

Programming &
Utilities Guide

COPYRIGHT
1989 - 2000 by ZUCCHETTI TOOLS S.r.l.
All rights reserved.
This publication contains information protected by copyright. This publication may not
be reproduced, stored, or transmitted, in any form or by any means without the prior
permission of the publisher.

TRADEMARKS
All produced trademarks are ownership of the holder and are acknowledged by this
publication.

ZUCCHETTI TOOLS S.r.l. SOFTWARE TECHNOLOGY
PADOVA - BELLARIA - RIMINI
E-mail: clabrn@codelab.it
Web Address:
 http:\\www.zucchettitools.com
 http:\\www.codepainter.com
 http:\\www.codelab.it

P R O G R A M M I N G & U T I L I T I E S G U I D E

S U M M A R Y - I

Summary

User Interface..1

1.1 Introduction...1

1.2 Client/Server User Interface For MS Visual FoxPro1
1.2.1 The Main Menu...2
1.2.2 The Toolbar ...2

Function Keys ..2
1.2.3 The Utility Menu...3

Database Administration..4
Query Painter ...5
Dialog Window Painter..6
Zoom Painter..6
Visual Zoom Configuration ...7
Display Area ..8
Configuration Area ..10
User Area ...14
Menu Painter ..16
User And Group Administration..18
Security Administration ...18
Table Administration For Autonumbered Variables..................................20

1.2.4 The Application Bar And Post-INs ...20
1.2.5 Application Name, Version, Dimension and Date26
1.2.6 Change The Application Background Bitmap27

P R O G R A M M I N G & U T I L I T I E S G U I D E

S U M M A R Y - I I

1.2.7 Dialog Window Background .. 27
Same Background For All Dialog Windows... 28
Different Backgrounds for Different Dialog Windows 29

File Management .. 31

2.1 Introduction ...31

2.2 File Management ...32
2.2.1 Tables And Links Management .. 32

Database Administration ... 33
Managing Installation Procedures For Applications (CP_INST).............. 33
Connection to more Server .. 33
Creating Multi Company Files .. 36
Company, User And Group Tables ... 44
Updating An Existing Database .. 46

Menu Management... 49

3.1 Introduction ...49

3.2 The Menu File (.DBF). ..50

Printer Management .. 53

4.1 Introduction ...53

4.2 Printer Management...53
4.2.1 Printer Selection.. 54

Print Preview ... 55
Send To Printer.. 55
Send To Printer With Options ... 55
Print Or Export On File ... 56
Microsoft Word Document.. 57
Microsoft Excel Document.. 57
MS Graph Graph ... 57
Connect Report To Printer... 57
One Printer Across The Application ... 59

P R O G R A M M I N G & U T I L I T I E S G U I D E

S U M M A R Y - I I I

One Printer Connected To One Procedure And One Workstation.............60
One Printer Connected To One Procedure And One Company.................60
One Printer Connected To One Company, One Workstation And One User
...61

User Management... 63

5.1 User Management in MS Visual FoxPro..63

5.2 Selecting The User ..63

5.3 The Login Dialog Window CP_LOGIN...64

5.4 User Administration ..68

5.5 Access Definition ..71
5.5.1 Security Administration ..73

5.6 Managing Post-IN Messages ...74

5.7 Users And Groups Files...75
5.7.1 Users Table..75
5.7.2 Group Table...76
5.7.3 User/ Groups Table ...77

System Routines.. 79

6.1 Introduction...79

6.2 System Routines For MS Visual FoxPro..79
6.2.1 cp_AskProg ...80
6.2.2 cp_AskTableProg ..81
6.2.3 cp_BuildWhere..82
6.2.4 cp_ChangeAzi ...83
6.2.5 cp_ChangeUser ...83
6.2.6 cp_Class ..84
6.2.7 cp_CreateAzi ...85

P R O G R A M M I N G & U T I L I T I E S G U I D E

S U M M A R Y - I V

6.2.8 cp_Dbinst .. 86
6.2.9 cp_DeleteAzi .. 87
6.2.10 cp_ErrorMsg ... 87
6.2.11 cp_ExistAzi... 88
6.2.12 cp_Exprt.. 89
6.2.13 cp_GetProg ... 90
6.2.14 cp_info .. 91
6.2.15 cp_Msg ... 93
6.2.16 cp_NextProg ... 93
6.2.17 cp_NextTableProg .. 94
6.2.18 cp_NullValue.. 95
6.2.19 cp_szoom .. 96
6.2.20 cp_ToStr ... 97
6.2.21 cp_YesNo ... 98
6.2.22 GetCtrl .. 98
6.2.23 LookTab.. 99

System Variables .. 101

7.1 System Variables for MS Visual FoxPro......................................101
7.1.1 Global Variables ... 101

i_datsys .. 101
i_codute ... 102
i_codazi ... 102

7.1.2 cTrsName Variable ... 102
7.1.3 The i_cSuperPwd Variable ... 102
7.1.4 The i_cBmpPath Variable... 103
7.1.5 The i_cStdIcon Variable ... 103
7.1.6 The i_demolimits Variable ... 103
7.1.7 The i_TableProp Variable... 104
7.1.8 The i_ServerConn Variable .. 104

P R O G R A M M I N G & U T I L I T I E S G U I D E

S U M M A R Y - V

7.1.9 The i_CpDic Variable ...105
7.1.10 The CP_PATH Variable..105
7.1.11 The CP_DBTYPE Variable...105
7.1.12 The CP_ODBCCONN Variable..106

Managing AutoNumber Values ... 107

8.1 Managing AutoNumber Values in MS Visual FoxPro..................107
8.1.1 Introduction ...107
8.1.2 AutoNumber Values..108

Advanced Options... 111

9.1 Module Management...111

9.2 Multilanguage Management ..116
9.2.1 Implementation..119
9.2.2 Technical Notes...121

Changing The Database ... 123

10.1 MS Visual FoxPro Databases ...123
10.1.1 From Visual Fox Pro to Jet ...124
10.1.2 From Visual Fox Pro to SQL Server ...131

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 1

Chapter 1

User Interface

1.1 Introduction

This chapter describes the functionalities of CODEPAINTER REVOLUTION User
Interface.

1.2 Client/Server User Interface For
MS Visual FoxPro

Let us now examine the user interface for Client/Server applications developed in MS
Visual FoxPro.

P R O G R A M M I N G & U T I L I T I E S G U I D E

2 U S E R I N T E R F A C E

1.2.1 The Main Menu

The main menu of your running application shows the items you defined during the
Desing Phase. If the items are more than those fitting on one line the items are
displayed on as many lines as required. Opening these items the designed procedures
are executed. To open an item on the toolbar you can either click the desidered item
or press <Alt> and the underlined letter. Each application also has the 'Utility' menu
containing basic functionalities that will be explained in this reference guide.

Opening the desidered item on the menu the corresonding procedure is executed.
Procedures are always opened in the 'Query' mode. You can change into the 'Load'
mode pressing <F4> and into the 'Change' mode pressing <F3>, or clicking on the
corresponding icon on the second toolbar.

