Windows DNA Development – The Data Tier

Overview

A Windows DNA application is divided into three basic tiers: the User Interface tier, the Business tier, and the Data Tier. This white paper discusses the data tier, and reviews the purpose of the tier, requirements in a DNA-based application, and some of the design decisions made when creating the data tier.

What is the Data Tier?

The Data Tier in a Windows DNA application should be thought of as the persistence layer for application data. Data is moved around a DNA application and is presented to the various user interfaces in myriad formats, which do not necessarily mirror the format of the data storage itself. In other words, we may use a relational database to persist the data used by our applications, but we may present the data in more of an object or hierarchical database fashion.

In order to fully work in a DNA application, the database must support Microsoft Transaction Server’s transactioning capabilities. In order to do this, the database back end must adhere to either the OLE/TX or X/Open (XA) transactioning standards. Some databases that adhere to these standards include: Microsoft SQL Server, Oracle, Informix and DB2. While VFP and Access support pooling of connections under MTS, they do not support transactioning of their native data formats.

For our samples, we’ll be discussing and using SQL Server 7 as our relational data storage mechanism.

An Introduction to SQL Server

The first version of “Microsoft” SQL Server, which was released in 1989, was actually developed by a then little known company called Sybase.   Microsoft simply marketed it under their name.   Version 1.0 was a sixteen-bit application that ran under OS/2.  At that time, Microsoft thought little more of the product than as a way of bolstering sales of Microsoft LAN Manager and Microsoft OS/2.

In the early versions of the product, Microsoft’s participation in development was limited to the creating utilities and the network interface to allow the product to run on OS/2 and later Windows.

Microsoft’s focus on Windows expressed itself in this area with the decision to drop support for OS/2 in future versions and to develop SQL Server for the Windows platform only.  This decision had important implications for the future.  Microsoft would not have to make any compromises in the product in order to support multiple platforms.

Version 4.2 for Windows NT shipped in 1993.  Microsoft fully participated with Sybase in the development of this version.  However, to a large extent, it was still a port from Sybase’s Unix version.

As both Windows NT and SQL Server gained market acceptance, friction began to develop between Microsoft and Sybase.  In 1994, both companies agreed to end joint development.  From this point on, Microsoft SQL Server began to diverge from Sybase’s products.

[It was clear to me from the very first version I used, (4.2) that Microsoft gave great attention to ease of use.  In the project I was involved in, we originally planned on using Sybase System 10 or 11 on NT.  However, we could not successfully install either version.  Although we had numerous conversations with Sybase engineers we still couldn’t get their product to work.   As the project schedule slipped, we decided to try Microsoft’s product.  The install literally took just twenty minutes.]

In 1996, Microsoft released version 6.0.  The two major enhancements were replication and scrollable cursors.  Version 6.5 was released ten months later.  Although it had various improvements it was largely a maintenance release.

As Windows NT gained market share, SQL Server also became increasingly popular in the marketplace.  It was bundled with the BackOffice products and so in many cases choosing SQL Server was the path of least resistance. Additionally, Microsoft’s experience with consumers was evident in the very polished and useful utilities bundled with the product.  Therefore, smaller shops found it to be an easier product to use than its competitors.  When the Internet became popular, SQL Server benefited from the great popularity of NT and the Internet Information Server as a Web Server (IIS was free with NT!). It was a very easy decision to just add another Microsoft product to a company’s environment rather than try to integrate an outside vendor’s product with Microsoft’s environment.

This begs the following question: Was version 6.X a good product or simply a marketing success?

Actually, the product was very robust and provided very impressive performance measurements.  Many popular business line products such as SAP, Baan, and Peoplesoft were released in SQL Server versions.  

Microsoft also did a very good job with integrating the product into the NT environment.  However, the product suffered from two limitations; it wasn’t as scalable as it’s competitors and it was somewhat less reliable.

SQL Server gained from the success of NT but also suffered from any disadvantages of NT.  NT was not  (and still isn’t) as scalable as other operating systems.  While Unix boxes could many processors, NT was only able to utilize two.  In most situations, two processors were more than enough.  However, in very intensive environments, SQL Server simply couldn’t perform well enough.  (Currently, it is possible to obtain Unix Servers with sixty-four or more CPU’s.  NT is still limited to at most, eight.)  Additionally, the maintenance and backup routines were not well optimized.  Therefore, it was not feasible to support databases larger than a hundred gigabytes.  

[That was the officially admitted number.  I found problems at around twenty gig.]

Although SQL Server was very reliable and, in fact, many business’s ran their operations on SQL Server (including a city’s emergency response operations), in a situation where reliability was the most important consideration, products that were around longer and therefore better shaken down were chosen instead. This applied not just to SQL Server but to Windows NT.

It was with these criticisms in mind that Microsoft developed the newest version of SQL Server, version 7.

SQL Server Version 7  

SQL Server Version 7 is a revolutionary change.  In some respects it can be considered a new product.  It is the first version to make a total break with its Sybase legacy.   

Microsoft’s aim with this version was twofold.  On the one hand, improve performance and scalability so that it could further penetrate into the “Enterprise” environment.  At the same time, make it even easier to use so that it would further saturate lower end environments.  

To improve performance, Microsoft added important new features to every aspect of the product.  Parallel processing and other new techniques for analyzing and costing queries were developed and built into the engine.  The I/O subsystem received a performance boost with the enlargement of the page size from 2K to 8K.  Concurrency was greatly increased with the introduction of row level locking.

Scalability was achieved by totally rewriting the maintenance and backup subsystem. In a recent backup benchmark test, Microsoft and Compaq achieved a throughput of 609 GB per hour for online backup and 536 GB per hour for restore. 

