Introduction to OOP With Visual FoxPro

An Introduction to Object Oriented Programming

With Visual FoxPro

HHHH

Table of Contents
5Introduction

Part 1 - OOP Concepts
5
The OOP Paradigm
5
The Paradigm
6
Object Oriented Design and Analysis
6
Object Oriented Programming
7
Characteristics of an Object Oriented Language
8
Abstraction
8
Encapsulating Data and Functionality
10
Classes, Inheritance, and the World Model
11
Polymorphism
12
The Program/Data Dichotomy
12
The Development Cycle
14
Top-Down Design With Top-Down Programming
15
Object-Oriented Programming in VFP
15
Summary
16
Part 2 - Applying the Concepts
18
Building the Foundation
18
Step 1 - Start With the Most General Data
18
Step 2 - Define Methods and Properties
19
Step 3 - Write Some Code
20
Step 5 - Move to More Specific Representations
25
Step 7 - Write some more code
26
Step 8 - Get Even More Specific
27
Step 9 - Write Some More Code
27
Step 10 - Creating the Database
29
Using our Objects in Code
30
Part 3 - Bringing it all Together
34
Some Things to Try
34
Bibliography
35
Appendix
36
Further Reading
36
Object Oriented Analysis
36
Object Oriented Programming/Design
36
Object Oriented Programming with Visual FoxPro
36

Introduction

The purpose of the paper is to introduce you to the concepts of Object Oriented Programming using Visual FoxPro. This paper is intended as an introduction to Object Oriented Programming for individuals who have some understanding of programming but not necessarily any background in Computer Science or Object Oriented Programming theory. The intent here is to familiarize you with the concepts of Object Oriented Programming to help you understand the object model that is an integral part of the Visual FoxPro.
Part 1 covers the concepts of Object Oriented Programming and provides the background needed for Part 2. In this part I define the key characteristics of an Object Oriented Language and the terminology necessary to understand Object Oriented Programming.

Part 2 explores how these concepts are applied in Visual FoxPro by working through an example. In this part we will develop a library of objects and a very simple application using the objects in our library. The sample code used here is designed to demonstrate specific concepts and is not intended to represent a preferred method or approach to programming in Visual FoxPro.

My hope is that after reading this paper and working through the example you will have a clear picture of what an object is, what properties and methods are, and how objects fit into the picture of application development in Visual FoxPro.

Part 1 - OOP Concepts

The OOP Paradigm

In their book, “An Introduction to Object-Oriented Programming and Smalltalk," Lewis J. Pinson and Richard S. Wiener give us the following definition of Object Oriented Programming (OOP).

“Object-oriented programming is defined in its purest sense as programming implemented by sending messages to objects. With this definition, problem solutions that use object-oriented programming principles consist of identifying the objects, messages, and object-message sequences to effect a solution. Object oriented programming is further clarified by a discussion of the properties of objects. Computer languages are object-oriented if they support the four specific object properties called abstraction, encapsulation, inheritance, and polymorphism.”

A key point here is the qualifier “...in its purest sense...”. Visual FoxPro is not an Object Oriented Language (OOL) in the purest sense of the term. Visual FoxPro does support abstraction, encapsulation, inheritance, and polymorphism, but it doesn’t enforce Object Oriented Programming methodologies. You can choose to follow the OOP paradigm or not and still write efficient programs with Visual FoxPro. It does, however, provide us the capability to implement nearly pure object-oriented systems if we choose, and that is the focus of this document.

The Paradigm

Object Oriented Design and Analysis

The Object Oriented Programming paradigm encompasses Object Oriented Analysis (OOA), Object Oriented Design (OOD), and Object Oriented Programming (OOP). The principles, and methodologies of this paradigm have been used for years in the design of micro chips, studied extensively in academic circles, and have most recently found their way into commercial software development.

Object Oriented Analysis (OOA) is the analysis and specification of information systems. OOA addresses the problem of correctly abstracting real-world situations into object-oriented computer models. Its focus is on analyzing real-world systems to determine how best to accurately represent them in an Object Oriented model.

Object Oriented Design (OOD) is the process of formalizing the model in an Object Oriented Language (OOL), that is, designing the software necessary to represent the real-world model. Both OOA and OOD involve modeling real-world systems using object-oriented methodologies. The primary distinction between these two is that OOA is focused primarily on going from the real world to the model and OOD is focused on going from the model to the computer system. In practice this distinction may not be so clear.

The customary approach to software development involves top-down design followed by bottom-up programming. That is, the system is designed by starting with the most general statement of purpose and continually refining and modifying until an agreed upon specification is reached. The specification is then handed off to programmers who build data structures, and functions to work with those data structures, and functions to work with those functions, and so on, until a working program is achieved. In actual practice it isn’t this simple. Typically development goes through a cycle of design, implementation, and refinement.
If the system is well defined and carefully programmed this process results in an efficient and correct program. Contemporary structured languages and modular coding techniques have helped us build libraries of efficient, reusable, and portable code which has had a significant impact on the software development industry. OOP doesn’t replace this—it builds on it.

In the Object Oriented approach the goal of the design process is a set of objects and message sequences that can be used to solve the problem at hand. The objects in an Object Oriented (OO) system are models of the things that make up the real-world system. For example, an accounting program for a business is a model of the employees, products, equipment, and actual accounting practices that make up the accounting system currently followed by the business.

Object Oriented Programming

Object Oriented Programming involves creating objects that represent the people and things that make up a real-world system and then defining message sequences that, when executed, result in a computer solution to a real-world problem. In the OOP paradigm we focus our attention on the objects that make up our system and encapsulate within them all the data and functionality they require to accomplish whatever it is that they are designed to do. Program tasks are accomplished by sending messages back and forth between the objects that make up the system. For example, when you need customer information, you instantiate a customer object and request the information you need from it.

In the non-OOP world, our focus is primarily on the tasks and the functions necessary to accomplish those tasks, rather than the parts (or players) that perform those functions. Programs call procedures or subroutines to work with the data used by the system. These procedures may in turn call other procedures which may call others, and so on, in a very complex web of procedure calls that makes up the algorithm that solves the problem. In this structured procedural approach we must be more aware of how each procedure affects the system and data to avoid introducing new problems when making changes, additions, or repairs. How things are done becomes as important as what is being done by which part of the system. Object Oriented Programming doesn’t replace this, it expands it to an even more structured level.