1.2.2 The Toolbar

The application's default toolbar is under the main menu. You can move it anywhere
on the screen. Positioning the mouse on any icon and waiting a few seconds, the
corresponding tooltip is displayed. The toolbar functionalities can be also accessed
using Function Keys.

Function Keys

The following table shows the toolbar button functionalities and the corresponding
functional keys.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 3

Button Functional Key Action

Load <F4> To input a new record

Query Starting mode To read a file

Change <F3> To change the selected record

Filter <F12> To search a record in the table

Delete <F5> To delete the selected record

Zoom <F9> To zoom on the table

Previous record <F7> To go to the previous record

Next record <F8> To go to the next reord

Page Up <Page up> To scroll up a page

Page down <Page Down> To scroll down a page

Exit <Esc> To exit the open procedure

Save <F10> To save the curent record

1.2.3 The Utility Menu

The 'Utility' menu has a set of functionalities that allow interacting with the
application.

The menu items are:

P R O G R A M M I N G & U T I L I T I E S G U I D E

4 U S E R I N T E R F A C E

Database Administration

The 'Database Administration' functionality allows checking and re-alligning the
database and the application design. When the application is run this funtionality is
automatically started and discrepancies identified.

Clicking the 'Update Database' button the re-allignement procedure is launched, a
small window displaying the executed SQL instructions is shown, and all selected
tables are up-dated.

The 'Check Links' button verifies the user defined 'ODBC' connections.

The 'Change' button allows to manually configure table options. The 'Sel.all' button
selects all tables in the dialog window.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 5

For more information please refer to chapter 2 'Client/Server File Management'.

Query Painter

The Query Painter is a powerful query and multifile reporting tool that deeply exploits
the SQL language and works in a Client/Server environment. It replaces all tools that
have been used so far guaranteeing independence and versatility. Using the Query
Painter you can define multifile queries that can be called from within the application.
Data can be extracted (routine procedures), displayed (Visual Zoom), or processed
through advanced reporting functionalities. The end result is not code to be compiled,
but complex SQL sentences that are components of the host application. These
sentences can be changed or implemented as required, delivering a high level of
flexibility.

The Query Painter is highly integrated with the application's Data Dictionary to guide
the experienced user through complex queries without the need of deeply knowing
the application's structure. This renders this powerful tool ease to use.

For more information please refer to the 'Visual Tool Guide' chapter 2 'Query
Painter'.

P R O G R A M M I N G & U T I L I T I E S G U I D E

6 U S E R I N T E R F A C E

Dialog Window Painter

The Dialog Window Painter deeply exploits Object-Oriented Programming,
integrating the Query Painter and allowing to create interpreted dialog windows, i.e
selection windows that are not hard coded.

For more information please refer to the 'Visual Tools Guide' chapter 3 'Dialog
Window Painter'.

Zoom Painter

The 'Zoom Painter' deeply exploits object oriented technology. It integrates the
'Query Painter' allowing to create interpreted zooms on multifile queries.

Visual Zooms can be integrated in applications and can be launched from a button
object or directly from the menu.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 7

Visual Zoom Configuration

Visual Zooms are used as autozoom as well as link to zoom on other tables. Visual
Zooms allow configuring any kind of query on a given table easily and within a short
time.

P R O G R A M M I N G & U T I L I T I E S G U I D E

8 U S E R I N T E R F A C E

Let us now analyze the various Zoom Painter sections.

Display Area

The 'Display' area is highly customizable and can be configured easily. Defaulted
records are organized in titled columns. You can change the size of this area so that
you can display variable fields and add fixed fields ('Opt.' button).

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 9

Right click the column title to open the 'Column Title' window.

'Field Name' contains the name of the reference field and cannot be changed. In the
'Title' field you can define the description string for the column title or the field name
if the field is in a fixed position.

The 'Format' field contains the picture of the field. Please refer to Visual FoxPro
manuals for the list of pictures available.

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 0 U S E R I N T E R F A C E

The 'Height' and 'Width' fields define the field dimension in pixel. The fields 'Text
Color' and 'Background Color' define the column colors using the MS Visual FoxPro
functionality RGB(). You can also add logical conditions or expressions accepted by
the Visual FoxPro language.

Configuration Area

The 'Configuration' area is activated clicking the 'Options' button. In this area you can
define zoom parameters.

The 'Configuration' area is divided in five tab-strips, namely 'Selection', 'Order By',
'Fields', 'SQL', and 'File'. In the first three you can define charcteristics of the SQL
sentence. In the 'SQL' tab-strip you can check the SQL sentence you are building.
Clicking the 'Query File' button you can select an existing query to be associated to
the zoom. In the 'File' tab-strip you can save the defined paramenters in the zoom or
create/ modify a report.

Changes to the zoom can be checked immediately. Clicking the 'Query' button (next
to the 'Options' button) the query is executed basing on current parameters.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 1 1

Select

In the 'Select' tab-strip you can define query expressions and/or further record
selection parameters. Complex multiparameter query expressions can be defined using
the operators in the second column, or the boolean operator 'OR'.

Fields are dragged&dropped from selection columns in the 'Display' area. The
comparison operator is selected double clicking the desidered one in the second
column, or dragging it on the selected field. To select the boolean operator click the
'OR' button.

Order By

In the 'Order By' tab-strip you can define the field order simply dragging&dropping
fields from the selection columns in the 'Display' area. By default fields are ordered in
ascending order. Double clicking the field the order changes to descending.

The 'Delete' button allows deleting fields from the 'Order By' list.

Fields

The 'Fields' tab-strip displays the list of fields that are displayed in the 'Display' area.
The right column displays excluded fields. Fields can be moved clicking the '<<' or
'>>' buttons.

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 2 U S E R I N T E R F A C E

SQL

The 'SQL' tab-strip contains the SQL sentence defined for displaying extracted data.
Associating a Visual Query to the zoom 'WHERE' clause is replaced by the query
name.

Clicking the 'Query File' button you can select an existing Visual Query (*.VQR). You
can also edit the SQL sentence activating the 'Edit SQL Sentence' flag and make
manual changes.

File

In the 'File' tab-strip you can either save the parameters defined in the zoom or
create/ modify a report.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 1 3

When the 'Default' flag is active, the current configuration is used as default. When
the 'Ask For Parameters' flag is active, and the zoom is executed, a 'Selection
Parameters' window is opened. When the 'Keep Dimensions' flag is active the dialog
window dimensions are saved in the configuration file.

Clicking the 'Save' button the configuration is saved using the following syntax:
<ConfigurationName>.<TableName>_VZM

N.B.

You can save zoom configurations as deafults for users (DEFAULT_X) or for groups
(DEFAULT_GX). 'X' stands for user code and GX for group code.

N.B.

Zooms can be saved under a subdirectory named 'Default'. The system will always search for
.VZM files under this directory. Before launching a zoom from a procedure you have to define the
correct path. For example, if you launch the zoom named 'prova' that you saved under the
subdirectory 'Zoom', you need to define the path 'Zoom\prova.VZM'.

