Program To Visual Class Library

PAGE \# “#####” 1
Fehler! Bild-Zeichenfolge enthält ungleiche Anführungszeichen.IF PAGE<10 2

Fehler! Bild-Zeichenfolge enthält ungleiche Anführungszeichen.

 STYLEREF "Heading 2" Fehler! Formatvorlage nicht definiert.
Fehler! Formatvorlage nicht definiert.
Fehler! Formatvorlage nicht definiert.
Fehler! Formatvorlage nicht definiert.

PAGE \# “#####” 3

Program To Visual (PrgToVcx) Class Library

for Microsoft(Visual FoxPro(3.0

Another TRUE Public Domain Enhancement for Visual FoxPro

Tom Rettig’s Utility Extensions((TRUE) are developed by Rettig Micro Corporation; designed, implemented, and documented by Tom Rettig; and tested and quality assured by Tom Rombouts.

The author and copyright holder release all rights in TRUE programs, structures, and documentation to the public domain subject to the Warranty Disclaimer below. Although they are in the public domain, we maintain and upgrade them regularly because they are relied upon in commercial software products from our company and many others.

Other TRUE class libraries include Environment (ENV) that saves and restores the SET, ON, and open table environments., Extended Database Container (EDC) that extends VFP’s database container and lets you define properties for any logical view, and Info that gathers various FoxPro information. We hope you find TRUE useful and welcome any comments you may have.

Rettig Micro Corporation (RMC)

2532 Lincoln Boulevard, Suite 110

Marina del Rey, CA 90291-5978

Fax: 310-821-1162

CompuServe: 75066,352 in the Microsoft FOXUSER forum’s 3rd-Party section or CIS MAIL

Telephone: 310-301-0911

Product Information: 800-742-7843

TRUE Warranty Disclaimer: No Warranty!

THE AUTHOR RELEASES TO THE PUBLIC DOMAIN ALL CLAIMS TO ANY RIGHTS IN THIS PROGRAM AND DOCUMENTATION, AND FREELY PROVIDES THEM “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THIS PROGRAM AND DOCUMENTATION, BE LIABLE FOR ANY COMMERCIAL, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM INCLUDING, BUT NOT LIMITED TO, LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS, EVEN IF YOU OR OTHER PARTIES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Commercial Product Information

If you have serious application needs, you will find our commercial software very helpful and we would be delighted to send you our product information. Since 1991, Rettig Micro Corporation has developed and published Tom Rettig's Office((TRO), a suite of rapid application development (RAD) tools for FoxPro(plus an integrated business application including accounting and full source code. TRO's pre-written programs, menus, forms, and reports implement a generic, reusable “foundation” for FoxPro on top of which you easily build all kinds of applications in record time. TRO for Visual FoxPro(is a rich collection of class libraries, builders, wizards, and projects, fully object oriented, and takes maximum advantage of new VFP features to get your application up and running faster than any other tool on the market, guaranteed! TRO for FoxPro 2.6 is a complete cross-platform solution running under Microsoft(Windows(, MS-DOS(, Macintosh(, and UNIX(as a single code base written in 100% pure FoxPro using the FoxPro design tools and unmodified templates. Visual or cross-platform, TRO is the most reliable, robust, and fully-featured FoxPro development environment money can buy with megabytes of functionality ready to use right out of the box. Contact us today for complete product literature and discover why thousands of developers worldwide, including the largest corporate and government organizations, trust their applications to TRO.

Technical Support

Technical support is not officially provided because all TRUE software is free. However, the author is very interested in hearing about bugs, usability problems, or enhancement requests you may have and will try to be helpful within reasonable limits. All TRUE support is handled in writing via CompuServe, fax, or postal mail. TRUE support is not available by telephone.

Acknowledgments XE "Acknowledgments"
The author appreciates acknowledgment in commercial products and publications that use or learn from TRUE software. The author acknowledges the following people for their contributions.

· Dave Fulton and Bill Gates for the vision and the tenacity to make it reality.

· Janet Walker, Glenn Hart, and Tod Neilson for keeping the vision alive and the community together.

· Eric Rudder and Morris Sim for the VFP design. Erik Svenson for the database design and extensibility.

· The entire VFP development team for the implementation.

· Susan Graham and all the beta sysops for the hard work, long hours, and patience while we learned.

· Richard McAniff and all the program and product managers for the goal to make VFP the very best.

· Dawn Trudeau for making the vision salable.

· Tom Kemm and David Kalman for teaching and promoting relational database design in FoxPro before it became fashionable.

