Provide Scalability and Availability to your COM Applications

July 31, 2000
Matthew Arnheiter

Building applications is a difficult process. Building applications that scale to 10 thousand users hitting a web site is extremely difficult. Adding into the equation that the application has to run 24 hours a day, 7 days a week is a daunting task, yet as web developers building application in VB you face these challenges everyday. To overcome these obstacles you learned every trick in the book to squeeze out every drop of speed from your components. You have probably also created a convoluted network architecture to partitions users across multiple servers to provide some level of redundancy. In doing so, you struggled with having to install and administer COM components on multiple servers, figuring out which server has which version of the component, messed around in the registry to ensure that everything is configured correctly, or faced DLL hell because other applications were installed on servers that overwrote supporting DLLs. All this and you had to come in under budget and on time.

Up until now there has been no simple solution for Visual Basic developers to easily create COM applications that provide the scalability and reliability necessary for Web applications. Adding your components to MTS helped, but it was still a bottleneck and a single point of failure in your application. If the server went down, then that part of the Web site would come down. To help with some of these issues, Microsoft has introduced a new server: Application Center 2000.

Background on Application Center 2000

Application Center 2000 is Microsoft’s answer to improving the scalability and availability of web applications. It is designed to provide developers and administrators with a more robust environment for configuring, testing, deploying, maintaining, and scaling web applications that are deployed across a server farm. To perform this, Microsoft built into Application Center 2000 several tools and technologies. These include:

· A single application image that creates a single definition for each Web-based or component-based application. This image contains all of the contents, components, and configuration information needed to simplify management and deployment of your applications.

· Automated application synchronization that will keep all of your applications consistent across your server farm.

· Application deployment tools to provide an easy mechanism for duplicating applications from one server to another.

· Component Load Balancing (CLB) to distribute the load to components across multiple servers.

· Performance and health monitoring to simplify the management of server farms by aggregating performance, event, and log data into one view.

Each of these tools and technologies can help you develop more scalable applications that are easier to administer and deploy, but this article will focus on only one of these technologies, Component Load Balancing.

Before I proceed, I need to state that Application Center 2000 is currently in Beta and is due out in the summer or fall of this year. In addition, Application Center 2000 runs only on Windows 2000 Server, Advanced Server, and Datacenter Server with IIS 5.0 installed.

COM Activation of Objects

Before delving into the details of CLB, a little background on how the technology works is needed. CLB works by extending COM+. It is built on the fact that when you instantiate external COM objects, that is, COM objects that are not defined within the same project, VB is not actually performing the instantiation. You are asking another service, the Service Control Manager (SCM) to perform the instantiation. The SCM acts as a middleman between your application and the COM+ component. It instantiates the COM+ object and returns a pointer to your application. This pointer to the object is the interface through which all communication between your application and the COM+ object is made. CLB extends this functionality built into SCM. CLB places some intelligence into the SCM and allows it to chose the server to instantiate an object.

In Windows 9x and NT, the SCM performed a simple process. It received a request from a client application for an object. This request either named the class using the ProgID, like "Excel.Application" or it provided the GUID of the class, like "00020812-0000-0000-C000-000000000046" (this is the GUID for Excel.Application.9). The SCM used this information to located physically where the ActiveX DLL or ActiveX EXE was stored on the hard drive by searching the Windows Registry.

Once the file was located, the SCM instantiates the object. If the class being instantiated is contained in an in-process ActiveX DLL, then the pointer to the object is returned to the client. If the class being instantiated is contained in an out-of-process ActiveX EXE, then the SCM would create a set objects. It would first create the object that the client requested and in addition it would create an proxy and stub object. The proxy and stub objects are used to marshal data across the processes. They are used to translates the requests between the client application and the object into a format that is easily transmitted across process boundaries.

With Windows NT 4.0 and DCOM, Microsoft extended the SCM to allow applications to instantiate objects on a remote server. This was performed by passing the server name into the CreateObject function:

Set oCustomer = CreateObject("MyExe.clsCustomer", "ServerName")

or setting the RemoteServerName value in the registry for your components. DCOM allowed your applications to be partitioned into three logical tiers and moved some of the workload off of the client machines. For Web sites, this meant that part of the workload could be removed from the Web servers and placed on an application server. The web server could service the HTTP requests and the application server could handle the "business logic."

With CLB, Microsoft extended the SCM to dynamically assign a specific serverspecific server within a server farm to handle activation requests from client application for objects within an ActiveX DLL or ActiveX EXE. Instead of relying on one machine to process the requests, CLB distributes the load across multiple machines. CLB works in a similar manner to load balancing HTTP requests across a Web server farm using Web load balancing hardware or software. Exactly how CLB performs load balancing will be discussed later in the article.

Setting up CLB Servers

CLB is based on the concept that there is one computer that receives a request for an object. This machine is called the Component Load Balancing Server (CLBS). It acts as a router to forward requests to other servers. The CLBS could also service the request since it is itself, part of the application cluster. The application cluster is the group of servers that are configured to services requests from a CLBS. In order to designate a computer as the CLBS you need to check the "Use this computer as the load balancing server" checkbox on the CLBS tab of the computer’s property page in Component Services Explorer (figure 1).

[image: image1.png]Defet Prpeties || Defauk Secuy || Defuk Ficosols
o W oes | wsorc

Applicaton Cluster louter
7 Uss s computer asthe load balancing server

The COM-+ Applicaton on this computer wil serve as the fst of
load-balanced spplcatons.

Applicaton Cluster

The folwing servers wil paticipate n dynamic load balancing of
the COM:+ applications installd on this computer. You must
ensure tha a o these appications re installed on each serve.

