Creating Flexible Searches in COMCodebook Datasources

May 25, 2000
By Beth Massi

To get the data from the data sources in COMCodebook we define interfaces to the business entities based on the methods of resource retrieval. These public methods are called our "Get()" methods (or interfaces). For example, for an Attorney business entity, we could have GetAttorneyByID(), GetAttorneyByName(), and GetAttorneyBySSN() among others defined as public methods in the resource managers that will return resources (ADO Recordsets). The resource managers will then call the public GetAttorneyBy...() interfaces in the data sources which will execute the SQL Statements on the database and will return the resource to the Resource Manager and then back to the client.

When I first came aboard this project, I learned rather quickly that COMCodebook needed a more flexible way of retrieving data from these Data Source Get() methods. We usually want to present the user with many different search criteria parameters. To create a Get() method for every possibility would be very difficult. We would like to have one generic GetEntityBySearchCriteria() method to retrieve data from user searches and produce dynamic SQL-SELECT statements for the Data Sources. This paper explains what was done to the framework in order to support this idea of flexible searching.

How Does It Work?

To perform complex queries in COMCodebook the client collects the search criteria from the user and then calls the resource manager’s GetRSSearchCriteriaResource or GetXMLSearchCriteriaResource methods. These methods pass back what we call a Search Criteria Resource (SCR) that can take the form of either an ADO recordset or an XML stream. It contains fields from the data source from which it was called. By default it contains only the fields from the data source’s primary table. The client then fills this resource with the user’s selection criteria and then passes it back into the resource manager’s GetEntityBySearchCriteria interface. The Search Criteria Manager (SCM) then takes the SCR and iterates it, calling upon the Syntax Object that creates the SQL-SELECT clauses which are used to generate the SQL statement in the Data Source. The class definitions for the SCM’s and Syntax classes are located in CSearchCriteria.prg, ISearchCriteria.prg, ASearchCriteria.prg.

The Search Criteria Resource (SCR)

Packaging the Search Criteria Data

The Search Criteria Resource is the mechanism by which the search criteria is passed between the COMCodebook components and the client. Like the rest of the Resources in COMCodebook, they can take the form of ADO Recordsets or XML Streams. The Search Criteria Manager dictates the structure of these resources. By default the SCR has the following character properties:

Table – The name of the base table

Name – Field Name

Type – ADO DataTypeEnum represented as a character

Value – Field Value

EndValue – Field End Value (for retrieving ranges of data)

Order – The order

Operator – Comparison operator: LIKE, BETWEEN, $, =

Options – Order options like DESCENDING

This list of properties is defined by the Search Criteria Managers and can be sub classed to allow for additional properties to be added. In the case of an ADO recordset, the properties above would represent the fields collection in the recordset and you would have X number of rows depending on how many searchable fields you wanted to provide. In the case of an XML stream, you would have <FIELD> nodes for each searchable field with the properties above being elements of the field node. i.e.

<?xml version='1.0'?>
<SEARCHCRITERIA>
<FIELD>
<TABLE>PROJECTS</TABLE>
<NAME>project_name</NAME>
<TYPE>129</TYPE>
<ORDER></ORDER>
<OPTION> </OPTION>
<OPERATOR>LIKE</OPERATOR>
<VALUE></VALUE>
<ENDVALUE></ENDVALUE>
</FIELD>
.
.
.
</SEARCHCRITERIA>

The client is passed this SCR, which it then fills in the appropriate values, and then passes it back via the GetEntityBySearchCriteria() methods.

Data Source Functionality

Adding Additional Search Criteria

By default, the SCR only contains fields from the Data Source’s primary table as declared in the cTableName property. The SCM creates a default set of search criteria by calling the GetEmptyResource() method of the data source. This happens transparently when the GetResourceTypeSearchCriteriaResource() methods are called from the client. If a programmer needs (and will want) to provide additional fields in the search criteria resource to allow the client to search on, then the a-layer Data Source method AddSearchCriteriaInfo_Pre (or _Post) will have additional code in it to allow the programmer to create extra nodes/rows on the resource before it is sent to the client. For example:

Protected FUNCTION AddSearchCriteriaInfo_Post(roRS)
*------------------
with this.oSearchReferences.oSearchCriteriaManager
.AddSearchElements(@roRS, "Attorney", "LastName", adChar)
.AddSearchElements(@roRS, "Attorney", "FirstName", adChar)
.AddSearchElements(@roRS, "Attorney", "Attorney_ID", adInteger)
endwith

Return FILE_OK
Endfunc

The fields passed to the Search Criteria Manager’s AddSearchElements() method are the SCR, the table name, the field name and the data type. This causes a new node/row of search criteria data to be added to the SCR.