Clicking the 'Modify/Create Report' button the MS Visual FoxPro Report tool is
launched. The report can thus be associated to the zoom. The configuration is saved
with the following syntax:

<ConfigurationName>_<TableName>.FRX

The associated report can be called clicking the 'Execute Report' button in the 'User'
area (for more information please refer to 'User Area').

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 4 U S E R I N T E R F A C E

Clicking the 'Create/Modify MS Word' button MS Word is opened and a model is
created (<ConfigurationName>_<TableName>.DOC) on which extracted data is
merged. The model can be changed basing on customer requirements, i.e. letters,
envelops, labels, etc.

The database supporting the mailmerge (__WORD__.DBF e FPT) is saved in the
temporary Windows directory (TEMP=C:\WINDOWS\TEMP).

Clicking the 'MSWord' button in the application opens the model
<ConfigurationName><TableName>.DOC ed that will execute the data mailmerge
creating the file CATHALOG1.DOC. You can also change the mailmerge model
selecting one from the mailmerge pick-list (e.g. e-mail).

User Area

The 'User Area' on top of the tab-strips has a set of buttons that help you interacting
with the zoom. Each button has a tooltip that helps you understanding its use.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 1 5

Ask For Parameters

The 'Ask For Parameters' button launches a selection dialog window. This window is
created basing on parameters defined in the 'Selection' tab-strip. If no parameters have
been defined a warning message appears.

Settings

Clicking the 'Settings' button you can select an existing configuration file.

Execute Report

Clicking the 'Execute Report' button a dialog window is opened in order to select the
device on which the report must be run.

For further information please refer to Chapter 5 'Printer Management'.

Recalculate Report

Left clicking the 'Recalculate Report' button the last query is re-executed. Right
clicking the button, configuration paramenters are cleared.

For more information please refer to the 'Visual Tools Guide' chapter 4 'Zoom
Painter'.

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 6 U S E R I N T E R F A C E

Menu Painter

Using the 'Menu Painter' you can customize menus at user level by simply designing
the menu structure. Basing on the default menu you can change the menu order, limit
or deny access to certain functionalities, or create custom configurations.

Menu Treeview

The application main menu can be treeviewed pressing <CTRL> and <T>:

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 1 7

The menu structure reflects the project Design. The 'Default' menu can be changed
using the 'Menu Painter'.

If a background image has been defined for the application, the image will be moved
to the right so to display it next to the Treeview. The Treeview window can be resized.
In this latter case the image will be moved back to the original position.

You can access the application procedures directly from the treeview. This makes
generated application user friendly.

The treeview root is defined as 'Main Menu'. Under the root there are as many folders
(branches) as application procedures. To open the folders you need to click them. You
can close the detail clicking them again.

To start procedures you need to select the corresponding icon and double click the
description. Browsing the application becomes thus easy.

N. B.

If you exit the application leaving the Menu treeview open, the next time you run the application
the Treeview window is automatically displayed.

For more information please refer to the 'Visual Tool Guide' chapter 5 'Menu Painter'.

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 8 U S E R I N T E R F A C E

User And Group Administration

The 'User And Group Administration' functionality allows defining users and groups,
which are at the basis of access and security control. The User/ Groups table is also
used to send 'Post-IN' messages between users.

For more information please refer to Chapter 6 'User Management'.

Security Administration

Using the 'Security Administration' functionality the System Administrator can define
which user groups can access specific procedures and also the access level: Query,
Load, Change or Delete.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 1 9

The 'Security Administration' functionality can be also accessed pressing <ALT> and
<F12> and is protected by password. The default password is 'CodePainter'. Opening
the 'Security Administration' option on an active dialog window you can define
advanced security levels on the opened zoom.

For more information please refer to Chapter 6 - 'User Management'.

P R O G R A M M I N G & U T I L I T I E S G U I D E

2 0 U S E R I N T E R F A C E

Table Administration For Autonumbered Variables

The 'Table Administration For Autonumbered Variables' option allows managing
accrued autonumbered values. On the left side of the dialog window corresponding
the list of autonumbered values you defined during the Design phase is displayed. On
the right there is the accrued value.

For more information please refer to Chapter 9 'Autonumbering Management'.

1.2.4 The Application Bar And Post-INs

The 'Application' bar allows to add messages ('Post-INs) to records or to send
messages between users. The following table details the 'Application Bar
functionalities.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 2 1

Button Name Meaning

Post-IN To create new Post-INs

Post-IN Folder To open the user's Post-IN folder.

Check Mail To check incoming mail (Post-IN)

Users To send messages between users (Post-IN)

Post-IN Contents

Post-IN can contain:

• Text

• Procedures

• File Attachments

Single Post-INs can have one or more of these elements. To attach records or files
into Post-INs you need to drag and drop then into the Post-IN. Records cannot be
attached if you are in 'Query' mode.

The record name is displayed in the Post-IN body. In the Post-IN footer a button is
displayed from which the procedure can be directly launched.

Post-IN Attachments

P R O G R A M M I N G & U T I L I T I E S G U I D E

2 2 U S E R I N T E R F A C E

A wide range of file types can be attached to Post-INs, namely images (.EMF, .BMP e
.JPG), documents (.TXT, .DOC, .HTM, .HTML, .XLS, .XLT), queries (.VQR), films
(.AVI) and 'URL' (Uniform Resource Locator) address.

N.B.

Post-IN as attachements can be used only with MS Visual FoxPro version 6.x. Previous versions
do not support this functionality.

To attach files to Post-INs you simply need to open the 'Resources Management'
window, select the file icon, drag and drop it in the Post-IN.

To attach 'URL' addresses you need to drag and drop the address from the Browser
address bar into the Post-IN.

Attachments are displayed in the Post-IN header and the footer details the file name.

The attachment can be opened double cliking on the icon. Basing on the file extention
the system will open the file using the associated application. You can also rename the
file right clicking the file name. You can delete the file selecting it and clicking the
'Delete' button on the toolbar.

To add plain text to the Post-IN select the desidered text, drag and drop it in the Post-
IN body.

Using Post-INs

Post-INs can be implemented within the application in different ways, namely:

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 2 3

• Notes

• Integrated Warnings

• Non Integrated Warnings

• Messagges

Post-INs can be used to 'glue' notes on the screen. These notes can be left on the
desktop or filed (please refer to the 'Post-IN File' paragraph).

Post-INs can be used to add warning messages to records. Messages will be displayed
every time the record is selected. Warnings can be integrated or not integrated.

To attach non-integrated Warnings you need to drag and drop the Post-IN in the
selected record. The 'Warning Added' message appears confirming the attachment.
The Post-IN is strictly linked to the records and to display it you need to open the
record either from the procedure or through a link. Post-INs as warnings can be used
to advise users that specific warehouse items are becoming obsolete and no new stock
will thus be produced/ordered.

Post-IN Warnings can be integrated in the procedure setting the 'Integrated In Form'
flag in the Post-IN Properties' window. The dialog window is opened clicking the
'Change' button. The Post-IN will be integrated in the procedure as a new folder. You
can also define the nane of the new folder defining the 'Page Name' field.