In an OOP system the data and the functions we need to work with that data are encapsulated in objects. Our primary focus is on the players rather than the details of how they interact. Once we encapsulate data and functionality into an object, programmers can work with these encapsulations (objects) in much the same way they would work with their real-world counterparts. That is, the programmer who needs to determine a part number can call on the Part object for its part number just as they would in the real-world by looking at the part to get the number inscribed on it. Another equally important aspect of this encapsulation is that other parts of the system can access data through the object without risk of corruption or loss. Rather than writing new code to access data, any programmer who needs information that is already encapsulated simply instantiates the object that encapsulates the data they need and uses that object to access the data.

To summarize, Object Oriented Programming is a paradigm shift from a function-centric approach to an object-centric approach to software development. That is, instead of focusing on the underlying bits of data and procedures to work with that data, we focus on who or what works with the data, and embed the details within objects. In the object model, data and the functionality specific to that data are bundled together (encapsulated). Once this encapsulation is complete, programmers are freed from thinking about the details of how the object works with the data, and can focus on what the object does. This allows designers and programmers to think in terms of real-world objects rather than the details of how the computer stores and manipulates data.

Characteristics of an Object Oriented Language

Abstraction

Abstraction is the process of modeling what’s important to us about a real-world system in a computer representation of that real-world system. A language that supports Abstraction is one that allows the programmer to create representations of the various components that make up the real-world system. In an Object Oriented Language those representations are objects.

In the following figure the real-world objects are mapped to data in tables that represent those objects. Each table is an abstraction of the real-world thing that it represents.

Figure 1. Abstraction maps real-world objects to computer models.

When modeling or abstracting, we start with an analysis of the real-world system and determine the appropriate parts necessary to create each piece of the computer model. Whether following OOP or non-OOP, this typically involves a top-down approach. That is, we look at the more general aspects of the system, determine the appropriate models, or parts, and then refine those models into their appropriate component parts. In the non-OOP world, those component parts can be modules, procedures, libraries, or any combination of these. In the OOP world, these component parts are objects.

Figure 2. In OOP, abstraction involves modeling real-world systems into objects that represent the actors and actions that make up those systems.

Figure 2 shows how a real-world Accounts Receivable system could be mapped to an OOP model. The arrows indicate how information might flow through the system. In this model, each object represents some specific entity in the real-world system. It’s important to note that the objects could represent a person, a department, or an automated order entry system that the customer uses via telephone.

Suppose you want to create a program to help you manage an apple orchard. Following the OO paradigm you would look at the real-world things you want to model, in this case apple trees, or more specifically a collection of apple trees. Each tree has certain characteristics that interest you. For instance, each tree has height, age, a history of health, an average annual yield, and so on. You represent an apple tree with an apple tree object which encapsulates, or contains, all these characteristics. Your model of an apple orchard is simply a collection of these apple tree objects. Once you have designed the apple tree object you can use it in any part of the program, or another program, that needs information about apple trees, without duplicating any code, and without digging back into how the details of that information were obtained or stored.

Encapsulating Data and Functionality

To say that OOP allows designers and programmers to think in terms of real-world objects is not to say that they never have to write functions and procedures. What it means is that once you have created the necessary data structures and functions for a particular object you need never duplicate that code in other parts of your program or other programs. Any system or part of the system that needs information about the real-world thing that your object represents simply asks your object for it. The data, and any functions necessary to work with that data, are encapsulated within your object. Your object is an independent self-contained unit, ready to respond to any legitimate request presented to it.

Returning to our apple tree object. It has certain characteristics or properties that define it as a particular apple tree. Within the orchard any tree can be located by a specified set of coordinates; for example, the third tree in the second row. To represent this in our model we include Row and Position properties.

Figure 3. Encapsulation of an Apple Tree object.

To determine the average annual yield of an apple tree we could count the number of apples harvested from it over a period of years and then take the average, or we could calculate some statistical average based on the number of trees in the orchard and the total annual yields for the orchard over time. The approach we take only matters when we design the apple tree object. Once a choice has been made and implemented, we simply ask an apple tree object for its average annual yield and it returns a number that represents this statistic. How this statistic is obtained is part of the functionality built in, or encapsulated in, our object. No other object need know or care how we get the number; just that we do, and that it’s available for the asking.

Classes, Inheritance, and the World Model

The Object Oriented paradigm would have far less to offer if it required that we build completely separate objects for each variation of every object in our world model. Clearly this isn’t the case. In fact, the OO paradigm provides an efficient mechanism for handling this(object classes and inheritance.

As we abstract or model real-world things it doesn’t take long before we start seeing similar characteristics repeated in many of the objects that we build. For example, if we decide to start tracking our peach and pear orchards it becomes immediately apparent that they have a number of characteristics in common with our apple orchards. In fact, if we move up one level of abstraction, we see that our fruit trees have characteristics in common with all other trees. In the Object Oriented Programming paradigm, classes provide the means for collecting related things into common groups.

Figure 4. Properties defined in the Parent class are inherited by objects derived from that class.

All trees share certain characteristics, such as height, species, and age, among others. By defining a class called Tree that includes all these characteristics or properties, we can be assured that when we design a new type of tree object it will contain, at the very least, all the properties of the Tree class. Inheritance is the mechanism that makes this possible. Just as you inherited certain physical characteristics from your parents, our objects inherit characteristics defined in their parent classes, that is, the class from which they were defined.

To allow us to more closely model the real world, the Object Oriented paradigm provides us with the ability to create classes from other classes, in other words, create subclasses from a given class. The ability of subclasses to inherit properties and functionality from their parent classes allows us to build general functionality into higher level classes without having to repeat it in the more specialized subclasses. This leaves us free to focus on what is unique to the subclass rather than trying to keep track of everything there is to know about the class of objects we’re modeling.

Polymorphism

Polymorphus means having, assuming, or passing through many or various forms. Polymorphism is the state of being polymorphus. In the Object Oriented Programming context this refers to the ability to send the same message to related objects of different classes and have each respond according to its own defined purpose. Mark Mullin, in his book, “Object Oriented Program Design," describes it this way; “In the context of an OOL, it means that the same message can behave many ways depending on what object it is sent to.” This also means that objects derived from the same baseclass can modify inherited methods in ways that are appropriate to their subclass.

The real significance of Polymorphism is that we no longer need to have variations of a specific name for a procedure that performs a common action with different data. For example, rather than having a set of procedures like GetCustomerId, GetProductId, GetEmployeeId, etc. we have only one procedure GetId which is defined as a method for each object, Customer, Product, and Employee. To get a specific Id number we just send the message to the object: CustomerObj.GetId. Because the object is an integral part of the reference, there is no confusion about which type of Id number we’re asking for. This allows us to think in terms of the specific information we want without having to remember if it was GetCustId, or GetCustomerId thereby reducing the burden of information we need to keep track of while working on a large (or small) software project.