CAbstractDatasource (OLEPUBLIC class)

	
	New Property
	Description

	
	cSearchSyntaxClass
	The name of the Syntax class to use.

	
	
	

	
	New Methods
	Description

	
	CreateSearchManagerObject()
	Calls CreateSearchReferencesObject() and instantiates the SCM.

	
	GetSearchManagerClass()
	Retrieves the proper class name of the SCM based on the type of SCR being sent into the Data Source.

	
	CreateSearchReferencesObject()
	Instantiates the Search References object.

	
	FillSearchReferencesParameter()
	Assigns property values to the References object.

	
	CreateFilterFromResource()
	Template method that instantiates objects and calls the SCM to create the Clauses object.

	
	GetSearchCriteriaResource()
	Template method that instantiates the SCM and returns a default SCR to the client.

	
	AddSearchCriteriaInfo_Pre()
	Called after the SCR is created but before the Search Criteria information is added to it.

	
	AddSearchCriteriaInfo_Post()
	Called after the Search Criteria information is added to the SCR but before the SCR is finished.

	P
	GetEntityBySearchCriteria() *
	A-layer interface which accepts an SCR and calls CreateFilterFromResource() which returns a Clauses Object that is used to create the SQL Statement.

	P
	GetXMLSearchCriteriaResource()*
	Sets the name of the SCM to use and returns an XML SCR.

	P
	GetRSSearchCriteriaResource()*
	Sets the name of the SCM to use and returns an ADO Recordset SCR.

	
	*Also added to CAbstractResourceManager
	

P = Public Method/Property

The Search Criteria Manager (SCM) Classes

Generating and Iterating Search Criteria Resources

The Search Criteria Managers are not only used when sending SCRs out of the Data Source, but also (and more importantly) they are used to iterate the SCRs being sent into the Data Source in order to create the clauses of the SELECT statements. To understand exactly how the clauses are constructed we must look deeper into the Search Criteria Manager. The SCM "manages" the Search Criteria Resources. The SCMs are the objects that dictate the structure of these SCRs as well as the method of iterating them. The SCM is controlled by the Data Source and can be different depending on the SCR. There are currently two SCM’s; CSearchCriteriaManagerXML and CSearchCriteriaManagerRS. They are subclasses of the CAbstractSearchCriteriaManager. The Data Source’s CreateFilterFromResource() method instantiates the proper SCM based on the type of the SCR. If the SCR is an XML stream, the Data Source instantiates the CSearchCriteriaManagerXML object, if the SCR is an ADO recordset, the CSearchCriteriaManagerRS is instantiated. If the type of SCR can not be determined, a FILE_ERROR is returned from the CreateFilterFromResource() method that the a-layer can check. The SCM iterates through the SCR and for each row or node in the SCR, it calls upon the Syntax Object to construct a piece of a where clause.

CAbstractSearchCriteriaManager (Internal class)

	
	Properties
	Description

	
	oSearchReferences
	Search References Object

	R
	prop_Name
	Name of the SCR item as the SCM iterates it

	R
	prop_Type
	Type of the SCR item as the SCM iterates it

	R
	 prop_Table
	Table of the SCR item as the SCM iterates it

	R
	prop_Order
	Order of the SCR item as the SCM iterates it

	R
	prop_Option
	Order option of the SCR item as the SCM iterates it

	R
	prop_Operator
	Operator of the SCR item as the SCM iterates it

	R
	prop_Value
	Low Value of the SCR item as the SCM iterates it

	R
	prop_EndValue
	High Value of the SCR item as the SCM iterates it

	
	Methods
	Description

	
	AddSearchCriteriaDataNode()
	Adds a search criteria item to the SCR.

	P
	AddSearchCriteriaInfo()
	Called from Data Source in a template method. Iterates the search criteria items brought back from the data source’s GetEmptyResource().