P R O G R A M M I N G & U T I L I T I E S G U I D E

2 4 U S E R I N T E R F A C E

Post-INs can be used to send messages between users. To send a message to another
user, open the 'Utility Menu' and select the 'User Administration' option. Write the
message in the Post-IN, drag and drop the message on the desidered user. A message
appears asking you to confirm the sending of the message. The message is cancelled
from your desktop. The adresee receives the message straight away, but it is not
displayed. Indeed incoming mail is checked every ten minutes and the 'Check Mail'
button changes, displaying a flag. The user can force the checking clicking the 'Check
Mail' button. The Post-In is displayed on the receiver desktop.

Post-IN Properties

Open a Post-IN and click the 'Change' button or press <F3> to open the Post-IN
Properties window.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 2 5

It Appears From

In this field define the start date from which the Post-IN must be displayed.

Till
In this field define the end date until the Post-IN must be displayed.

Created By

This field displayes the code of the user that has defined the Post-IN. The field is
display only.

Addressee

This field dispalyes the code of the user to whom the Post-IN is addressed. The field
is display only.

It Appears In Links (Warning Only)
This flag allows displaying the Post-IN when the record is selected from a link. This
means for example that the warning has been defined in 'Items'. When users input
order forms and select the given item, the associated warning is displayed.

Integrated In Form (Warning Only)

P R O G R A M M I N G & U T I L I T I E S G U I D E

2 6 U S E R I N T E R F A C E

This flag allows displaying the Post-IN is the procedure as additional folder of the
associated record.

Page Name

This field is displayed only when the 'Integrated In Form' flag is selected. In this field
you can define the name of the additional page. If no name is defined the default
name 'Enclosures' is used.

Background Color
This field allows changing the Post-IN background color. The default color is yellow.

Post-IN Folder

The 'Post-IN Folder' contains all Post-INs saved by the user. To save Post-INs simply
close the Post-IN window. To edit saved Post-INs, open the 'Post-IN Folder' and
double click the desired Post-IN. You can also delete Post-INs selecting one or more
and clicking the 'Delete' button on the toolbar.

Check Mail

The Check Mail button allows accessing incoming mail. When a new message has
arrived the icon displays a flag and the message 'Incoming Mail' appears on the
receiver's desktop. To read new messages simply click the icon.

1.2.5 Application Name, Version, Dimension
and Date

General Information on the generated SW application can be accessed pressing <Alt>
and <F11>.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 2 7

The opened dialog window displays default information on the application Name,
Version, Dimension and Date. You can customize the window creating a dedicated
dialog window. For more information please refer to the 'Client/Server System
Routines - CP_INFO.

1.2.6 Change The Application Background
Bitmap

You can change the background bitmap image saving the desidered file as
PROG.BMP under the main application directory or under the subdirectory EXE for
large applications.

1.2.7 Dialog Window Background

You can change the background of dialog windows saving the desidered files under
ther previously created directory BMP or EXE for large applications.

Images are added to dialog windows starting from the window's coordinates 0,0, i.e.
from top left.

P R O G R A M M I N G & U T I L I T I E S G U I D E

2 8 U S E R I N T E R F A C E

You can associate one picture to all dialog windows or more pictures to different
dialog windows.

Same Background For All Dialog Windows

Save the desired file as DEFAULT.BMP under the BMP directory (or EXE for large
applications). All dialog windows will have the same background.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R I N T E R F A C E 2 9

Different Backgrounds for Different Dialog Windows

Save the desired images under the BMP directory (or EXE for large applications). The
name of the file should have the following syntax: <ProcedureName>.BMP.

P R O G R A M M I N G & U T I L I T I E S G U I D E

F I L E M A N A G E M E N T 3 1

Chapter 2

File Management

2.1 Introduction

CODEPAINTER REVOLUTION Client Server environment makes tables management
transparent to the SW developer (including triggers and stored procedures). This
chapter analyzes File Management in MS Visual FoxPro Client/Server.

P R O G R A M M I N G & U T I L I T I E S G U I D E

3 2 F I L E M A N A G E M E N T

2.2 File Management

2.2.1 Tables And Links Management

When the generated application is run for the first time physical tables, their triggers
and stored procedures are created during the connection to the database. The 'Update
Database' functionality must be executed so that the system can check the existence
of all tables and can perform the realignment procedure between tables and the
application Design, if required.

N.B.

If you are using either the database Oracle or SQL Server the access to administration procedures
are allowed only to users that have the appropriate security level.

P R O G R A M M I N G & U T I L I T I E S G U I D E

F I L E M A N A G E M E N T 3 3

Database Administration

To access the 'Database Administration' functionality run your application, open the
'Utility' menu and select the 'Database Administration' option. The option's main task
is to realign the databases with the Design. The functionality is automatically executed
when the application is run and discrepancies found.

Clicking the 'Update Database' button the re-alignment is executed on the selected
tables. You can select all tables pushing the 'Sel.All' button. The database structure as
well as indexes, triggers and stored procedures are updated.

The 'Check Links' button checks connections to all servers declared in the application.

N.B.

If you are using either the database Oracle or SQL Server the access to administration procedures
are allowed only to users that have the appropriate security level.

Managing Installation Procedures For Applications
(CP_INST)

For managing installation you need a procedure for end-users on how to modify or
create new configurations. The procedure must be named CP_INST.PRG and must
be added in the project. The procedure must return a boolean value. If the value is
TRUE the database creation can continue, if not the database is not created.

Connection to more Server

SW Applications generated with CODEPAINTER REVOLUTION can use tables
stored on more servers.

N.B.

If you are using either the database Oracle or SQL Server the access to administration procedures
are allowed only to users that have the appropriate security level.

The 'Database Administration' routine allows defining on which servers the tables are
stored.

P R O G R A M M I N G & U T I L I T I E S G U I D E

3 4 F I L E M A N A G E M E N T

To define the servers you need to click the 'Server button'. The current dialog window
is expanded.

Click the 'New' button. The 'Server Set Up' window is opened.

P R O G R A M M I N G & U T I L I T I E S G U I D E

F I L E M A N A G E M E N T 3 5

In the 'Name' field type the name of the Server. In the 'Descr.' field define the Server
description.

The 'ODBC' combobox lists all available connection for that machine. For more
information please refer to the 'ODBC Administrator' manual.

The 'Type' combobox lists all certified database types. Once you select the connection,
the 'type' is automatically defined.

The two flags at the bottom of the dialog window define when the connection must
be started (at program start up or when the data is asked from the server) and if Post-
IN management must be executed from the database to which you are connecting.

Once the server has been set up you need to define the tables that are stored on the
server. Double click the desired table or select the table and click the 'Change' button.
The 'Table Set Up' window is opened.

P R O G R A M M I N G & U T I L I T I E S G U I D E

3 6 F I L E M A N A G E M E N T

The 'Server' combobox lists all defined servers. Select the desired one.

You can also associate server and tables simply dragging & dropping the server name
to the left in the 'Server' area.