It is now possible to support databases as large as a terabyte using SQL Server.

Reliability has also greatly improved.  Microsoft is confident enough of the stability of the product to affirm that the database consistency check command no longer needs to be executed on a regular basis. (DBCC checks the internal consistency of the meta-data in the database.  It is similar in function to the DOS CHKDSK command that searches for lost chains on a hard disk.)

Microsoft also made a strong expansion into the data-warehousing arena with the purchase and subsequent integration of the Plato data warehousing services with SQL Server.  These additional services provide a means to both import and transform data from outside sources and create and store summaries of the information.

In order to make the product even easier to use, several important changes were made.  In previous versions, configuring SQL Server was a chore and required some sophisticated analysis.  Additionally, these parameters needed to be monitored and manually adjusted as the environment changed.  A common occurrence was a database performing slowly because it either had two little memory allocated to it or too much (in which case NT didn’t have enough to get its job done). In version 7, the Server dynamically adjusts memory and other parameters.

Many wizards and tools have been included in the product.  As an example, the index-tuning wizard will monitor activity on the server and then make a recommendation on what the best indexes would be.  It will then build the statements to implement the changes and schedule them for automatic execution.

Analysis and Design of the Data Tier

When creating a Windows DNA application, it is important to properly analyze the system from both a global perspective (what does the whole system do) as well as from a tiered perspective (what does this tier do). When designing the data tier, we recommend using a data modeling tool that can do round trip development to and from your database. This allows you to properly document your database, and to put any design decisions in a public location.

When looking at your application from a global perspective, there is one question that will impact the data tier: 

What calculated pieces of information will require access to a lot of data, with small result sets?

Information that requires a calculation will typically go on the middle tier. However, if it requires access to a lot of data, placing it in a stored procedure that is called by the middle tier is more efficient since it will lower network bandwidth. 

An example of this situation is a multi-location university system. We may want to retrieve the number of students in each campus, by year, for the past five years and store it in a summary table. Instead of doing this calculation on the middle tier (which would require downloading a large amount of data), we can do it all in a stored procedure on the back end.

A Quick Look at the Middle Tier Components

Before we go any further, let’s take a quick look at a logical view of the components that sit under MTS. We have two basic sets of components, those that model the business itself, and those that mediate between the business model components and the physical database. If we look at a typical server setup, it would look something like figure 1: 


Figure 1: The Business and Data Components in MTS/Component Services

As you can see, we have both business and data components running inside of MTS. The data components are created to mediate between the fixed format of the data store and the format that the business components require in order to do their work (we’ll call this a resource).

Benefits of Separating the Data Access from the Business Rules

By separating the data access from the business rules, we accomplish a number of goals:

1. The data store can be modified independently of the business rules. If we break one table out into two or more, we simply modify the SQL statements that make up our data component. The business components continue to receive the same resource as before – though the back end data store has changed.

2. The approach to data access can be modified independently of the business rules. If we find that accessing the data directly is slow or no longer possible due to security concerns, we can recode the data components to use stored procedures instead, without breaking the business components, which continue to receive the same resource.

3. The data store can be changed independently of the business rules. If we change the storage system of our customer data from an Exchange contact list to SQL Server, for instance, we simply modify the code in the components to call into SQL Server instead.

4. As we need to add additional information for the business rules, we can incrementally add new data components. In incrementally building a middle tier for a company, we can slowly add data components, as we need them to implement new rules. Over time, we will reuse the components across multiple business components.

This flexibility in use and reuse is core to our model for accessing the data tier.

Basic Capabilities of the Data Components

Now that we’ve seen some of the flexibility that separating the data access components gives us, let’s look at what types of capabilities they must have. In essence, it falls into three categories: 

1. Create, Update and Delete (CRUD) semantics

2. Search capabilities

3. Ad-hoc requests

Create, Update and Delete Semantics

Since our data components communicate directly with the database, they are responsible for handling any modification to the data. Though this will typically manifest itself as Insert, Update and Delete statements, it may also consist of equivalent stored procedure calls or even a call to a data store specific API. In any case, we must provide methods for getting an empty resource, saving a resource (which handles saving both a new set of data as well as updates), and deleting a resource.

Search Capabilities

When a front-end requests a particular resource from the middle tier business components, that request may be based on an ID, a last name, or any other type of field. We need to provide a robust approach for searching for particular information. In order to do this we need to handle three types of cases.

1. Requests based on known criteria. This case allows us to create easy to call named searches such as oCustomer.GetByLastName(), or oInvoice.GetByID. These searches can be coded into our data components and can take advantage of indices and tuning options.

2. Requests based on unknown criteria. This case allows us to create a standard method by which any piece of a resource can be used to query the system. By passing back a resource-like object that contains all of the filtering elements of a query, we can create an ad-hoc query capability for our system.

3. Requests that return a proxy into our data. This is useful for any controls that show multiple rows (such as listboxes or comboboxes). This method typically returns an ID and a viewable column, which is used to narrow down the selection resulting in some type of GetByID() call.

Ad Hoc Requests

Our data components will occasionally need methods by which they can surface other, unique capabilities of the back end. For instance, a University database may have a stored procedure that calculates admissions to the University by ethnic group. Our University database component may include a method called GetAdmissionByEthnicGroup(), in order to surface that capability.

Summary

In this white paper we reviewed some of the new capabilities of SQL Server 7 and discussed why separating the data access components from the business rules components can give us a more flexible architecture for long-term middle tier development. This separation allows us to use all the capabilities of the back-end data store, whether that includes a special API for data access or stored procedure calls. By implementing this approach, we are able to tune the speed of our data access separately from the workings of our application. Finally, we discussed some of the types of methods that our data access components will require.

 

   