	P
	AddSearchElements()
	Public template method used to add items to SCR.

	
	AssignDefaultOperatorProperty()
	Calls Syntax object to retrieve the default operator.

	
	AssignElementProperty()
	Assigns or creates a "prop_" property with the specified value used by the Syntax Object.

	
	CreateCollaboratingObjects()
	Instantiates the Syntax Object.

	P
	CreateFilterFromResource()
	Called from Data Source to retrieve the clauses.

	P
	CreateSearchCriteriaResource()
	Called from Data Source in a template method. It sets up the SCR to accept items.

	
	Destroy_Hook()
	Called before the object is destroyed from Destroy()

	P
	FinishSearchCriteriaResource()
	Called from Data Source in a template method. It prepares the SCR to be sent to the client.

	
	GetFilterFromResource()
	Creates an entire filter string from an SCR.

	
	Init_Hook()
	Called after the object is instantiated from Init().

	
	InitializeSearchCriteriaProperties()
	Adds and/or initializes the "prop_" properties.

	
	PopulateSearchCriteriaElements()
	Calls AssignElementProperty() for each item being assigned from the AddSearchCriteriaInfo() and then calls the AssignDefaultOperatorProperty().

P = Public Method/Property

R = Public Property Added at Runtime

The Search Syntax Classes

Creating the Clauses

The SCM controls how the SCRs are created and sent out to the client, however, in order to create the clauses of the SELECT statement, the SCM and what is called a Syntax Object must work together when SCRs are sent back into the Get method of the Data Source. The SCM is in charge of creating and iterating through the SCRs while the Syntax object is responsible for creating the clauses of the SELECT statement. Because of the differences in SQL languages in different database back ends, the Data Sources can specify which syntax object to use to produce their clauses. The Syntax object is a concrete class which inherits from CAbstractSearchSyntax. Three classes that are provided for you that inherit from CAbstractSearchSyntax. They are CVFPSearchSyntax, CSQLSearchSyntax and COracleSearchSyntax for use with VFP, Microsoft SQL-Server and Oracle databases respectively. Additional search syntax classes can be created for other databases or other criteria sets as needed.

The Syntax object is instantiated by the SCM and is called upon to generate the proper clauses for the particular database being used by the Data Source. The Data Source property cSyntaxClass holds the name of the class to use. The Syntax Object creates a Clauses object to put all the generated clauses into. This makes it easier for the a-layer Data Source code to access all the clauses of the SELECT statement via one object. Currently, the syntax object creates WHERE and ORDER BY clauses and places them in the Clause Object’s cWhere and cOrder properties. As the Syntax object creates the WHERE clause, it is internally managing the ORDER BY clause by filling and sorting an aOrderClause[] array which is converted to an ORDER BY clause and then retrieved by the Data Source after the WHERE clause is constructed.

The Syntax object is called upon by the SCM every time a search criteria value is encountered while parsing the SCR (XML stream or ADO recordset). It constructs only the piece of the where clause that the field is involved in.

Consider this clause in VFP:

WHERE "columbia" $ lower(projects.note)

Then the same clause in Oracle:

WHERE CONTAINS(projects.note, "Columbia")>0

Because of the different syntax a database may support, the syntax object’s GetFilterSyntax() methods may have different or additional code in them for constructing and supporting database specific WHERE clauses. After these strings are constructed, they are put into a Clauses Object and it is passed back to the GetEntityBySearchCriteria() method where the programmer can tack the clauses onto the SQL SELECT statements before calling ExecuteSQLQuery().

CAbstractSearchSyntax (Internal class)

	
	Properties
	Description

	
	cSearchClausesClass
	Name of the Clauses class to instantiate

	
	oSearchReferences
	Search References Object

	
	cKeywordWhere
	WHERE Keyword

	
	cKeywordOrderBy
	ORDER BY Keyword

	
	cKeywordGroupBy
	GROUP BY Keyword

	
	cKeywordHaving
	HAVING Keyword

	
	cKeywordEqual
	Equality operator used in GetFilterSyntax()

	
	cKeywordLike
	LIKE operator used in GetFilterSyntax()

	
	cKeywordBetween
	BETWEEN operator used in GetFilterSyntax()

	
	cKeywordContains
	CONTAINS operator used in GetFilterSyntax()

	
	cConcatenator
	Concatenator used to add WHERE Clauses together

	
	aOrderClause[1, 3]
	An Array to store the ORDER BY clauses

	
	nCount
	Counts the Rows of the aOrderClause array

	
	Methods
	Description

	
	Init_Hook()
	Called after the object is instantiated from the Init().