The Program/Data Dichotomy

Any software system consists of data and programs that work with that data. In the traditional software development paradigm, the programs are tightly bound to the data they work with. This means that the program code may contain direct references to the data and structures defined specifically for the data, and may well be optimized to work with specific efficiently. The more tightly bound the code is to specific data, the less portable it is and therefore the less reusable. A common practice to increase the portability of code is to build libraries of subroutines that can be used in multiple programs. This has proven to be an effective way to enhance production of large complex software systems. OOP, on the other hand, provides an extremely eloquent way to build portability directly into software systems—Encapsulation.

Figure 5. Objects encapsulate both the data and the functions that work with that data.

By encapsulating data and the functionality necessary to work with that data into objects, Object Oriented Programming supports, and even encourages, loosely bound code. That is, programs are more independent of the data they work with. You can think of Programs, Objects, and Data as three separate pieces to the puzzle with objects providing the bond between data and programs. An important element of this concept is that all programs use the same set of objects and no programs tie directly to the underlying data.

Figure 6. Programs are isolated from the data they work with by objects that encapsulate both the data and the functions that work with that data. In VFP the database tables are the data structures that support the object.

Under this paradigm, considerable changes can be made to the data or representation of the data without having any effect on the programs that work with that data. The converse is also true; if you add new programs or modify existing programs, you don’t run the risk of having any negative impact on your data. The objects guard your data from corruption by undisciplined programs. The key to this is encapsulation. We have bundled the data and code together, and any program that wants to get to the data must go through the code bundled with it.

Under the OOP Paradigm, we build libraries of object classes rather than procedures and functions. The object classes we build form the foundation for our applications. Once this foundation of object classes is complete, developing programs to work with the data becomes a relatively simple exercise. If we did our job right in building the foundation, the work of building applications should be easy. Consider the following program:

EntryForm=CreateObject(‘DataEntryForm’)

EntryForm.show

ReadEvents

This three-line program could represent a complete data entry system, one that allows the user to add records, make changes to records, look up information, pick items from lists, and more. It might consist of several forms, multiple tables, complex data entry procedures, and any number of data validation routines. And it’s only three lines of code. Well, at least to the programmer lucky enough to be writing code at this level. All that complexity is inherited from the various objects and object classes that make up the DataEntryForm class. Hopefully it’s becoming evident that we’re on to something big here.

The Development Cycle

In “Object Oriented Program Design," Mark Mullin describes the software development cycle as one of constant specification, implementation, and refinement of the specification. As Mr. Mullin puts it, “While this cycle exists in many standard languages, in OOP it becomes something of an art form.” He’s referring to the ease with which design and implementation changes can be made at almost any point in the development cycle.

Nearly every software development project goes through a period where it becomes evident that something about the model doesn’t quite fit with the real-world. Often the customer looks at the prototype and realizes that there are important features that they forgot to mention in the original proposal, or that the developer forgot to add. Unfortunately, the question often asked at this point is not how do we fix it, but do we fix it at all. And for good reason; making significant changes can have a disastrous impact on the development schedule, especially for code that is tightly bound to the data that needs to change.

Writing code that is loosely bound to the data it works with means that changes to the code or the data are less likely to impact each other significantly. Certainly, changes to the data will require changes to the code but those changes will be isolated to the specific encapsulation involved, that is, to the object class or subclass that represents the changed data. What this means is that making changes to data or data representations at just about any point in the development cycle becomes less problematic and therefore more feasible. This gives software developers greater flexibility in dealing with changes throughout the development cycle and helps to lessen the impact of changes on the development schedule.

Top-Down Design With Top-Down Programming

One of the more powerful features of Object Oriented Programming is that, not only does it allow us to design from the top down, it allows us to program from the top down as well. Top-down design means just that, designing from the top to the bottom. That is, starting with the most general ideas or concepts and refining them into more and more specialized components.

The real significance of Top-Down programming, as you’ll see later, is that we can develop generalized components of a system before we need to dig into the intricate details of the more specialize components. For example, we can develop object classes and code for handling collections of things without knowing what the things are we want to collect. As we further develop our system, we can set aside the already completed generalized code and focus on the specifics of the particular system we’re working on. This helps us deal with complex systems by reducing the amount of information we are required to juggle at any given time. In Part 2 of this paper we’ll see this concept in action.

Object-Oriented Programming in VFP

We make the claim earlier in this document that Visual FoxPro is not an Object Oriented Language (OOL) in the purest sense of the term. Based on the definition of an OOL, Visual FoxPro meets all the necessary criteria. It supports abstraction, encapsulation, inheritance, and polymorphism. Visual FoxPro, however, does not enforce OOP methodologies. You are free to follow traditional procedural techniques when developing programs in Visual FoxPro.

There is another key difference: in a pure OOP system, the data is entirely encapsulated within the object and objects are stored as individual structures. In other words, in a pure OOP language, you store objects. In Visual FoxPro, the data is entirely encapsulated within the object but contained in database tables with the objects providing an interface to the data. In other words, the Visual FoxPro table provides the underlying data structure for the objects.

Visual FoxPro objects can be visual (i.e. forms, grids, etc.) or non-visual (custom). Non-visual objects cannot encapsulate visual objects but visual objects can encapsulate non-visual objects. This means that data encapsulated in non-visual objects can be used in visual objects by making the non-visual objects part of the visual object class definition or by instantiating the non-visual object within the visual object. Alternatively, the data can be encapsulated directly in the visual objects. You cannot, on the other hand, instantiate a visual object within a non-visual object.

Figure 7. In the Visual FoxPro model, objects store their data in database tables.

In the database world of Visual FoxPro, the data we collect is stored in database tables. That is, we’re still required to think in terms of fields, records, tables, and so on. However, we can abstract that atomic data from our objects in exactly the same way we abstract our objects from the real-world system. We just carry the top-down design process one step further and create database tables to model our objects, or more specifically our object properties, since properties represent the data we need to store for our objects.

A better way of thinking about this might be to consider our tables as the underlying data structure for our objects. We still employ Relational Database Design techniques and we still take advantage of all the database optimization available through Visual FoxPro. What we do to implement this paradigm of sending messages to objects is to create a layer of objects, if you will, between our underlying data and our programs. This layer of objects and the database that holds our data make up the foundation of our programming environment. Once in place, this foundation makes it extremely easy to write custom applications to work with our data.