· George Goley, Alan Schwartz, Y. Alan Griver, Mike Feltman, Doug Hennig, and all other 3rd-party data dictionary developers for doing it at least once from scratch.

· Ken Levy for contributing code and ideas to make PrgToVcx work with VFP’s Class Browser, and the suggestion for EDC to write directly to the DBC.

· Andy Neil for ideas about EDC’s registry.

· Drew Speedie for a beta forum Tip Of The Day that inspired EnvLib.

· Lisa Slater Nicholls for ENV saving properties and system memory variables, and for creating resource files.

About Tom Rettig

Tom Rettig is President and Software Architect of Rettig Micro Corporation. He worked on the design and implementation of dBASE III(as a member of Ashton-Tate's(development team, independently wrote the original Clipper(Extend Library, and released two award-winning software products, Tom Rettig’s Library(and Tom Rettig’s Help(. Since 1990, his products, including Tom Rettig’s Office are exclusively for FoxPro and Visual FoxPro.

An Xbase evangelist since 1981, Tom is internationally recognized as an authority on the language and its various dialects and implementations. He presents at computer shows and user groups, contributes to magazines and the public domain, has written several books, is active on Microsoft’s FoxPro forums, participates in FoxPro pre-release programs, and has presented at every Microsoft FoxPro DevCon.

Table of Contents

Program To Visual (PrgToVcx) Class Library

for Microsoft(Visual FoxPro(3.0
1

Another TRUE Public Domain Enhancement for Visual FoxPro
1

TRUE Warranty Disclaimer: No Warranty!
1

Commercial Product Information
1

Technical Support
2

Acknowledgments
2

About Tom Rettig
2

Table of Contents
3

User’s Guide
5

Getting Started
5

Advanced Features
5

Limitations
6

Your Contributions are Important!
6

Developer’s Guide
7

Cross Platform
7

Documentation
7

Enhancements
7

Errors
7

Files
7

Requirements
7

Technical Reference
7

How PrgToVcx Works
7

Named Constants: True.h
7

Naming Conventions
7

Constant Scope
7

Constant Type
7

General
7

Objects
7

Language Reference
7

Exposed Properties
7

Exposed Methods
7

Convert Procedure
7

Protected Properties
7

aBaseClass Property
7

nTabSpaces Property
7

Protected Events
7

Protected Methods
7

cDefined() Function
7

WriteClass Procedure
7

User’s Guide

You use PrgToVcx whenever you want to convert program class definitions in PRG files to visual class definitions in VCX files. PrgToVcx is designed to handle all class types, but cannot be fully relied upon to import all exported code from VFP’s Class Browser due to inconsistencies between VFP’s language and visual implementations. We’ve documented the known cases and are interested in hearing about any other trouble you may have with importing. See Technical Support.

Getting Started

We use all the VFP naming conventions as documented in VFP’s Windows Help file in the Technical Reference under Programming. In addition, we add a few of our own conventions that are defined in our Technical Reference under Naming Conventions. You’ll understand this material more easily if you look up any conventions that you don’t know.

The PrgToVcx class definition is stored in PrgToVcx.prg and PrgToVcx.vcx. They contain the exact same information. The .PRG file is the programmatic definition and the .VCX file is the visual definition. You only need one or the other to instantiate an object from the PrgToVcx class. Both of the definition files require the named constant file, True.h, at compile time. PrgToVcx.vcx is not shipped with PrgToVcx.prg, but you can use it on itself to convert it to a visual class library.

PrgToVcx is very easy to use.

* Using program class.

SET PROCEDURE TO PrgToVcx.prg ADDITIVE

oPTV = CREATEOBJECT("PrgToVcx")

=oPTV.Convert()

RELEASE PROCEDURE PrgToVcx

* Using visual class.

SET CLASSLIB TO PrgToVcx.vcx ADDITIVE

oPTV = CREATEOBJECT("PrgToVcx")

=oPTV.Convert() && no argument prompts for program

RELEASE CLASSLIB PrgToVcx

In the above examples, you are prompted for a program file name. You can also pass it to avoid the prompt.

=oPTV.Convert("EdcLib.prg")

Unless passed a second argument, PrgToVcx uses a VCX file with the same name as the PRG. Optionally, you can specify a different name.

=OPTV.Convert("EdcLib.prg", "Edc.vcx")

If the VCX file doesn’t exist, PrgToVcx creates it. You can even use PrgToVcx to convert itself.

