Creating One-To-Many Forms A Step-By-Step Guide To Creating Searches In VFP Using COMCodebook

July 11, 2000
By Michael G. Emmons

Overview

COMCodebook provides a straightforward way of creating parent-child relationships between resources. This white paper will discuss how to set up these relationships and create one-to-many forms with them. The example used herein can be found in the TimeTrac application. The TimeTrac application is a demonstration application that comes with COMCodebook. This paper assumes you have this application installed and are able to run it.

Resource Manager Proxies and Resource Manager Proxy Loaders

Let’s take a quick look at the CResourceManagerProxyLoader (CRMPL) class. The purpose of the CRMPL is to allow developers to manage the associated non-visual CResourceManagerProxy (CRMP) class. Using the CRMPL the developer can simply drag-and-drop the class onto a form and let it take care of instantiating the CRMP.

The CResourceManagerProxy class is the workhorse of the COMCodebook framework when using a VFP front-end. The core responsibility of the CRMP is to allow VFP developers to manipulate data in a format they are familiar with, e.g. the VFP cursor. This means that the developer can create, update and delete records in the cursors created by the CRMPs and the CRMPs will take care of converting the cursor to a resource the middle tier will understand, such as an XML string or ADO record set.

Parent-Child Relationships

For parent-child relationships to work we need to set three different properties, two in the CRMPL and one in the CRMP. In the CRMPL the cParentResourceProxy and the cCursorSource need to be filled in. The cParentResourceProxy is the name of the CRMP class found in the aResourceManagerProxys.prg. The cCursorName property specifies the name of the VFP cursor that the CRMP will be creating and manipulating. In the CRMP we need to make sure that the cKeyField property is set to the primary key of the table.

The TimeTrack One-To-Many Form Example

The one-to-many example found in the TimeTrac application displays projects and all milestones associated with each project. See figure 1.

[image: image1.png]Projects and ~=loix(
Projec List Manager Miestones

rmheter, Matthew Description__[Gtatus [Deliveratle_|measure B

Custorner Define Project 2[Doc [Acceptance

Bergen Record, Te < iniial Weeting 1[Doc [Acceptance

Vision 1[Doc [Acceptance

Name

3K Projectaronis

Begin Date EndtDate

0411311399 120000 A [1213111939 120000 AN

Status

ot Begun B

Refresh

new | owes

Figure 1

Let’s take a look at the classes that make the one-to-many form work. The form itself is a subclass of the CResourceForm class. This class is designed to work with CRMPLs. Sitting on the form is a container class named cntProjectsAndMilestones found in the aProjects class library. See figure 2.

[image: image2.png]cntprojectsandmilestones

Prject st Ainager Milestones.
fetProectList chalianager Description Status [Deliverable _[Measure

Castorser.
chaCustomer E

Name
[otname

Bpgin Date. Ent Datel
= [erne :

otus

[ebostatss]
- o

v | swo | o [[o

Consultint BV Pioxy. Proiéit RN Piaxy Wilestone RN Praxy. Ciistormai R Proxy

Figure 2

Notice at the bottom of the container are three proxy loader classes, Consultant RM Proxy, Project RM Proxy, Milestone RM Proxy and Customer RM Proxy. The Consultant and Customer proxies are responsible for populating the manager and customer comboboxes. The Project proxy populates the project list box, the project detail textboxes and is the parent of the Milestone proxy. The Milestone proxy populates the milestone grid and is the child of the Project proxy. If we modify the aProjectProxyLoader and aMilestoneProxyLoader classes found in the aRMProxyLoaders class library we can see how their properties have been set up. See figure 3.

[image: image3.png]& Propert rmproxyloaders

[omicioreontostsr

A vme | debes | e |

x| | arieseronionter

Other

cparentresourceproxy’ project
cresolrcemanagerciassname Milestone RMProxy
crmeursormarne milestone

emprogproperty THIS.PARENT.oMilestone

Figure 3

There are three properties in figure 3 not discussed in this paper, cResourceManagerClassName, cRMProxyProperty and cRMGetProxyCursorname. The cResourceManagerClassName property specifies which RMP will be instantiated by the class. The cRMProxyProperty property is the name of the property in which to store a reference to the newly created RMP. The cRMGetProxyCursorName is the name of the cursor created when the GetProxy() method is called. Note that the aMilestoneProxyLoader has the cParentResourceProxy filled with "project." With these properties set, COMCodebook will take care of pulling milestone data when project data is requeried, saving any changes to milestone when project data is saved, etc.

Retrieving Data

Now, let’s look at how data is retrieved and updated in the TimeTrac one-to-many example form. When the Refresh button under the project list is clicked, the container’s RefreshProjectList() method is called which has the following code:

LOCAL loProjectResource, loManagerResource, loCustomerResource
loProjectResource = THISFORM.oRMControl.GetResource("o" + This.oProjectRMProxyLoader.cRMProxyName)
loProjectResource.GetProxy()
loManagerResource = THISFORM.oRMControl.GetResource("o" + This.oConsultantRMProxyLoader.cRMProxyName)
loManagerResource.GetProxy()
loCustomerResource = THISFORM.oRMControl.GetResource("o" + This.oCustomerRMProxyLoader.cRMProxyName)
loCustomerResource.GetProxy()
This.BindListControl()
This.lstProjectList.Requery()
This.lstProjectList.SelectItem(THIS.xIndex)
This.lstProjectList.Click()
This.Refresh()

This method calls the GetProxy() method of the Project, Manager, and Customer RMPs. For more information on the GetProxy() method, take a look at the "Developing Apps With COMCodebook" white paper. In brief, the purpose of the GetProxy() method is to create a list of data, usually a name and an ID. This list is placed in the cursor specified by the cRMGetProxyCursorName property of the CRMPL. This is perfect for populating list boxes and combo boxes and that is what it is being used for here. Once the GetProxy() methods have been called three new cursors will have been created: ProjectLookup, ConsultantLookup and CustomerLookup. The BindListControl() method binds the projectlookup to the list box, which is then requeried and the data displayed in the control. A default value is selected. The SelectItem() method fires the ProgrammaticChange() event which in turn calls the Requery() method of the container, passing the project id. The container’s Requery() method has the following code:

LPARAMETER tiProjectID
IF .NOT. EMPTY(tiProjectID)
THIS.UnbindControls()
THISFORM.oRMControl.Requery(tiProjectID)
THIS.BindControls()
THIS.Refresh()
ENDIF

First the controls are unbound from their control sources. This is due to the fact that any open cursors associated with the RMPs must first be closed and then recreated. Then the Requery() of the form’s oRMControl is called. The oRMControl is a subclass of the CresourceManagerProxyCollection. It contains the collection of all CRMPs on the form. The Requery() method of this class will pass the call on to the primary CRMP, in this case the ProjectRMProxy class. The framework will take care of requerying child. Finally, the controls are bound back to their cursors and the form is refreshed. Below is a summary of the important points regarding retrieving data:

· A lookup cursor can be created using the GetProxy() method

· The form’s oRMControl object can be used to requery data

· The oRMControl will requery the primary CRMP

· The framework will take care of requerying any children

Saving Data

Saving modified data is simply a matter of calling the forms Save() method. The framework will pass the command along to the oRMControl object, which will take care of saving the primary resource and any children resources. One difference that should be noted when dealing with RMP cursors is that they are table buffered. Due to the way data is retrieved and saved record buffered cursors are not allowed.

Conclusion

COMCodebook’s ability to drag and drop proxies and set relationships between them makes creating one-to-many forms easy. In addition, being able to work with data in native VFP format and converting it automatically for the middle tier simplifies development in the UI tier.