Summary

The OOP paradigm consists in a set of methodologies for creating software solutions to real-world problems that involve identifying the objects that make up a real-world system and abstracting or modeling them into a software program that has a natural relationship to that real-world system. In the Object Oriented model, real-world things are classified based on similarities and these classifications are used to define object classes and subclasses from which objects are created. Any functionality or property given to a class is inherited by all subclasses of that class type.

In an Object Oriented program, we create objects that are instances of the classes from which they are derived. This means simply that the class is a template for the object to be built from, and any object built from the template contains all the data and functionality defined in, or inherited by, the template. That is, the object is an instance of its class.

Problem solutions are achieved by creating object-message sequences that lead to the desired result. In Visual FoxPro, message passing is handled by exposing properties and methods that form an interface to the objects we build. Programs, or other objects communicate with our objects through the use of the interface we design for them. The system also sends messages, called events, to our objects which we can respond to if we choose.

Part 2 - Applying the Concepts

Building the Foundation

We now want to apply the concepts discussed in the first part of this document. We’re going to develop an OOP model of the apple orchard business discussed earlier. Keep in mind that our primary purpose is to show how the concepts of OOP can be applied in Visual FoxPro. The examples used here are intentionally simplistic to avoid getting bogged down in the code and losing the concept.

We start by defining classes that represent the objects that make up our system. Following the OOP paradigm, we start with the most general and work our way to more specific objects. Using top-down programming we’ll write some code at each level, starting with the most generic code for handling collections and winding up with code specific to apple trees.

Finally we’ll abstract our database and tables from the objects we’ve designed and write a small program to add some representative data. Once everything is in place we can write a small program to instantiate some objects and see how they work.

Step 1 - Start With the Most General Data

Let’s start with the design. What is an apple orchard? In the most general sense an apple orchard is a collection of apple trees. Our first task is to abstract or model a collection of apple trees following the OOP paradigm. To accomplish this we start by looking for the most general attributes of our collection and building a class to represent them. Later we’ll create subclasses from this general class to model the more specific components of our system.

What is important to us right now is that an orchard is a collection, and collections can be of anything. So now we’ve found a common element that is also completely generic. That is, it can be defined in the most general terms possible, which is where we want to start designing our system.

Figure 8. The real-world orchard is modeled as a collection of tree objects.

The first step then is to define a class to represent our generic collection. For our purposes we will assume that the collection we’re working with is an ordered collection. That is, it has a first and a last element. How these are defined is not important, just that they’re there.

Step 2 - Define Methods and Properties

What do all ordered collections have in common? Or a better question might be; what common data and functionality can be generalized to all ordered collections. Well, they all have some number of members or items, and they all have a first item and a last item. To work with items in a collection we are likely to want various ways to get to the items in the collection. We’ll want some method for looking up a particular item and for moving from one item to the next. And, of course, we’ll want methods for adding and removing items from the collection.

Here’s our Collection Class:

Properties

DbName
The name of the database that stores our object tables

TblName
The name of the table associated with a specific object

Methods

Init
Initialize an object when it is instantiated

New
Create a new object

Add
Add an object to the collection

Remove
Remove an object

First
The first object in the collection

Last
The last object in the collection

Next
The next object in the collection

Previous
The previous object in the collection

GetObject
Find an object in the collection

Count
Return the number of objects in the collection.

There may be more properties or methods we decide to add as we go along but this will suffice for now.

Now that we’ve defined a set of common methods and properties we can start writing code in Visual FoxPro to define our collection class. This is top-down programming. We’re writing code even before we’ve completed the design of our model. This is possible because at this level we have only defined things that are common to all collections and the code we write provides only generic functionality to our collection objects. Once added to the Collection Class, this functionality will be available to (inherited by) all objects derived from the Collection Class.

Step 3 - Write Some Code

In the Collection class definition we are encapsulating everything we need to work with collections. It’s important to keep in mind that at this point we haven’t defined the objects we’re going to put in this collection but we are still able to write code to handle the general functionality needed to manage any collection. We want to be careful to avoid adding any properties or methods that are object-specific; those will be added in the subclass definitions for the specific objects.

The following code defines a class called Collection. This class will serve as the parent class for all of our collections. You can type this code in or it can be found in the file ObjectLib.prg that accompanies this document. You can also copy and paste this code into a .prg file in Visual FoxPro.

**===

** Collection Class Definition

**===

DEFINE CLASS Collection AS Custom
&& Start Collection CLASS definition

**===

** COLLECTION CLASS PROPERTIES

**===

PROTECTED DbName,TblName
&& All these properties are protected

DbName='Orchard'

&& Name of the database associated with this collection

TblName=""

&& Table associated with this object

**===

** COLLECTION CLASS METHODS

**===

**===

** COLLECTION CLASS

** Init - Initialize class

**===

** Provide general initialization code for all subclasses.

** This code ensures that the appropriate database is opened and that the correct

** table is selected when an object is created.

** Note:
The TblName property must be set in the subclass init method before this

**

initmethod is called.

PROTECTED PROCEDURE INIT

IF !DBUSED(THIS.DbName)

&& Make sure that the database is open

OPEN DATABASE SYS(5)+SYS(2003)+(THIS.DbName)

ENDIF

IF !EMPTY(THIS.TblName)

&& If the table alias name has been initialized

IF USED(THIS.TblName)

&& If the table is already open

SELECT (THIS.TblName)

&& Select the table

ELSE

&& Otherwise open the table and select it

USE SYS(5)+SYS(2003)+(THIS.TblName) IN 0

SELECT (THIS.TblName)

ENDIF

ENDIF

ENDPROC

The Init method defined above is actually providing event code for our objects. Events are messages passed by the system to our objects typically in response to some action by the system (e.g. timer event) or the user (e.g. Click event on a button). Although we don’t explicitly call the Init method of any of our objects, it does get called every time we instantiate an object. That is, the system fires an Init event for our object when we instantiate the object.

**===

** COLLECTION CLASS

** Release - Release the instantiated object

**===

** Remove this object from memory

PROCEDURE RELEASE

RELEASE THIS
&& Remove this object from memory

ENDPROC

**===

** COLLECTION CLASS

** GetData - Refresh object properties with data from corresponding table(s)

**===

** This method copies data from the current record in the underlying table into the

** appropriate properties of the target object. The data is copied via a table object

** using SCATTER NAME <object>.

** Because the target object properties are the same as the table field names and the

** table object properties are also the same as the field names, the data can be copied

** easily in a loop that copies from the table object to the target object.

** NOTE: SCATTER NAME does not include MEMO or GENERAL fields. These have to be handled

** separately.

PROTECTED PROCEDURE GetData

LOCAL oTbl,i,x,pVar

LOCAL ARRAY aTbl[1]

** oTbl - table object used in the Scatter command

** aTbl - array used to hold the property names

** x - stores the size of the array (number of properties)

IF ALIAS()<>THIS.TblName

&& Make sure we're on the correct table

SELECT (THIS.TblName)

ENDIF

SCATTER NAME oTbl

&& Scatter the current record to the table object oTbl.

x=AMEMBERS(aTbl,oTbl)

&& Get an array of property names.