Selecting the tables that must be updated and clicking the 'Update Database' button
connection are automatically opened and tables stored in the connected server are
updated.

Creating Multi Company Files

Business/Commercial applications are often implemented in multicompany
environments, whereby each company/ business unit has its own files.

CODEPAINTER REVOLUTION has a company table (CPAZI) in which one file for
each company/ business unit is stored. The field I_CODAZI identifies the selected
company/ business unit (for more information please refer to Chapter 8 - 'System
Variables').

P R O G R A M M I N G & U T I L I T I E S G U I D E

F I L E M A N A G E M E N T 3 7

The company code is read from the company table and is used as part of the physical
name of generated files. In the 'Design' phase you therefore need to define which
tables have multicompany features activating the 'Company Name' flag and including
three dedicated characters 'XXX' after the application name. When the application is
run you need to select the desired company.

N.B:

The company code must be defined after the physical name, because during the execution of the
Database Administration option these characters are automatically replaced by the company code.

Example

De f ine two compan ies ' Company1 ' and ' Company2 ' i n the company f i l e .
Name the I tem f i l e as ' I temsXXX ' . Dur i ng the 'Database Admin is t r a t ion '
phase the tab l es ' I temsCompany1 ' and ' I temsCompany2 ' w i l l be managed .

P R O G R A M M I N G & U T I L I T I E S G U I D E

3 8 F I L E M A N A G E M E N T

Company Tables can be managed, i.e. created, selected, deleted using system routines:

Routine Description

CP_CREATEAZI Create Company

CP_CHANGEAZI Select Company

CP_DELETEAZI Delete Company

CP_EXISTAZI Company Existence

For more information please refer to chapter 7 - 'System Routines'.

These routine procedures are the basis for developing dialog window for managing
the defined companies. Indeed you need to develop dialog windows that allow
creating, deleting or changing companies using these routine procedures.

Define a dialog window having the following variables:

P R O G R A M M I N G & U T I L I T I E S G U I D E

F I L E M A N A G E M E N T 3 9

Variable Type Length Description

ESIAZI Char 10 Company Code

ESIDES Char 30 Company Description

N_AZI Char 10 New Company Code

N_DESAZI Char 30 New Company Description

The variables name can be customized as required but the variable type and lengths
should be as defined in the table.

The ESIAZI variable containing the company code must be linked to to the company
file (CPAZI) and read the company code (CODAZI) and description (DESAZI).

P R O G R A M M I N G & U T I L I T I E S G U I D E

4 0 F I L E M A N A G E M E N T

N.B.

The 'CPAZI' table and its fields 'CODAZI' and 'DESAZI' cannot be selected from the pick-
list, because they are system tables and fields. Defining the link table you need to manually type
these values.

The '?' button defined next to the variable w_ESIAZI allows zooming on existing
companies using the 'ZoomPrev' function. The variables w_N_AZI and
w_N_DESAZI contain the code and description of the new company that can be
created. These new values are passed on to CP_CREATEAZI, which is called from
the 'Create' button to create all required multicompany tables for the selected
company.

P R O G R A M M I N G & U T I L I T I E S G U I D E

F I L E M A N A G E M E N T 4 1

The 'Change' button calls the CP_CHANGEAZI function. The accepted parameter
is the company code working variable w_N_AZI. This function allows selecting the
company simply setting the system variable I_CODAZI.

P R O G R A M M I N G & U T I L I T I E S G U I D E

4 2 F I L E M A N A G E M E N T

The 'Delete' button calls the CP_DELETEAZI function. Its parameter is the
company code (w_N_AZI). This function allows deleting all multicompany files
related to the selected company.

P R O G R A M M I N G & U T I L I T I E S G U I D E

F I L E M A N A G E M E N T 4 3

The 'Exit' button calls the system function 'Quit' that allows closing the dialog
window.

P R O G R A M M I N G & U T I L I T I E S G U I D E

4 4 F I L E M A N A G E M E N T

Company, User And Group Tables

Let us now analyze system tables for companies, users and groups. These tables
cannot be directly accessed from pick-lists in the various Painters. Nevertheless you
can read them defining the values in the Link Table of the codify phase.

P R O G R A M M I N G & U T I L I T I E S G U I D E

F I L E M A N A G E M E N T 4 5

Defining the link you need to type these values correctly and set the same type and
lengths for the variables that receive the value (e.g. the variable w_DESAZI has the
same type and lengths as DESAZI).

The company table CPAZI containing companies created in the application has the
following format:

Field Type Lengths Description

CODAZI Char 10 Company Code (Primary Key)

DESAZI Char 30 Company Description

The user table CPUSERS containing the users defined in the application has the
following format:

P R O G R A M M I N G & U T I L I T I E S G U I D E

4 6 F I L E M A N A G E M E N T

Field Type Lengths Description

CODE Num 4 User Code (Primary Key)

NAME Char 20 User Description

PASSWD Char 20 Crypted Password

The CPGROUPS table containing the groups defined in the application has the
following format:

Field Type Lengths Description

CODE Num 4 Group Code (Primary Key)

NAME Char 20 Group Description

Updating An Existing Database

Note on databases installed at your customers' site in Client/Server environments:

This kind of database is active and therefore purposes must entail all calls to 'Triggers'
and 'Stored Procedures' for proper management. Each time the database is updated
'Triggers' and 'Stored Procedures' are verified and re-generated within the active
database basing on the extended application data dictionary (.XDC).

This means that in order to update an existing database in which the files have
changed or new tables must be added you simply need to bring along to your
customer the file <DesignName>.XDC. Once the file has been copied you need to
execute the 'Database Administration' from the application's 'Utility' menu. The
database is automatically updated and data is realigned.

In MS Visual Foxpro 5.x 'Stored Procedures' can be saved either in the database or in
an external procedure. If you use CODEPAINTER REVOLUTION on MS Visual
Foxpro 5.x 'Stored Procedures' are saved in an external procedure (CP_DBPRC.PRG).
This procedure is automatically re-generated and re-compiled when the 'Database
Administration' option is executed.

P R O G R A M M I N G & U T I L I T I E S G U I D E

F I L E M A N A G E M E N T 4 7

In this latter case you need to bring along to your customer the new extended
dictionary (.XDC) as well as the new file CP_DBPRC.FXP, which must be copied in
the installation directory. The database and the rules can thus be realigned to the
changes made.

P R O G R A M M I N G & U T I L I T I E S G U I D E

M E N U M A N A G E M E N T 4 9

Chapter 3

Menu Management

3.1 Introduction

Menus of applications generated with CODEPAINTER REVOLUTION can be
maintained using MS FoxPro for Windows 2.x or Microsoft Visual FoxPro 5.x.

The routine managing menus makes the environment ready basing on a .DBF
database that contains required specifications (CP__MENU.DBF).

Using the Menu Painter you can change the menu layout and disactivate specific
functionalieties at user level. For more information please refer to the 'Visual Tool
Guide' chapter 5 'Menu Painter'.

