
Called by uSetProp() Function and cSetArg() Function.

See Also
uSetProp() Function, cSetArg() Function
�PAGE \# "'Page: '#'�'" �� This field may have to be updated manually after F9.