FOR i=1 TO x

&& Copy the values from the table object to the target object

THIS.&aTbl[i]. = m.oTbl.&aTbl[i].

&& Build the command line

ENDFOR

RELEASE oTbl
&& Release the object, we're done with it now.

ENDPROC

**===

** COLLECTION CLASS

** New - Clear object properties to prepare for data entry

**===

PROCEDURE New

LOCAL oTbl,x,pVar

LOCAL ARRAY aTbl[1]

* oTbl - table object used in the Scatter command

* aTbl - array used to hold the property names

* x - stores the size of the array (number of properties)

IF ALIAS()<>THIS.TblName

SELECT (THIS.TblName)

ENDIF

SCATTER NAME oTbl BLANK
&& Scatter to table object oTbl.

x=AMEMBERS(aTbl,oTbl)
&& Get an array of property names.

** Using the table object to get blank data ensures that we don't wind up with

** a data type mismatch when assigning the values to the properties.

FOR i=1 TO x
&& Copy the values from the table object to the target object

THIS.&aTbl[i]. = m.oTbl.&aTbl[i].
&& Build the command line

ENDFOR

RELEASE oTbl
&& Release the object, we're done with it now.

ENDPROC

**===

** COLLECTION CLASS

** Update - Save changes made to the object's properties

**===

** This method copies the data from the object to the table. It uses a table object

** to move the data from the target object to the table.

PROCEDURE UPDATE

LOCAL oTbl,pVar,i,x

LOCAL ARRAY aTbl[1]

** oTbl - table object used in the Scatter command

** aTbl - array used to hold the property names

** x - stores the size of the array (number of properties)

IF ALIAS()<>THIS.TblName

&& Make sure we're on the correct table

SELECT (THIS.TblName)

ENDIF

SCATTER NAME oTbl

&& Get the data from the current record

x=AMEMBERS(aTbl,oTbl)

&& Get the property names from the table object

FOR i=1 TO x

&& Set the table object's properties to the values

m.oTbl.&aTbl[i]. = THIS.&aTbl[i].
&& in this object's properties.

ENDFOR

GATHER NAME oTbl

&& Copy the data from the table object to the table

RELEASE oTbl

&& Release the table object

ENDPROC

**===

** COLLECTION CLASS

** Add - Add the current object as a new record to the table

**===

** Add the data in the object's properties to a new record in the table. To keep this

** method generic, it uses the Update method to move the data to the table after adding

** a blank record with append blank.

PROCEDURE ADD

LOCAL ARRAY aTemp[1],aProp[1,2]

LOCAL i,nSize

IF ALIAS()<>THIS.TblName

&& Make sure we're on the correct table

SELECT (THIS.TblName)

ENDIF

** Fill array aTemp with data from the object's properties

SCATTER TO aTemp MEMO BLANK

nSize=AFIELDS(aProp,THIS.TblName)

FOR i = 1 TO nSize

aTemp[i]=THIS.&aProp[i,1].

NEXT

** Insert a new record using aTemp

INSERT INTO (THIS.TblName) FROM ARRAY aTemp

ENDPROC

**===

** COLLECTION CLASS

** Remove - Remove the current object from the collection

**===

** Deletes the current record and packs the table.

PROCEDURE REMOVE

IF ALIAS()<>THIS.TblName

&& Make sure we're on the correct table

SELECT (THIS.TblName)

ENDIF

DELETE

PACK

IF THIS.COUNT()>0

THIS.REFRESH

ELSE

THIS.New

ENDIF

ENDPROC

**===

** COLLECTION CLASS

** Find - Finds a record whose value matches in the field specified

**===

** Input:
A value to search for and a field name to search in.

** Output:
True IF a match was found (Record pointer is on record)

**

False IF no match (Record pointer is returned to its previous position)

FUNCTION Find(cValue,cProperty)

LOCAL cAlias,lRetVal,nLastRec

lRetVal=.F.

cAlias=ALIAS()

&& Save the name of the current alias

IF ALIAS()<>THIS.TblName

&& Make sure we're on the correct table

SELECT (THIS.TblName)

ENDIF

IF !EOF()

&& Get the current position so we can

nLastRec=RECNO()

&& return to it later in the event that

ELSE

&& no match is found.

nLastRec=0

ENDIF

** Look for a matching record

LOCATE FOR UPPER(ALLTRIM(EVALUATE(cProperty)))==UPPER(ALLTRIM(cValue))

lRetVal=FOUND()

IF lRetVal

&& If a match is found

THIS.GetData

&& Get the data from the record

ELSE

IF nLastRec<>0 AND nLastRec<=RECCOUNT()&& If no match found, return to the

GOTO nLastRec

&& recordwe were on before doing the

ENDIF

&& locate.

ENDIF

SELECT (cAlias)

&& Return the the previous alias

RETURN lRetVal

&& Return .T. if a match was found, .F. if not

ENDFUNC

**===

** COLLECTION CLASS

** First - Move to the first record in the collection

**===

PROCEDURE FIRST

IF ALIAS()<>THIS.TblName

&& Make sure we're on the correct table

SELECT (THIS.TblName)

ENDIF

GO TOP

THIS.GetData

ENDPROC

**===

** COLLECTION CLASS

** Last - Move to the last record in the collection

**===

PROCEDURE LAST

IF ALIAS()<>THIS.TblName

&& Make sure we're on the correct table

SELECT (THIS.TblName)

ENDIF

GO BOTTOM

THIS.GetData

ENDPROC

**===

** COLLECTION CLASS

** Previous - Move to the previous record in the collection

**===

PROCEDURE Previous

IF ALIAS()<>THIS.TblName

&& Make sure we're on the correct table

SELECT (THIS.TblName)

ENDIF

IF !BOF()

SKIP -1

ENDIF

IF BOF()

GO TOP

ENDIF

THIS.GetData

ENDPROC

**===

** COLLECTION CLASS

** Next - Move to the next record in the collection

**===

PROCEDURE NEXT

IF ALIAS()<>THIS.TblName

&& Make sure we're on the correct table

SELECT (THIS.TblName)