=OPTV.Convert("PrgToVcx.prg")

Unless passed a third argument, PrgToVcx puts all classes defined in the PRG into the VCX. Optionally, you can specify a single class name to put in the VCX.

=OPTV.Convert("EdcLib.prg", "Edc.vcx", "Message")

The VCX class is overwritten if it exists, otherwise a new class is created.

Advanced Features

You can use the “*>*”description code at the beginning of a comment line in the program class body to add property and method descriptions to the VCX that will appear in VFP’s Property Sheet. The format is <description code> <property or method name> <delimiter> <description text>. Both the <description code> and <delimiter> are defined in True.h as ccVISUAL_DESCRIPTION and ccVISUAL_DELIMITER respectively. All descriptions may occur anywhere within the class body definition but must be outside any procedure or function structure. Everything must be contained on one line and the line may be broken up with semicolons.

> nMaxStrLen,;

Maximum property string length. No real limit, set anywhere.

You can use PrgToVcx with VFP’s Class Browser by executing the following line in the Command Window while the Browser is active to register PrgToVcx as a Browser add-in. You only have to do it once, after which PrgToVcx is always available from the Class Browser’s Add-in button.

_oBrowser.AddIn("PrgToVcx", "PrgToVcx")

Limitations

There are a few VFP differences between visual classes and program classes that make conversions difficult or impossible in some cases. The following limitations are due either to VFP’s limits or to PrgToVcx’s limits.

· The program file must compile without error.

· Properties and methods cannot have the same name.

· All subclasses and Parent classes (super classes) must be in the same program file because DEFINE CLASS cannot refer to a definition in another file as can the VCX with its ClassLoc field.

· Array initializations in the program class body are moved to the Init method because arrays cannot be initialized in the Class Designer’s property sheet. In the case of Forms and FormSets, the array initializations are placed in the Load event.

· All #DEFINEs must be in the #INCLUDE file and any in the program body or class body are ignored. However, any occurring within method code are retained.

· PROCEDURE and FUNCTION names must not reference an object hierarchy. I.e., PrgToVcx ignores constructions like PROCEDURE MyButton.Click.

· Tabs are converted to spaces. The default is 4, the same as in VFP, but you can subclass PrgToVcx and change the nTabSpaces property to any number you like.

Your Contributions are Important!

We designed PrgToVcx to grow for its users and you can play an important part in that growth by sending us your contributions in the following three categories.

1. Techniques, tips, and tricks using PrgToVcx you’ve found useful that we can add to this documentation

2. PrgToVcx feature extensions that you’d like to see in a future release

All contributions in category number 1 must include either the TRUE Warranty Disclaimer: No Warranty! wording from page 1 or the following words, “This contribution is made to the public domain and PrgToVcx according to the published TRUE Warranty Disclaimer.”

All contributions must be in writing and sent to us via Email, fax, or snail mail to the following address. We will contact you for additional details and confirmation if we decide to publish it, and you will receive full credit for it.

PrgToVcx Contributions

Rettig Micro Corporation (RMC)

2532 Lincoln Boulevard, Suite 110

Marina del Rey, CA 90291-5978

Fax: 310-821-1162

CompuServe: 75066,352 in the Microsoft FOXUSER forum’s 3rd-Party section or CIS MAIL

Developer’s Guide XE "Developer’s Guide"
Cross Platform XE "Cross Platform"
Additional capability will be added as necessary when VFP is ported to other platforms.

· Path specs containing spaces have not been tested.

Documentation XE "Documentation"
Documentation is provided in a Microsoft Word 6.0 file. This can be easily printed, translated, and/or written to a Rich Text Format (RTF) file for compilation into a Windows help file. Windows help formatting is under construction!
This document prints 6 pages.

This document uses Word bookmarks and REF fields extensively. If the document is changed, you should update all fields before printing or saving as RTF. To update all fields, Select All from the Edit menu and then press F9.

This document uses the True.dot template file.

Caution! This help file uses forward and backward quote marks “ ” in text including syntax. If you cut and paste any text with these marks into a program, you will get a syntax error unless you change these to straight quote marks " ".
Enhancements XE "Enhancements"
These enhancements are either planned or under consideration for implementation in a future upgrade.

· Remove limitations where possible.

· Support Class Browser exported descriptions.

Errors XE "Errors"
No special error handling is employed. Any PrgToVcx error will trigger whatever ON ERROR routine or Error event is in effect at the time.

Files XE "Files"
These files make up this class library.