P R O G R A M M I N G & U T I L I T I E S G U I D E

5 0 M E N U M A N A G E M E N T

3.2 The Menu File (.DBF).
Field Type Length Description

OPT_NAME Character 40 Name of the Menu or Option

ACTION Numeric 1 Option Action

 0 &= Menu

 1 &= Procedure

 2 &= Submenu

 3 &= Submenu with show

 9 &= Not Active

OPT_PROC Character 40 Name of Procedure or Menu that must be
executed

TOT_OPT Numeric 2 Number of Options in the Procedure

ROW_NUM * Numeric 2 Number of Rows in the Menu

COL_NUM * Numeric 2 Number of Columns in the Menu

OPT_LEN * Numeric 2 Length of the Display Option

TITL_ACT * Character 1 Title Activation

 0 &= Not Active

 1 &= Active

XCOORD * Numeric 2 Column Coordinate of the Combobox

YCOORD * Numeric 2 Row Coordinate of the Combobox

ROW_SPC * Numeric 1 Line Spacing of the Box

COL_SPC * Numeric 1 Spacing between Columns

BACK_COL * Character 1 Box and Background Color

FORE_COL * Character 1 Color for Options

TITL_COL * Character 1 Color for Title

SHADOW * Character 1 Shading Activation

P R O G R A M M I N G & U T I L I T I E S G U I D E

M E N U M A N A G E M E N T 5 1

 0 &= Not Active

 1 &= Active

BOXED * Character 1 Box Type

 0 &= No Box

 1 &= Single

 2 &= Double

 3 &= Narrow

SEL_TYPE Character 2 Option Selection Type

SECLEVEL Numeric 2 Security Level

P R O G R A M M I N G & U T I L I T I E S G U I D E

P R I N T E R M A N A G E M E N T 5 3

Chapter 4

Printer
Management

4.1 Introduction

This chapter describes the functionalities of CODEPAINTER REVOLUTION Printer
System.

4.2 Printer Management

CODEPAINTER REVOLUTION has a dedicated subsystem for managing printers.
This means that device configuration and printer characteristics can be checked. This
subsystem further allows exporting data stored in the application to MS Word or MS
Excel. This can be achieved using the 'Query Painter'.

P R O G R A M M I N G & U T I L I T I E S G U I D E

5 4 P R I N T E R M A N A G E M E N T

With CodePainter Printer Management System you can also associate different
printers to different procedures. The printer is identified basing on company, user and
workstation. For more information please refer to chapter 1 'User Interface', 'Connect
Report To Printer'.

These functionalities mainly base on two system routines, namely CP_CHPRN.PRG
and CPUSRREP.PRG and on the table CPUSRREP.DBF.

4.2.1 Printer Selection

The 'Printer Selection' window is managed by the system routine CP_CHPRN.PRG.
The dialog window has a set of options to select the device, the print format and
export to various formats. The two buttons in the window allow passing on extracted
data to MS Word or MS Excel documents.

Visual Queries can be associated to reports created with MS Visual FoxPro report
tool, or to MS Word mailmerge models. In both cases when the query is executed the
window shown above is opened. Pressing <ALT> and <F12> the report associated
to the query is re executed. If some buttons in the window are disactivated it means
that either no report or no model have been defined. This option can be used only by
system administrators. Let us now analyze the functionalities in more detail.

P R O G R A M M I N G & U T I L I T I E S G U I D E

P R I N T E R M A N A G E M E N T 5 5

Print Preview

The Print Preview functionality prints the report on the screen. The button is active
only if the report has been associated to a query created with the Query Painter. The
selected report is opened in the print preview window. You can scroll up or down
using the Preview toolbar.

Send To Printer

The 'Send To Printer' button outputs the report to the printer. The button is active
only if the report has been associated to a query created with the Query Painter. The
output printer is defined in the 'Printer' area. The default printer is the one you use as
predefined printer in other Microsoft applications. 'Clicking' the '...' button next to
'Printer' you can select the printer from the pick-list.

Send To Printer With Options

The 'Send To Printer With Option' button outputs the report to the selected printer.
The button is active only if the report has been associated to a query created with the
Query Painter. Clicking this button the 'Print' window is opened and you can define
print options such as the print range, the number of copies, etc.

P R O G R A M M I N G & U T I L I T I E S G U I D E

5 6 P R I N T E R M A N A G E M E N T

Print Or Export On File

The 'Print Or Export On File' button outputs the report to a file or exports extracted
data. The button is active only if the report has been associated to a query created
with the Query Painter. In the 'Print On File' combobox you can select whether the
report must be printed on a file (.TXT) or if extracted data must be exported to one
of the following supported formats: DBF, SDF, DELIMITED.

Selecting the TXT option the report is send to a text file. The default file name is
DEFA0<UserCode>.TXT.

Selecting the DBF option data is exported to the file specified in the 'File' area. The
default file name is 'DEFAO<UserCode>.DBF'

Selecting the SDF option data is exported to the file specified in the 'File' area (the
default file name is 'DEFAO<UserCode>.TXT'). The file format is text without
separators.

P R O G R A M M I N G & U T I L I T I E S G U I D E

P R I N T E R M A N A G E M E N T 5 7

Selecting the DELIMITED option data is exported to the file specified in the 'File'
area (the default file name is 'DEFAO<UserCode>.TXT'). The file format is text
whereby single fields are divided by commas.

Microsoft Word Document

The 'Microsoft Word Document' button opens the mailmerge model for extracted
data. The button is active only if the report model has been created using the Query
Painter. For more information refer to the 'Visual Tool Guide' chapter 2 'Query
Painter' 'Create/ Modify Mailmerge'.

Microsoft Excel Document

The 'Microsoft Excel Document' button opens a MS Excel worksheet containing all
extracted data. The worksheet name is defined in the 'File' area. The default file name
is DEFA0<UserCode>.XLS. The button is active only if the report model has been
created using the Query Painter.

MS Graph Graph

The 'MS Graph Graph' button uses extracted data to create a graph. The graph name
is specified in the query <QueryName>.VGR. The button is active only if the report
model has been created using the Query Painter.

Connect Report To Printer

The 'Connect Report To Printer' button associates a printer to each print procedure
basing on the company, the user and the workstation. The system routine managing
this procedure is CPUSRREP.PRG. Data is written into the system table
CPUSRREP.DBF.

P R O G R A M M I N G & U T I L I T I E S G U I D E

5 8 P R I N T E R M A N A G E M E N T

Once the connection between the procedure and the report is defined the system
routine CP_CHPRN.PRG identifies the printer that must be associated during the
procedure execution. The identified printer is defaulted in the dialog window.

The routine managing the connection is a Master File in which records can be loaded,
changed and deleted. You can therefore customize the file simply defining the fields.
The table structure is:

P R O G R A M M I N G & U T I L I T I E S G U I D E

P R I N T E R M A N A G E M E N T 5 9

Field Name Type Length Meaning

NROASSO Character 6 Connection No.

DESASSO Character 40 Description

USRASSO Numeric 4 User

AZIASSO Character 10 Company

WSTASSO Character 10 Workstation

REPASSO Character 20 Report Name

DEVASSO Character 50 Device Name

COPASSO Numeric 3 Number Of Copies

Let us now see some examples.