ENDIF

IF NOT EOF()

SKIP

ENDIF

IF EOF()

GO BOTTOM

ENDIF

THIS.GetData

ENDPROC

**===

** COLLECTION CLASS

** Count - Return the number of records in the collection

**===

FUNCTION COUNT

IF ALIAS()<>THIS.TblName

&& Make sure we're on the correct table

SELECT (THIS.TblName)

ENDIF

RETURN RECCOUNT()

ENDFUNC

**===

ENDDEFINE
&& End Definition of Collection Class

**===

At this point we have defined a class of objects called collection based on the Visual FoxPro base class called Custom. These objects don’t have any visible properties (the only properties they have are protected) so there isn’t any point in trying to instantiate one. What the Collection class of objects does for us is to encapsulate some basic functionality necessary to work with any collection of objects. Since we are eventually going to be working with collections of fruit trees, this is a good start. Thanks to inheritance, we can now define subclasses based on this Collection class and they will have all the functionality we’ve built into Collection available to them.

The real good news is that this class definition constitutes the bulk of the code we will be writing for this exercise. And because these methods are inherited by all subclasses of Collection we won’t have to write this code again for future collections of anything. That is reusability taken to a new high!

Step 5 - Move to More Specific Representations

With our Collection Class defined and the properties and methods implemented, we can go on to design our first subclass. We’ll start with the Fruit Tree class. Because this class is an instance of the Collection Class, it inherits all the properties and methods we defined there. This means that we already have methods for adding, removing, and moving around in our collection. This leaves us free to concentrate on those properties and methods that are specific to individual fruit trees.

One important note to keep in mind is that this design is very much application specific. We decide what is important to us for our purposes. If we were tracking all trees in a specific region we might start with a ‘Tree’ subclasses of Collection and then make FruitTree with AppleTree a subclass of FruitTree. All the decisions we make should be made in the context in which we are working, that is, they should relate specifically to the system we are modeling.

Step 7 - Write some more code

The following code is the definition of the FruitTree class which is a subclass of Collection. This code can be found in the file ObjectLib.prg immediately following the Collection class code. You can also copy and paste this code into a Visual FoxPro .prg file, however, the file must also contain the Collection class code since this definition refers to that class.

** ==

** Class Name : FruitTree

** Parent Class : Collection

** ==

DEFINE CLASS FruitTree AS Collection

**===

** FruitTree CLASS

** Properties

**===

PROTECTED TypeName
&& This property is protected to ensure that once a tree object

&& is instantiated, its type can't be changed.

&& The FruitType Method (defined below) can be used to find out

&& the type of fruit of a particular object.

Tree_Id=""

&& Unique Id number

Orchard_Id=""

&& Orchard id number

Row=""

&& Row in the orchard where this tree is located

Pos=""

&& Position in that row

TypeName=""

&& Type of fruit tree (Apple, Peach, Pear, etc.)

Variety=""

&& Variety of fruit

DatePlanted={}

&& Date this tree was planted

**===

** FruitTree Class

** Methods

**===

**===

** FruitTree Class

** FruitType
- Returns the type of fruit of this particular tree

**===

** This method is defined to provide programmers access to the type of fruit of this

** object while ensuring that they can't change the type.

FUNCTION FruitType

RETURN This.FruitType

ENDFUNC

**===

ENDDEFINE && End definition of FruitTree Class

**===

It should be immediately evident that this piece of code is much smaller that the Collection class definition. What isn’t so apparent is that when we instantiate an object of type FruitTree we get all the functionality built into the Collection class plus what we’ve built into the FruitTree class. FruitTree is a subclass of Collection and it inherits all the methods and properties of the Collection class.

The other significant change we have made here is to add a protected property (TypeName) and a method to return the value of that property (FruitType). The reason for this is simple; once a fruit tree object is instantiated its fruit type should never change. Keep in mind we’re modeling a real-world object.

Step 8 - Get Even More Specific

Now that we have the Collection class to define generic collections and the FruitTree class to define collections of fruit trees, it’s time to create a class of objects to represent our Apple Trees.

The FruitTree class already defines all the properties necessary for our AppleTree class, however, we want to add some functionality that isn’t already there, that is, the ability to ensure that once an apple tree object is instantiated it can’t be changed into a pear tree or a peach tree. We accomplish this by using the protected TypeName property in the FruitTree class. Now we can modify the Init and Add methods to set the TypeName property to a specific type of fruit (in this case ‘Apple’) so that any time an apple tree object is instantiated or added it will always be an apple tree.

Step 9 - Write Some More Code

The following class definition defines our AppleTree object.

**===

** Class Name : AppleTree

** Parent Class : FruitTree

**===

Define Class AppleTree as FruitTree

**===

** AppleTree Class

** Properties

**===

**===

** AppleTree Class

** Methods

**===

**===

** AppleTree CLASS

** Init - Perform local level initialization and then call parent class init method

**===

** Local level initialization sets the TblName property to the appropriate table name

** Parent class init method ensures that the database and table are opened.

** Note: TblName must be set before calling Parent clas init method.

PROTECTED PROCEDURE INIT

THIS.TblName='AppleTree'
&& Tie all objects of type AppleTree to this table.

This.TypeName="Apple"

&& Indicate that this is an apple tree object

FruitTree::INIT

&& Call the Parent Class initialization code

This.First

&&
Move to the first record

THIS.GetData

&& Pull in data from the current record

ENDPROC

**===

** AppleTree CLASS

** Add - Add the current object to the table

**===

PROCEDURE ADD

IF EMPTY(THIS.Orchard_Id) OR EMPTY(THIS.ROW) OR EMPTY(THIS.Pos)

=MESSAGEBOX("You must specify Orchard Id, Row, and Position "+CHR(13)+;

"before you can add this tree to the collection!",48)

ELSE

This.TypeName="Apple"

FruitTree::ADD

&& Call the parent class add method to do the adding

ENDIF

ENDPROC

**===

EndDefine
&& End AppleTree Class Definition

**===

In the AppleTree class we are modifying the Init method which is inherited from the Collection class. Note that we are not replacing the Collection class Init method with a new one, we are changing the way it works by adding new code and then calling the parent class method. This is an example of Polymorphism in action. We can do the same for a new class called PearTree setting the TypeName in that class to ‘Pear’. Now we can say AppleTree.Init and PearTree.Init and have each initialize the appropriate kind of tree object.