	File
	Description

	PrgToVcx.prg
	Program class definitions

	PrgToVcx.vcx
	Use this program class to convert itself to a visual class library

	True.h
	Named constant definitions (required by all TRUE libraries)

	PrgToVcx.doc
	Documentation in Word 6.0 format.

	True.dot
	Word 6.0 template file used by all TRUE documentation

You may modify, subclass, and distribute any or all files in any form you like.

Only two files are required, True.h plus one of the class definition files, PrgToVcx.prg or the visual class library that you make with it of itself. You may distribute the source files if you wish, but you do not have to if they are compiled into your application.

Requirements XE "Requirements"
1. Visual FoxPro for Windows, version 3.0 or greater.

2. Compiling PrgToVcx.prg or PrgToVcx.vcx requires the named constant file, True.h.

Technical Reference XE "Technical Reference"
How PrgToVcx Works

PrgToVcx parses the program class library and places everything in the proper place in the VCX file.

Named Constants: True.h

True.h includes FoxPro.h, plus it defines these groups of named constants.

· PrgToVcx control codes

· Constants used by other TRUE software

Naming Conventions

We use VFP naming conventions for everything. In addition, we add the following conventions.

Constant Scope

Constants are scoped to the precompiler at design time and do not have a run-time scope.

	Description
	Prefix
	Example

	Constant (#DEFINE)
	c
	ccERR_PROMPT

Constant Type

We use VFP variable naming conventions for our constant data type. In addition, we add the following for literal string constants.

	Description
	Prefix
	Example

	Literal (character without quotes)
	x
	cxFIELD_NAME

General

We use a triple forward slash “///” to indicate something to do or consider in a future release.

Objects

All method parameters and variables are local.

Language Reference

Exposed Properties

Exposed Properties are set on event or method execution. Changing their value does not affect our methods or operation. You view exposed properties with the syntax, Object.PropertyName

PrgToVcx has no exposed properties.

Exposed Methods

You execute exposed methods with the syntax, Object.MethodName([ParameterList]). Exposed methods can be added or modified by subclassing.

Convert Procedure

Convert a program class library (PRG) to a visual class library (VCX).

Syntax
Object.Convert ([cProgramFile [, cVisualFilee [, cClass]]])

Return
Logical false if canceled, otherwise true.

Arguments
cProgramFile

Optional program file name. Prompts for a file if empty or not passed.
cVisualFile
Optional visual class file name. Uses same name as cProgramFile with a VCX extension if empty or not passed.
cClass
Optional class to convert. Converts all classes in the program file if empty or not passed.
Example
SET PROCEDURE TO PrgToVcx.prg ADDITIVE

oPTV = CREATEOBJECT("PrgToVcx")

=oPTV.Convert() && no argument prompts for program

=oPTV.Convert("EdcLib.prg") && assumes EdcLib.vcx

=OPTV.Convert("EdcLib.prg", "Edc.vcx") && specify vcx

=OPTV.Convert("EdcLib.prg", "Edc.vcx", "Edc") && specify class

Protected Properties

You view and set protected properties with exposed methods. They can also be changed by subclassing. These are initialized in the class body instead of the Init event so that a subclass can access them with the :: scope resolution operator.

aBaseClass Property

Fixed array, one dimensional.

Settings
Visual FoxPro’s base classes.

nTabSpaces Property

Number of spaces substituted for tab characters.

Settings
4, the same as Visual FoxPro’s default.

Protected Events

Protected events are triggered by VFP events only. They are never called directly.

PrgToVcx has no protected events.

Protected Methods

Protected methods do not test their parameters for validation. Protected methods can be added or modified by subclassing.

cDefined() Function

Convert #DEFINE strings to their values.

Syntax
THIS.cDefined(cString)

Return
Character string with substituted #DEFINE values.

Arguments
cString

Convert Procedure passes the string to convert.

Example
lcString = THIS.cDefined (lcString)

See Also
Convert Procedure
WriteClass Procedure

Finish writing the class information to the VCX.

Syntax
THIS.WriteClass(cVcx, cClass, cBaseClass, cProperty, cArray, cInit, cProgram)

Arguments
cVcx

Visual class library alias.

cClass

Class name.

cBaseClass

Base class name.

cProperty

Property list for Reserved3.

cArray

Dimensions if property is an array.

cInit

Initializations moved to the Init or Load method.

cProgram

PROGRAM() doing the conversion. PrgToVcx unless it’s been renamed.

See Also
Convert Procedure
