Template Language Reference for COM Codebook Code Wizard

Flash Creative Management, Inc.

September, 2000

Template Language Reference for COM Codebook Code Wizard
1
Introduction
3
What is a Template?
3
Template Language Constructs
3
General Constructs
3
{{ <expression> }}
3
Data Based Constructs
4
##FOR EACH TABLE## .. ##ENDTABLE##
4
##FOR EACH FIELD## .. ##ENDFIELD##
4
##FOR EACH PARENT## .. ##ENDPARENT##
5
##FOR EACH INDEX## .. ##ENDINDEX##
5
Class Based Constructs
6
##FOR EACH CLASS## .. ##ENDCLASS##
6
##FOR EACH METHOD## .. ##ENDMETHOD##
7
Record Constructs
7
##FOR EACH RECORD IN <table name> [<SCANCondition>])..##ENDRECORD##
7
Conditional Constructs
8
##IF <Logical Condition>## .. ##ENDIF##
9
Template Constructs
9
<<TEMPLATE <Template Description> >>
9
Extending the Code Wizard
10

Introduction

The COM Codebook Code Wizard is a tool that ships with COM Codebook.

We came up with a template language that facilitates generations of classes, but at the same time is flexible enough to be used for generation of documentation, both in the code and technical documentation, as well as testing suites (generation of programs that will instantiate and test your classes) and the basis for ASP pages. As you discover more uses for the template language, we invite you to send us an email at Flash Creative Management, Inc. so that we can make these techniques known to other users of COM Codebook. If you have suggestions for additional commands for the template language, we would love to hear those as well. Send the emails to either Rick Hodder (rickh@flashcreative.com) or Beth Massi (bmassi@flashcreative.com).

What is a Template?

A template is a block of text that that has embedded elements that are placeholders for generated content. Templates are stored in a table called Template, which you will find in the same directory as the wizard. Each template has (among other things) a description and a memo field containing the text of the template.

Template Language Constructs

General Constructs

{{ <expression> }}

Any developer familiar with GENSCRNX will understand this language element. When the document is being generated, the double braced {{ }} expressions are evaluated and are replaced with the result of the expression between the braces. For example, if you have a global variable called gcDeveloperName set to “Rick Hodder”, you could put the following into the template document:

*-- {{gcDeveloperName}}

*-- Flash Creative Management, Inc.

When you generate the document you will see the following:

*-- Rick Hodder

*-- Flash Creative Management, Inc.

Notice that the braces are removed. Another neat thing you can do is put calls to procedures and functions into the double braced expression. The expression will be replaced by the result of the function/procedure call. Here is an extension of the previous example:

*-- {{gcDeveloperName}}

*-- Flash Creative Management, Inc.

*-- {{DATE()}}

When you generated the document you would see the following:

*-- Rick Hodder

*-- Flash Creative Management, Inc.

*-- 9/14/2000

Now the return value of the DATE() function is inserted. Also notice that you did not have to convert that value to a string (ex. {{ DTOC(DATE()) }}. That is because the expression is macro expanded within the TRANSFORM() function (i.e. lcResult = TRANSFORM(&lcExpression)). TRANSFORM converts the result of its first parameter to text automatically for you. The second parameter of the TRANSFORM function is a mask to apply to the result. An interesting side effect to using the TRANSFORM function is that you can embed transformation information into the double braced expressions. For example, let’s say that I have a variable called gnMyHourlyRate set to 123456789.04 (I know, you are saying to yourself, “How can he live on such a meager hourly rate?” The answer is “volume, simply volume”) (. I want to put my hourly rate in a document that I am generating, but I want it to be formatted as a monetary expression. So I put the following into my template:

My hourly rate is {{ gnMyHourlyRate,"$999,999,999.99" }}. Take it or leave it!

When I generate the document I will see the following:

My hourly rate is $123,456,789.04. Take it or leave it!

Data Based Constructs

The code wizard allows you to choose a database to run the template against. There are several constructs that apply to the database chosen.

##FOR EACH TABLE## .. ##ENDTABLE##

When the template language encounters this construct, it loops through the tables in the database. For each table it sets a memory variable called TABLE to the name of the table. Then the text between the delimiters gets evaluated for each table. For example, consider the following. You have a database named MyBusiness.dbc that has 3 tables, named Customers, Invoices, and InvDetail. You design the following template:

Here are the tables in my database:

##FOR EACH TABLE##

Table: {{TABLE}}

##ENDTABLE##

When this template is generated for MyBusiness.dbc, it will generate the following text:

Here are the tables in my database:

Table: Customers

Table: Invoices

Table: InvDetail

##FOR EACH FIELD## .. ##ENDFIELD##

When the template language encounters this construct, it loops through the fields in a particular table. For each field in the table, it sets a memory variable called FIELD to the name of the field. Then the text between the delimiters gets evaluated. For example, consider the following. You have a database named MyBusiness.dbc that has a table named Customers with two fields, named cId and cName, and a table named Invoices with three fields, cId, cCustId, dInvDate. You design the following template:

Here are the tables in my database:

##FOR EACH TABLE##

Table: {{TABLE}}

##FOR EACH FIELD##

Field: {{FIELD}}

##ENDFIELD##

##ENDTABLE##

When this template is generated for MyBusiness.dbc, it will generate the following text:

Here are the tables in my database:

Table: Customers

Field: cId

Field: cName

Table: Invoices

Field: cId

Field: cCustId

Field: dInvDate

The ##FOR EACH FIELD## construct must exist within a ##FOR EACH TABLE## construct.