We’re also taking advantage of Inheritance in this Init method code. You will notice that the FruitTree class doesn’t have an explicit Init method yet we still use the scope resolution operator to call the FruitTree Init method in the AppleTree class definition (FruitTree::Init). This works because the FruitTree class inherits the Init method from it’s parent class, Collection.

Now lets look at the complete AppleTree subclass. That is, all the methods and properties we’ve added here along with the properties and methods inherited from our Collection class and FruitTree class.

Here’s the complete AppleTree class.

Properties

* DbName (Protected)
Database that contains the tables for this object type

* TblName (Protected)
Table that containst the data for this object

! Tree_id
Unique identifier for each object

! Orchard_id
Id of the orchard that this tree is part of

! Row
Row that contains this tree in the orchard

! Pos
Position of this tree in the given row

! TypeName (Protected)
Type of fruit tree
(Apple, Pear, etc.)

! Variety
Variety of fruit (Delicious, Jonathan, Cling, etc.)

! DatePlanted
The date this tree was planted

Methods

** Init
Initialize the object

* Release
Release this object from memory

* GetData (Protected)
Copy data from the table to the object

** Add
Add an object to the collection

* Remove
Remove an object from the collection

* Find
Find an object in the collection

* First
Move to the first item in the collection

* Last
Move to the last item in the collection

* Previous
Move to the previous item in the collection

* Next
Move to the next item in the collection

* Count
Return the number of objects in our collection

! Inherited from the FruitTree Class

* Inherited from the Collection class.

** Inherited from Collection and Modified in the AppleTree subclass

At this point we could define objects to represent other types of fruit trees such as PeachTree, or PearTree. We could also define objects to represent the various orchards that make up an orchard business, that is, AppleOrchard, PeachOrchard, etc. We’ll leave all of these as an exercise for you but offer some suggestions and ideas.

For different types of fruit just create objects to represent the new kind of fruit. Just as AppleTree is a subclass of FruitTree, PeachTree would also be a subclass of FruitTree. You could choose to store the data for different types of fruit in one table or in different tables (see the following section on creating the database).

Since orchards are not a type of fruit tree, we need to go back to the Collection class to start defining orchard objects. Just as we did with FruitTree and AppleTree, you could define an Orchard class as a subclass of collection, and then define AppleOrchard as a subclass of Orchard.

Step 10 - Creating the Database

At this stage we have already defined the data we want to store as properties of our objects. The final step is to create a database to store this data. Just as our objects model a real-world system, our database models our objects. Building the database then is just the process of creating a set of tables to represent our objects.

It’s important to note that there are a number of methodologies for systems analysis and design that can come into play in developing our original object classes. In a non-OOP paradigm, similar methodologies would have been applied to the design of our database. In the OOP paradigm, the design of the objects is reflected directly in the design of the underlying database. Every object in the system will be supported by one or more tables. You could, in fact, develop systems where there is a one-to-one correlation between objects and tables every object is supported by just one table and no two objects share data in the same table.

The following program defines the database we need to support our orchard business and creates the tables we need to support our objects. This code can be found in the MakeDb.prg file included with this document.

**===

** MakeDb - Program for creating the database for storing information about appletree

** objects.

**

** To create the database run this program. It will create a database called 'Orchard'

** that contains a single table callec 'AppleTree'

**===

** Create the database

CREATE DATABASE 'Orchard.DBC'

** Add the AppleTree table

** This table stores the data for AppleTree objects. To store data on additional fruit

** trees, define the classes as subclasses of FruitTree and add a table to this database

** for the appropriate type of fruit.

CREATE TABLE 'AppleTree' NAME 'APPLETREE' (TREE_ID C(5) NOT NULL PRIMARY KEY, ;

 ORCHARD_ID C(5) NOT NULL, ;

 ROW I NOT NULL, ;

 POS I NOT NULL, ;

 TYPENAME C(16) NOT NULL, ;

 VARIETY C(32) NOT NULL, ;

 DATEPLANTED D NOT NULL)

** Define the indexes we want for our AppleTree table

INDEX ON Orchard_Id TAG Orchard_Id

Run this program in Visual FoxPro to create the database necessary to use the AppleTree objects we’ve defined so far. You could easily modify this program to create tables for storing information about orchards as well as other types of fruit by adding the appropriate table definitions here.

Using our Objects in Code

The classes we have define to this point provide us with the beginnings of an object foundation for building applications. They provide an interface to the apple tree data that we can use in our orchard management application or any other application that needs information about our apple trees.

What’s even more important about this encapsulation of data is that all our programs need to do is to instantiate the appropriate tree object. All the code necessary to add, remove, or modify apple tree data is bundled along with the data itself. This means that not only do programmers avoid the need to recreate or copy this code into their applications but, because we have just one interface to our data, we can better ensure data integrity and reduce the cost of future maintenance or modifications.

Let’s start with a simple program to use our AppleTree object to add apple trees to an orchard. For our purposes we’re going to assume the existence of the orchard that we’re adding trees to and assign it an id number of “O-001”. We’ll also assign sequential id numbers to our apple trees using the format “A-nnn” where nnn is some number 1, 2, 3, ….

To add the trees we are going to instantiate an AppleTree object and use it to create new trees, add the data we need for each tree, and then add the tree to the collection. Look carefully at the following code. What are the message sequences we use?

The following code can be found in the file AddTrees.prg that accompanies this document.

**===

** AddTrees

** This program adds trees to a collection of appletrees

** Note: Before running this program, the object library ObjectLib.prg must exist in

** the same directory along with the orchard database (orchard.dbc) and the AppleTree

** table

** This tree fills a table with data representing an orchard that contains five rows

** with ten trees in each row.

**===

local i,j,oTree
&& Define local variables used by this program

set procedure to objectlib.prg
&& Bring the object library into memory so we can

&& instantiate our AppleTree object

oTree=createobject('appletree')
&& Use CreateObject to instantiate an AppleTree object

For i = 1 to 5

&& Create five rows of objects

For j = 1 to 10

&& Put ten trees in each row

oTree.new

&& Create a new tree object

oTree.tree_id="A-"+padl(oTree.Count()+1,3,'0')
&& Generate a new id number

oTree.orchard_id="O-001"

&& Add the orchard id number

oTree.row=i

&& Enter the tree's position

oTree.Pos=j

&& in the orchard

oTree.Variety="Golden Delicious"

&& Add the tree's variety

oTree.DatePlanted=Date+i

&& Enter the date planted

oTree.add

&& Now add the tree to our collection

Next

Next

oTree.Release

&& We're done with the AppleTree object so release it

Now that we have some tree data to look at, let’s write another small program to go through our collection of apple trees and print out the id number and date planted for each one. The following code can be found in the file called PrintInfo.prg that accompanies this document.