One Printer Across The Application

To use the same Printer for all application procedures, companies, users, and
workstations you need to define the following expression:

(Workstation &= space or Workstation &= '00' and Company &= space)

P R O G R A M M I N G & U T I L I T I E S G U I D E

6 0 P R I N T E R M A N A G E M E N T

One Printer Connected To One Procedure And One
Workstation

To connect the printer to one procedure and one workstation you need to define the
following expression:

(Company &= space and Workstation < > space and Workstation < > '00').

One Printer Connected To One Procedure And One
Company

To connect the printer to one procedure and one company you need to define the
following expression:

(Company < > space and Workstation &= space or Workstation &= '00').

P R O G R A M M I N G & U T I L I T I E S G U I D E

P R I N T E R M A N A G E M E N T 6 1

One Printer Connected To One Company, One
Workstation And One User

To connect the printer to one company, one workstation and one user you need to
define the following expression:

(Company < > space and Workstation < > space and Workstation < > '00').

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R M A N A G E M E N T 6 3

Chapter 5

User Management

5.1 User Management in MS Visual
FoxPro

The Security Level functionality in CODEPAINTER REVOLUTION is managed by
routine procedures stored in the Interface Manager. Users, groups and security levels
are defined in a dedicated table.

5.2 Selecting The User

When the application is run you are required to select the user and type the
corresponding password.

P R O G R A M M I N G & U T I L I T I E S G U I D E

6 4 U S E R M A N A G E M E N T

In some cases, e.g. in multicompany environments, you may have to define a more
complex dialog window to login the application. This can be made saving the
customized window as CP_LOGIN. When the application is executed the password
routine (CP_ASKUSER) searches for the window CP_LOGIN. If the file is found
the default login window is replaced.

You can create the CP_LOGIN dialog window using the 'Dialog Window Painter'.
The following paragraph will show you how.

5.3 The Login Dialog Window
CP_LOGIN

Depending on the customer/application requirements you can either create or
customize the login dialog window CP_LOGIN . The login window generally
included thefollowing five variables:

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R M A N A G E M E N T 6 5

Variable Type Length Description

UTE Num 4 User Code

DESUTE Char 20 User Description

PWD Char 20 Password

AZI Char 10 Company Code

DESAZI Char 20 Company Description

You can name the variables as desired, but type and length should be kept the same as
those defined in the table.

The UTE variable containing the user code must be linked to the User
Administration table (CPUSERS). The user code (CODE) and description (NAME)
are read from this table and carried over to the variable DESUTE as display only.

N. B.

P R O G R A M M I N G & U T I L I T I E S G U I D E

6 6 U S E R M A N A G E M E N T

The table CPUSERS and the fields CODE and NAME are system values. Therefore they
cannot be chosen from the pick-list, but need to be manually typed.

This password is typed in the PWD variable the user types the password. The
function CP_CHANGEUSER checks the input basing on the variables w_UTE
(user code) and w_PWD(password). The function returns either TRUE or FALSE.

When the password is typed the 'CriptPwd' object checks the visual properties of the
variable and displays an asterisk for each typed letter. The password is checked calling
the standard textbox property 'passwordchar'.

N.B.

The CriptPwd object belongs to the object class 'Controlla Proprietà Visuali' (Check Visual
Properties)

The AZI variable contains the company code and must be linked to the company
system table CPAZI so that the company code (CODAZI) and description (DESAZI)
are read.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R M A N A G E M E N T 6 7

N.B.

The table CPAZI and the fields CODAZI and DESAZI are system values. Therefore they
cannot be chosen from the pick-list, but need to be manually typed.

The company code is typed in the AZI variable. The function CP_CHANGEAZI
checks the input basing on the working variable w_AZI. The function selects the
company basing on the system variable I_CODAZI.

P R O G R A M M I N G & U T I L I T I E S G U I D E

6 8 U S E R M A N A G E M E N T

5.4 User Administration

The 'Users and Groups Administration' option can be accessed either from the
'Utility' menu or clicking the 'Users' button on the Application bar. The first time this
functionality is accessed the System Administrator password is requested. The default
password is 'CodePainter'.

User code 1 should always be kept for the System Administrator. Accordingly Group
1 should be used for System Administrators.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R M A N A G E M E N T 6 9

To add a new user click the 'New User' button and define the parameters for your
System Administrator.

P R O G R A M M I N G & U T I L I T I E S G U I D E

7 0 U S E R M A N A G E M E N T

Now define other three users following the same guidelines. These four users must
now be assigned to groups. Groups are needed to define security levels for accessing
procedures.

Click the 'New Group' button and define the System Administrators group. Drag and
drop User 1 (the System Administrator) from the 'Does not belong' area to the
'Belongs to' area. User 1 belongs to the System Administrators group.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R M A N A G E M E N T 7 1

Define other two groups, e.g. 'IT' and 'Accountants'. Add users 3 and 4 to the 'IT'
group, and users 2 and 4 to the 'Accountants' group. As you can notice one user can
belong to more groups.

5.5 Access Definition

Access to application procedures are managed at group level. You can define security
levels for each single procedure pressing <Alt> and <F12> on the opened procedure.
Security levels can be defined by the System Administrator only.

You are now required to make the 'Items' procedure accessible to all groups with
different security levels. The 'System Administrators' group must have full
functionality on the procedure. The 'IT' group has access only and the 'Accountants'
group must be able to access and enter new records.

Open the 'Items' procedure and press <Alt> and <F12> to open the 'Procedure
Security' window. Now open the 'User Administration' option to select the groups.
Drag and drop the three groups in the 'Procedure Security' window. For the 'System
Administrators' group set all flags. For the 'IT' group set the 'Enter' flag and for the
'Accountants' group set the 'Enter' and the 'Insert' flag.

P R O G R A M M I N G & U T I L I T I E S G U I D E

7 2 U S E R M A N A G E M E N T

The next time the application is executed the security levels will be working. Now
access the application pretending to be the various users in turn. You will notice that
the security levels have been implemented. You can also notice that user 4 (belonging
to two groups) can access the procedure and insert records, indeed the security level
for one user is given by the sum of security levels defined for the groups to which the
user belongs.

The 'Procedure Security' functionality can be also used to limit access to the zoom
advanced options. Open the zoom for which you want to limit access and press <Alt>
and <F12>

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R M A N A G E M E N T 7 3

You can notice that the name of the opened 'Procedure Security' window has the
prefix 'Z*'. The prefix identifies zoom options bound to the procedure.

5.5.1 Security Administration

The 'Security Administration' option gives you an overview of security levels defined
for single procedures.

P R O G R A M M I N G & U T I L I T I E S G U I D E

7 4 U S E R M A N A G E M E N T

The 'Security Administration' option is accessed from the 'Utility menu'. If you access
this option before having defined users you need to input the 'System Administrator'
password. The default password is 'CodePainter'.