##FOR EACH PARENT## .. ##ENDPARENT##

When the template language encounters this construct, it loops through the parent tables of a particular table. “Parent Table” refers to all tables that a table is a “relational child” to. For example, if you have a one-to-many relationship between Customers and Invoices, then Customers is a parent of the Invoices table. For each parent of the particular table, it sets a memory variable called PARENT to the name of the parent table. Then the text between the delimiters gets evaluated. For example, consider the one-to-many relationship between Customers and Invoices again. You design the following template:

Here are the tables in my database:

##FOR EACH TABLE##

Table: {{TABLE}}

##FOR EACH PARENT##

Parent Table: {{PARENT}}

##ENDPARENT##

##ENDTABLE##

When this template is generated, it will generate the following text:

Here are the tables in my database:

Table: Customers

Table: Invoices

Parent: Customers

The Customers table had no parents, so nothing was generated by the ##FOR EACH PARENT## construct for the Customers table. The Invoices table on the other hand shows Customers as a parent.

The ##FOR EACH PARENT## construct must exist within a ##FOR EACH TABLE## construct.

##FOR EACH INDEX## .. ##ENDINDEX##

When the template language encounters this construct, it loops through the indices of a particular table. For each index of the particular table, it sets a memory variable called INDEX to the name of the index tag. Then the text between the delimiters gets evaluated. You have a database named MyBusiness.dbc that has a table named Customers with an index tag called CustName, and a table named Invoices with an index tag called InvNum. You design the following template:

Here are the tables in my database:

##FOR EACH TABLE##

Table: {{TABLE}}

##FOR EACH INDEX##

Index: {{INDEX}}

##ENDINDEX##

##ENDTABLE##

When this template is generated, it will generate the following text:

Here are the tables in my database:

Table: Customers

Index: CustName

Table: Invoices

Index: InvNum

The ##FOR EACH INDEX## construct must exist within a ##FOR EACH TABLE## construct.

Class Based Constructs

The code generation wizard can be pointed at a PRG file containing classes. Besides documentation and testing, the following constructs can be used to generate classes from other classes. The code wizard uses these constructs to make sure that the programming interface of the resourcemanagers have the same programming interface as the datasources. Currently these constructs will only recognize methods that defined with FUNCTION and ENDFUNC (as opposed to PROCEDURE and ENDPROC). Also, to preserve programming interfaces, do not use LPARAMETERS, but rather put the parameters on the same line as the method name: ex. FUNCTION MyFunction(Param1,Param2)

##FOR EACH CLASS## .. ##ENDCLASS##

When the template language encounters this construct, it loops through the OLE PUBLIC classes in a PRG file. For each class it sets a memory variable called CLASS to the name of the class and a memory variable called SUPERCLASS to the name of the superclass. Then the text between the delimiters gets evaluated for each class. For example, consider the following. You have a PRG file with the following contents:

DEFINE CLASS FirstClass AS LINE

FUNCTION LookupName(tcName)

ENDFUNC

ENDDEFINE

DEFINE CLASS SecondClass AS SHAPE

FUNCTION LookupZipcode(tcZipCode)

ENDFUNC

ENDDEFINE

You design the following template:

Here are the classes in my PRG file:

##FOR EACH CLASS##

Class: {{CLASS}} – SuperClass: {{SUPERCLASS}}

##ENDCLASS##

When this template is generated, it will generate the following text:

Here are the classes in my PRG file:

Class: FirstClass – SuperClass: LINE

Class: SecondClass – SuperClass: SHAPE

##FOR EACH METHOD## .. ##ENDMETHOD##

When the template language encounters this construct, it loops through the non-protected methods of a particular class in a PRG file. For each method it sets a memory variable called METHOD to the name of the method. Then the text between the delimiters gets evaluated for each method. For example, consider the following. You have a PRG file with the following contents:

DEFINE CLASS FirstClass AS LINE

FUNCTION LookupName(tcName)

ENDFUNC

ENDDEFINE

DEFINE CLASS SecondClass AS SHAPE

FUNCTION LookupZipcode(tcZipCode)

ENDFUNC

ENDDEFINE

You design the following template:

Here are the classes in my PRG file:

##FOR EACH CLASS##

Class: {{CLASS}} – SuperClass: {{SUPERCLASS}}

##FOR EACH METHOD##

Method: {{METHOD}}

##ENDMETHOD##

##ENDCLASS##

When this template is generated, it will generate the following text:

Here are the classes in my PRG file:

Class: FirstClass – SuperClass: LINE

Method: LookupName(tcName)

Class: SecondClass – SuperClass: SHAPE

Method: LookupZipcode(tcZipCode)

The ##FOR EACH METHOD## construct must exist within a ##FOR EACH CLASS## construct.