** PrintInfo

**

** This program runs through our current collection of apple tree objects and prints

** the id number and date planted for each tree to the Visual FoxPro desktop.

**

**

LOCAL i,oTree

IF !"OBJECTLIB" $ SET('PROCEDURE')

Set Procedure to ObjectLib

Endif

oTree=CreateObject('AppleTree')

&& Create a AppleTree object

oTree.First

&& Move to the first tree object

FOR i = 1 to oTree.Count()

?oTree.Tree_Id+space(10)+DToC(oTree.DatePlanted)
&& Print out the desired information

oTree.Next

&& Move to the next tree object

Next

oTree.Release

At this point we’ve defined a class of objects called Collection which we subclassed for FruitTree. FruitTree objects represent elements in a collection of fruit trees. We then defined a subclass of FruitTree to represent AppleTrees. While the Collection class contains the most general functionality for adding or removing objects from a collection and for moving around in a collection, the AppleTree class contains code that is specific only to apple trees. All the properties and methods defined in the Collection class and FruitTree class are inherited by the AppleTree object.

Our AppleTree objects represent an encapsulation of data about apple trees and the code necessary to work with that data. Any time we need information about an apple tree we can instantiate an AppleTree object and find the particular information we need. Our little example here contains very little information but you could easily add to this example by adding more properties along with the appropriate fields in the underlying table to store any additional information you desire.

We developed this object library following a top-down approach to both design and programming. That is, we first designed the generic Collection class and wrote code for its properties and methods. We then worked our way down to the FruitTree class, a more specialized type of collection, and finally to the AppleTree class, a specialized type of FruitTree.

Once we defined the Collection class we had a specific set of methods that we could use with any collection. As we add more collections they inherit these methods and we don’t have to write the code again for each new type of collection. No only do we not have to write the code, but we don’t even need to concern ourselves with how it’s implemented. The methods are there, they work, and we’re free to focus on the specific properties and methods of the object we’re currently working on.

Finally, the programs we wrote solved two problems, the first to store data about a group of trees in a particular orchard, and the second to print out some information about each tree. These problems were solved by instantiating objects and sending messages (calling methods) within program code.

Part 3 - Bringing it all Together

In Part 2 we defined objects that had specific properties and methods. Our objects were based on the Visual FoxPro base class called Custom. All Visual FoxPro objects are the same conceptually as those we’ve defined here. All objects have properties and methods that represent the interface you use to access the information that the object encapsulates.

In Visual FoxPro there are both visual and non-visual objects. Visual objects have properties that can be used to alter their appearance as well as the data and/or functionality they encapsulate. You can add methods and properties to any Visual FoxPro object. You can also define classes of objects, both visual and non-visual, based on any Visual FoxPro class or other class you have already defined. By defining classes and subclasses you can develop libraries of objects that encapsulate very general or very specific data and functionality. These objects can then be instantiated or ‘plugged in’ as needed to provide that data and functionality to your application.

Events in Visual FoxPro are simply messages sent by the system to your objects. You cannot create new events but you can write code to have your objects respond to events in ways appropriate to your application. Event code is the same procedural code used to define other methods. One event in Visual FoxPro that gets called for every object is the Init or Initialization event. This event happens every time an objects is instantiated.

Some Things to Try

In our example we have defined only a small portion of the objects necessary to support an orchard business. A good way to learn more about Object Oriented Programming with Visual FoxPro would be to extend the simple model we’ve defined here. The following are suggestions that could be used as a guide to further exploring Visual FoxPro’s object model and the OOP paradigm. The most important thing you can do is explore.

Add a new class called Orchard that represents a collection of orchards.

Add subclasses for Apple, Pear, and Peach orchards.

Add subclasses of the FruitTree class for Pear and Peach trees.

Remember: When adding a new class or subclass be sure to add the appropriate tables to the database.

Add a new property to the FruitTree class to track the current yield for the given tree. Define this any way you like; for instance, it could represent the number picked from this tree in the most recent harvest, or for the life of the tree.

Question: What modification do you have to make to the tables that support the various types of fruit trees?

How could you use the current yield property for the trees in your orchard to determine the total yield for the orchard?

Bibliography

Pinson, Lewis J., and Richard S. Wiener, An Introduction to Object-Oriented Programming and Smalltalk. Reading, Massachusetts: Addison-Wesley Publishing Company, 1988.

Mullin, Mark, Object Oriented Program Design: With Examples in C++. Reading, Massachusetts: Addison-Wesley Publishing Company, 1989.

Cox, Brad J., and Andrew J. Novobilski, Object-Oriented Programming: An Evolutionary Approach. 2d ed., Reading, Massachusetts: Addison-Wesley Publishing Company, 1991.

Headington, Mark R., and David D. Riley, Data Abstraction and Structures Using C++. Lexington, Massachusetts: D.C. Heath and Company, 1994.

Shlaer, Sally, and Stephen J. Mellor, Object-Oriented Systems Analysis: Modeling the World in Data. Englewood Cliffs, New Jersey, Prentice-Hall 1988.

Appendix

Further Reading

These books don’t require a degree in computer science to understand and can be useful for anyone interested in gaining further insight into Object Oriented Programming.

Object Oriented Analysis

Object-Oriented Systems Analysis:Modeling the World in Data, Sally Shlare, Stephen J. Mellor. Yourdon Press PTR Prentice Hall, Englewood Cliffs, New Jersey, 1988

Object Lifecycles: Modeling the World in States, Sally Shlare, Stephen J. Mellor. Yourdon Press PTR Prentice Hall, Englewood Cliffs, New Jersey, 1992

Object Oriented Programming/Design

Object Oriented Program Design: With Examples in C++, Mark Mullin. Addison-Wesley Publishing Company, 1989.

Object-Oriented Programming: An Evolutionary Approach, 2d ed., Brad J. Cox, and Andrew J. Novobilski. Addison-Wesley, 1991.

Object Oriented Programming with Visual FoxPro

The Visual FoxPro 3.0 Codebook, Yair Alan Griver

31

_877349670

_878036478.doc
� EMBED MSDraw.1.01 ���

_878552813.bin

_878039134.doc
� EMBED MSDraw.1.01 ���

_877947045

_877954574.bin

_877947044.doc
�������������������

Programs

Programs

Programs

FoxPro Table

Properties &

Methods

Object B

Object A

Properties &

Methods

FoxPro Table

_859616988