	
	Destroy_Hook()
	Called before the object is destroyed from the Destroy().

	P
	CreateCollaboratingObjects()
	Instantiates the Clauses Object.

	P
	GetDefaultOperator()
	Returns the default operator to SCM when creating SCRs.

	P
	GetClauses()
	Places the clauses into the Clauses object.

	P
	ConstructClauses()
	Constructs the clauses for the specific SCR item.

	
	GetFilterSyntax()
	Returns a where clause specific to the database syntax.

	
	ConstructWhereClause()
	Constructs the Where clause for the specific SCR item.

	
	FillOrderByArray()
	Constructs the Order By clause for the specific SCR item.

	
	GetWhereClause()
	Places the Where clause into the Clauses object.

	
	GetOrderByClause()
	Places the Order By clause into the Clauses object.

P = Public Method/Property

The CSearchClausesParameter Class

Storing the clauses in a Search Parameter Object

In order to more easily and flexibly handle all the generated clauses of the SQL-Select, a CSearchClausesParameter object (subclass of CAbstractParameter) is created to hold all of the generated clauses in properties. The protected oSearchClauses property of the Data Source references the search clauses object after the call to CreateFilterFromResource. This way we can easily retrieve the clauses from the a-layer’s GetEntityBySearchCriteria() methods.

FUNCTION GetAttorneyBySearchCriteria(tuFilter)
*------------------
LOCAL loADO, lcSelect
loADO = THIS.GetADOAggregateParameter()
loADO.oCommand.ActiveConnection = loADO.oConnection
lcSelect = [SELECT Attorney.* FROM Attorney]
If THIS.CreateFilterFromResource(tuFilter) = FILE_OK
With this.oSearchClauses
loADO.oCommand.CommandText = lcSelect + .cWhere + .cOrder
EndWith
Endif
THIS.oSearchClauses = Null
THIS.ExecuteSQLQuery(loADO)
RETURN loADO.oRecordSet
ENDFUNC

CSearchClauseParameter (Internal class)

	
	Properties
	Description

	P
	cItems
	Field List

	P
	cFrom
	FROM Clause

	P
	cWhere
	WHERE Clause *

	P
	cHaving
	HAVING Clause

	P
	cOrder
	ORDER BY Clause *

	P
	cGroup
	GROUP BY Clause

	P
	cJoin
	JOIN Clause

	
	Methods
	Description

	
	DefineParameterArray()
	Sets up the definition of the properties into an array.

P = Public Method/Property

*COMCodebook currently only provides these clauses to the a-layer

The CSearchReferencesParameter Class

Storing the Object References

The CSearchReferencesParameter is a subclass of CAbstractParameter whose purpose is to carry shared properties and object references between the Search Criteria Manager and the Syntax Object. This makes it easy to get references to all the objects and properties used by the search objects. The Search References Parameter is instantiated by the Data Source and then passed to the Search Criteria Manager. The SCM then passes the Search References Parameter to the Syntax Object when it is instantiated.

CSearchReferencesParameter

	
	Property
	Description

	P
	cDataSourceTableName
	The Data Source’s Table Name

	P
	cRecordSetResourceClass
	The name of the Data Source’s RecordsetClass (if any)

	P
	cSyntaxClass
	The name of the Search Syntax Class

	P
	cSearchCriteriaManagerClass
	The name of the Search Criteria Manager Class

	P
	oSearchClauses
	A reference to the Search Clauses Object

	P
	oSearchCriteriaManager
	A reference to the Search Criteria Manager Object

	P
	oSyntax
	A reference to the SearchSyntax Object

	P
	oDataSource
	A reference to the Data Source Object

	
	Methods
	Description

	
	ReinitializeProperties()
	Clears all references by setting all properties to NULL.

	
	DefineParameterArray()
	Sets up the definition of the properties into an array.

P = Public Method/Property

Class Diagram

 Object Instantiation Diagram

[image: image1.png]