Record Constructs

The following construct allows scanning through the contents of a table. The table referred to is not related to the database chosen in the code wizard. It can be any table.

##FOR EACH RECORD IN <table name> [<SCANCondition>])..##ENDRECORD##

When the template language encounters this construct, it opens <table name> and loops through the records with a SCAN..ENDSCAN. Then the text between the delimiters gets evaluated for each record. For example, consider the following. You have a table named Fruits that has 2 fields, named cName and cSeason:

CName
Cseason

Apple
Summer

Grapes
Spring

Oranges
Fall

You design the following template:

Here are the fruits you can buy from my stand:

##FOR EACH RECORD IN Fruits##

Fruit: {{Fruits.cName}}

Season: {{Fruits.cSeason}}

##ENDRECORD##

When this template is generated, it will generate the following text:

Here are the fruits you can buy from my stand:

Fruit: Apple

Season: Summer

Fruit: Grapes

Season: Spring

Fruit: Orange

Season: Fall

An optional <SCAN Condition> can be added after the table name. If you wanted to only show the fruits available in the fall, you could create the following template:

Here are the fruits you can buy from my stand in the Fall:

##FOR EACH RECORD IN Fruits FOR cSeason == “Fall”##

Fruit: {{Fruits.cName}}

Season: {{Fruits.cSeason}}

##ENDRECORD##

When this template is generated, it will generate the following text:

Here are the fruits you can buy from my stand in the Fall:

Fruit: Orange

Season: Fall

This construct can be very helpful for creating documentation as well as hardcoding combobox items on ASP pages.

Conditional Constructs

##IF <Logical Condition>## .. ##ENDIF##

This construct allows you to conditionally generate a part of a template. If the <Logical Condition> evaluates to .T., then the text between the delimiters will be evaluated and inserted into the generated document. If the condition evaluates to .F. the text between the delimiters is not inserted into the document. For example, consider the following. You have a database named MyBusiness.dbc that a table named Customers with two fields, named cId and cName, and a table named Invoices with three fields, cId, cCustId, dInvDate. Lets say that you want to document your database, listing the tables and their associated fields, but you do not want any field called CID to be included in the list. You design the following template:

Here are the tables in my database:

##FOR EACH TABLE##

Table: {{TABLE}}

##FOR EACH FIELD##

##IF FIELD!=”CID”##

Field: {{FIELD}}

#ENDIF##

##ENDFIELD##

##ENDTABLE##

When this template is generated for MyBusiness.dbc, it will generate the following text:

Here are the tables in my database:

Table: Customers

Field: cName

Table: Invoices

Field: cCustId

Field: dInvDate

Notice that no field text was generated when the FIELD variable was CID.

Template Constructs

<<TEMPLATE <Template Description> >>

This construct allows you to include a template within a template. When the code wizard encounters this construct, it looks up the <Template Description> in the cDesc field of TEMPLATE.DBF. It then inserts the contents of the memo field into the template being built.

Consider the following template:

Here are the tables in my database:

##FOR EACH TABLE##

Table: {{TABLE}}

##FOR EACH FIELD##

##IF FIELD!=”CID”##

Field: {{FIELD}}

#ENDIF##

##ENDFIELD##

##ENDTABLE##

To make this template more reusable, you could create a template that would represent the field information that will be shown within the ##FOR EACH FIELD## construct. Here are the steps you would take:

Add a record to template.dbf, and set the cDesc field to “Field Information.” Put the following text into the memo field:

Field: {{FIELD}}

Now create another template and put the following text into it:

Here are the tables in my database:

##FOR EACH TABLE##

Table: {{TABLE}}

##FOR EACH FIELD##

##IF FIELD!=”CID”##

<<TEMPLATE Field Information>>

#ENDIF##

##ENDFIELD##

##ENDTABLE##

Extending the Code Wizard

The wizard is currently being released as an executable, yet you can extend it. In the description of the {{<expression>}} construct, I mentioned that you could use memory variables. Consider creating a table called Variables that has 2 memo fields: mVar and mValue. Into mVar place the name of a memory variable to create, and into mValue place the value to assign to the variable:

Mvar
MValue

DeveloperName
“Rick Hodder”

CompanyName
“Flash Creative Management, Inc.”

Now create a prg file and put the following code:

LOCAL lcVar, lcValue

USE VARIABLES

SCAN

lcVar = ALLTRIM(mVar)

lcValue = ALLTRIM(mValue)

PUBLIC &lcVar

&lcVar = &lcValue

ENDSCAN

If you run this program before running the code wizard, you can have constructs like the following in your templates:

*-- Developer: {{DeveloperName}}

*-- Company: {{CompanyName}}