FLAGHNI T
FLASHNY e

ok | comd

Figure 1: Configuration tab for a CLB Server

By selecting this option, you are telling the server that it will have to perform two tasks. First, it must route requests from clients, that is, CLB determines the server with the lightest load and then forwards activation requests for objects to that server. Second, it has to poll the other servers in the application cluster to determine the load on each server. The data collected is timing data on each component configured to be load balanced on the server. The CLBS uses the timing data to rank the servers and control which server will receive the next request. The exact algorithm that CLB uses is undocumented so you should not depend on any specific balancing algorithm.

In addition to assigning the computer to be the CLBS, you can specify a list of servers to forward requests to when a client requests an object. This list is entered in the list box at the bottom of the CLBS tab as shown in figure 1 above. The CLBS is always included in this list of servers. Together, these computers are called the application cluster. There is currently no limitation to the number of servers that can be included in this list.

Once the application cluster has been defined, each component must be configured for use in the load-balancing environment. This is performed on a per-class basis. Each class in the application cluster must be individually set to support dynamic load balancing. To enable dynamic load balancing ,balancing, an administrator can check the "Component supports dynamic load balancing" checkbox on the activation page of a class’s property page in the Component Services Explorer (figure 2).

[image: image2.png]Gorea| Tionsactons | Secuy Acivaton | Conuncy | Advanced
il
Obict ook
Minimum pool size:
Mgt o sz

Creation timeau (s}

™ Enable gbiee consiicio

Object constuction

Constuctor sting:

7 Enable Just In Time Activation
2 Companert supports dynamic load balancing
-

™ Mustbe sctivated in callr's contest

0K Cancel

Figure 2: Activation settings for classes on a CLB server

Selecting this checkbox lets CLB collect timing data on each component. How the CLB service collects this data is undocumented. Once the components have been configured they must be deployed to each server in the application cluster. This is where some of the other technologies that ship with Application Center 2000 can aid administrators in deploying and managing application across a server farm.

From the client's standpoint, instantiating objects being load balanced by CLB is the same as instantiating a component using DCOM. All you need to do is pass the name of the CLBS into the CreateObject function or set the RemoteServerName attribute for the component in the registry.

Behind the scenes

The CLBS uses two services to manage the routing of activation requests. The first, as mentioned before, is the SCM . The second service is one that ships with Application Center 2000 called COMLBSVC. This service is responsible for collecting the timing information and maintaining the ordered list of servers to route requests to. Figure 3 shows the architecture.

[image: image3.png]Client

Servert

Component Load
Balancing Server

scm
Ordered Server List o
Server2 s
Server1
CLES Server ==

Application Cluster

Figure 3: Architecture behind the Component Load Balancing Service

In Application Center 2000, the SCM is extended to inspect an ordered list of servers in the application cluster. This ordered list, maintained in memory shared between the SCM and the COMBLSVC services, is maintained by the COMLBSVC service. To keep the listing of servers accurate and to determine which server has the lightest load, the COMLBSVC service uses the stub objects in COM+ to intercept the calls and perform some pre- and post-processing. This pre- and post-processing is performed in addition to the function that the stub played in MTS. In MTS, the stub is used to determine how many instances of a class were active.

Because collecting and reporting of this timing data can be processor and network traffic intensive if a lot of components are installed on the servers, Microsoft lets administrators limit this data collection and reporting to specific classes. This reduces the work the server has to perform and the amount of network traffic that this process creates. This is done as shown above using the "Component supports events and statistics" checkbox on the activation tab of the class' property as shown in figure 2.

Once the server has been chosen from the order lists of servers in the shared memory, the CLBS SCM forwards the activation request to the other server's SCM. If the instantiation of the object fails, the CLBS moves to the next server and continues until a valid interface pointer is returned to the client. From this point, all communication will occur directly between the client and the server that handled the request.

Issues with Application Center

One immediate issue that comes up when implementing CLB is that the CLBS is a single point of failure that can bring down the application if it were to fail. Client applications need to explicitly request an object instance from the CLBS. If the CLBS were not available, no server in the server farm could handle the request.

The solution to this problem can be found in the other load balancing and clustering technologies included in Windows 2000: Network Load Balancing (NLB) and Windows Clustering Service (WCS). NLB provides load balancing for TCP services across a cluster of up to 32 nodes. Each node in the network cluster receives requests from a client, but only one of the machines services the request. The exact algorithm used to determine which server services the request is again undocumented.

WCS allows two machines to exist as images of each other sharing an IP address. Both of the machines share a hard disk on a common bus. If one of the machines fails, the other takes control and services the request.

By implementing the CLBS within a cluster of servers using NLB or WCS, the CLB Server is no longer a single point of failure. If the CLBS goes down, the other servers in the cluster can compensate. This solution gives scalability for an application through CLB and availability on the hardware through NLB and WCS.

The other issue that arises with CLB is that the configuration of the components must be the same on all of the servers within the application cluster. If one of the servers has a different configuration, random results may occur. If one component was set with a different security setting on servers in the application cluster, users may be able to run the application if the CLB server forwards a request to a server that allows them access, but other times it may forward the request to a server that denies them access. These types of random results would be difficult to track down. To solve this, Microsoft has added tools in Application Center 2000 to give administrators the ability to easily deploy applications across multiple computers.

Conclusion

CLB is a useful technology for building highly scalable applications and providing availability to your application servers. It provides the mechanism to route client requests to the least busy server, which results in the quickest response time possible to client applications. This mechanism of finding the least busy server and forwarding requests to other servers is built directly into the COM SCM and a new service called COMLBSVC. By moving CLB into the new Application Center 2000 server, Microsoft has committed to building an environment where it is easy to build, test, deploy, and administer applications distributed across multiple servers.

You can obtain more information about Application Center 2000 and Component Load Balancing at http://www.Microsoft.com/applicationcenter/.

