Windows DNA Development – A Pattern Language

Overview

When creating a Windows DNA application, it is not enough to start creating COM objects and run them under MTS, what is needed is a standard approach to analyzing DNA applications. This white paper provides a pattern language for COM objects. The purpose of this pattern language is to standardize discussion of types of components so that the design of these applications becomes more standardized.

Background Information

Let’s begin by looking at a Windows DNA application. A DNA application consists of three logical tiers: a user interface tier which presents information to the user and standardizes the user’s movements through the system, a middle or business tier which provides validation, business rule processing and standardization of the data, and the data tier which is our storage location for persisting information.

[image: image1.png]O

Dax





Figure 1: The 3-tier logical model

The middle and data tiers can be placed on multiple servers for scalability and security reasons, leading to a theoretically unlimited number of physical servers for any given system.  It is for this reason that DNA applications are sometimes known as n-tier systems. We will be dealing with the logical design of a DNA application, and will delve deeper into each of the three tiers as we progress further with our DNA development.

Note that we’ve shown the connection between the User Interface tier and the Middle tier with a dotted line. This communication is done in a loosely connected fashion. In other words, unlike the communication between the middle tier and the data tier – where we can assume a permanent connection between the two servers, the front end may be a web page that connects and disconnects on every request. We need to take that into account when building our DNA application. In fact, it’ll be easier to just assume no permanent connection when designing our applications, since that will work even in cases where we have a connection.

The Middle Tier – A Structural Overview

Let’s take a closer look at the business tier. It is the most complex of the three tiers because it alone communicates with both of the other tiers. In order to simplify this tier, we recommend thinking of components in this tier as belonging to one of two groups: the group that talks to the user interface, implementing the rules; and the group that talks to the database. Each group should be replaceable. For instance, if you change from a SQL Server to an Oracle back end, you should not have to modify any of the rules. Likewise, if a rule changes, you shouldn’t have to modify any of the data access logic. Additionally, you may find that multiple rules use the same view of the data; so separating out the components that provide views of the data from the manipulation of that data makes sense.

In essence, a view of the middle tier looks like this:

[image: image2.png]Data
Access
Components

Oriented
Components





Figure 2: Middle Tier View 

Standard Stereotypes for the Middle Tier

There are five stereotypes used in developing a Windows DNA application: 

	Stereotype
	Description

	Resources
	Resources are the “containers of state” for our components. They are passed from tier to tier and component to component where they are modified as necessary. They will often take the form of ADO record sets or XML data streams.

	Resource  Managers
	Resource Managers are the UI tier’s view into the business tier. They are business aware sets of components that provide the public interface used by the front-end developer.

	Data Sources
	Data Sources are components that handle creating, loading and updating Resources as necessary.

	Validation Objects
	Validation Objects contain the validation for a Resource. 

	Process Objects
	Process Objects perform any validation and processing that has to occur across multiple Resources.


Let’s take a look at a simple example of how a DNA application might work. The following table uses these objects:

rmCust - A customer resource manager 
dsCust - A customer data source 
rsCust - A customer resource 
vldCust - A customer validation object 

	Tier
	Object
	Method Call
	Returns

	UI
	rmCust
	GetCustByID(1)
	 

	rmCust
	dsCust
	GetCustByID(1)
	rsCust with data for Customer #1 which is returned to rmCust and then to the UI

	UI
	 
	 
	Modifies the data in rsCust

	UI
	rmCust
	Save(rsCust)
	 

	rmCust
	vldCust
	Validate(rsCust)
	rsCust with any changes required by the validation and a validation success message

	rmCust
	dsCust
	Save(rsCust)
	Success message is passed back after the rsCust changes are updated to the server.


As you can see, the UI developer only needs to know about the public interface of the resource managers. The resource manager acts as a façade into validation objects, process objects and data sources. The data sources are the only objects that need to know about the structure of the database and any calling conventions for that database.

Viewing our stereotypes in the context of the divided middle tier gives us this picture:

[image: image3.png]Resource
Manager

Resource

{

Validation

Process





Figure 3: A stereotype-based diagram of the 3-tier model 

This isn’t a complete picture, since resources are used to pass information between all of the components (for instance when the Resource Manager call a Validation Object), but it was left out to make the picture clearer.

Conclusion

We will be using these stereotypes to design and create our DNA application. The use of these stereotypes will make our discussions clearer and provide for a simpler set of services to the front-end application developer.

  