The 'Procedure Security' overview widow allows changing security levels for single
procedures. To add a new procedure in the list click the 'New' button and type the
procedure name (e.g. gsan_lis). Open the 'User Administration' option, drag at least
one group in the 'Procedure Security' window and define the security levels for the
group. You can also define security levels for zooms simply typing the prefix 'Z*'
before the procedure name.

To delete security level definitions select the desired procedure in the list and click the
'Delete' button. You can do the same opening the single procedure.

5.6 Managing Post-IN Messages

The 'User Management' option is also used to manage Post-IN messages between
application users. To send messages to other users, open a Post-IN, write the message
and add attachments if required. Open the 'User Administration' option select the
desired user and drag and drop the Post-IN on the selected user.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R M A N A G E M E N T 7 5

The addressee will receive the message and save it in the Post-IN file.

5.7 Users And Groups Files

Information on users and groups are stored in the system tables CPUSERS and
CPGROUPS. Information on the links between users and groups are stored in the
system table CPUSRGRP.

5.7.1 Users Table

The User table stores information on user code, user name, and password for each
user. It has the following structure:

P R O G R A M M I N G & U T I L I T I E S G U I D E

7 6 U S E R M A N A G E M E N T

Name Type Length Description

Code Numeric 4 User Code

Name Character 20 User Name

Passwd Character 20 Password

The table's primary key is the User Code.

During the 'Codify' phase you can link to this table defining a link from a numeric
field with length 4. Because the file is not included in the data dictionary, in the Link
Table you need to define the file name as CPUSERS. To link to other data please refer
to the table structure.

5.7.2 Group Table

The Group table stores information on each group code and group name. The table
has the following structure:

Name Type Length Description

Code Numeric 4 Group Code

Name Character 20 Group Name

The table's primary key is the 'Group Code'.

During the 'Codify' phase you can link to this table defining a link from a numeric
field with length 4. Because the file is not included in the data dictionary, in the Link
Table you need to define the file name as CPGROUPS. To link to other data please
refer to the table structure.

P R O G R A M M I N G & U T I L I T I E S G U I D E

U S E R M A N A G E M E N T 7 7

5.7.3 User/ Groups Table

The table that stores information on group codes and on user codes belonging to the
group has the following structure:

Name Type Length Description

Groupcode Numeric 4 Group Code

Usercode Numeric 4 User Code

The table's primary key is the Group Code.

During the 'Codify' phase you can link to this table defining a link from a numeric
field with length 4. Because the file is not included in the data dictionary, in the Link
Table you need to define the file name as CPUSRGRP. To link to other data please
refer to the table structure.

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M R O U T I N E S 7 9

Chapter 6

System Routines

6.1 Introduction

This chapter describes system routines that build the environment of
CODEPAINTER REVOLUTION. A brief description of the routines and their syntax
is included.

These routines are used by generated applications and can be also used in manual
areas. The SW developer can exploit the rules of CodePainter architecture to
customize or add new funtionalities to the opertating environment.

6.2 System Routines For MS Visual
FoxPro

This pharagraph defines the syntax and the use of Interface Manager routines. Most
routines are saved under CodePainter's subdirectory VFCSIM in the routines
'CP_LIB.PRG', 'CP_DBADM.PRG', 'CP_SEC.PRG' .

P R O G R A M M I N G & U T I L I T I E S G U I D E

8 0 S Y S T E M R O U T I N E S

6.2.1 cp_AskProg

Assignes the next progressive number to an autonumbered field with no associated table.
cp_AskProg(<i_oObj>,<i_nConn>,<i_cTable>,<i_cProg>)

<i_oObj>

Object name containing the variable in which the proposed AutoNumber is input

<i_nConn>

Connection number

<i_cTable>

File name in which we wont the AutoNumber is search

<i_cProg>

Variable in which we will input the AutoNumber

The routine is stored in 'CP_LIB.PRG' and searches for the current autonumbered
value in the table to which the autonumbered field is associated. The routine then
assignes the next value to the defined variable.

N.B.

Before the procedure execution the variable to which the next number is assigned must be defined
as 0.

...

Code &= 0

i_nConn &= i_TableProp[this.customers_IDX,3]

cp_AskProg(this,i_nConn,i_"customers","w_CODCLI")

...

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M R O U T I N E S 8 1

6.2.2 cp_AskTableProg

Assignes the next number to an autonumbered field whith no associated table.
cp_AskTableProg(<i_oObj>,<i_nConn>,<i_cProgId>,<i_cProg>)

<i_oObj>

Object name containing the variable in which the proposed AutoNumber is input

<i_nConn>

Connection number

<i_cProgId>

Name of the table linked to the AutoNumber value

<i_cProg>

Variable in which input the AutoNumber ia input

The routine is stored in 'CP_LIB.PRG'. It reads the current autonumbered field value
from the table to which the field is associated. The routine assignes the next value to
the defined variable.

N.B.

Before the procedure execution the variable to which the next number is assigned must be defined
as 0 .

...

Code &= 0

i_nConn &= i_TableProp[this.customers_IDX,3]

cp_AskTableProg(this,i_nConn,i_"PRCLI","w_CODCLI")

...

P R O G R A M M I N G & U T I L I T I E S G U I D E

8 2 S Y S T E M R O U T I N E S

6.2.3 cp_BuildWhere

Builds a section of the Where clause.
cp_BuildWhere(<i_cCmd>,<i_xValue>,<i_cNome>,<i_nConn>)

<i_cCmd>

Name of the variable containing a part of the Where condition

<i_xValue>

Value of the field added to the Where clause

<i_cNome>

name of the field added to the Where clause

<i_cConn>

Connection number of the file to which the Where is referring

Returns the new Where sentence.

The routine is stored in 'CP_LIB.PRG'. It adds a new condition to a Where sentence.
...

i_nConn &= i_TableProp[this.clienti_IDX,3]

i_cFlt &= ""

i_cFlt &= cp_BuildWhere(i_cFlt,this.w_CODCLI,"CODCLI",i_nConn)

i_cFlt &= cp_BuildWhere(i_cFlt,this.w_SURNAME,"SURNAME",i_nConn)

i_cFlt &= cp_BuildWhere(i_cFlt,this.w_ADDRESS,"ADDRESS",i_nConn)

* --- Manual Area &= Build Filter

i_cFlt &= cp_BuildWhere(i_cFlt,'A',"ADDRESS",i_nConn)

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M R O U T I N E S 8 3

--- End Manual Area

...

6.2.4 cp_ChangeAzi

Allows changing the Company.
Cp_ChangeAzi(<icName>)

<icName>

Company name

Returns a boolean value that identifies whether the Company has changed or not.

The function is stored in 'CP_DBADM'. The icName variable input in the function
contains the code of the company in which the user wants to work. If the entered
value is found the value TRUE is returned and the company code changed. If the
value is not found the value FALSE is returned.

...

cp_ChangeAzi ("ZucchettiTools")

...

6.2.5 cp_ChangeUser

Allows changing the user during the application execution.
Cp_ChangeUser (<i_Ncodute>,<i_cPwd>)

<i_Ncodute>

User code

P R O G R A M M I N G & U T I L I T I E S G U I D E

8 4 S Y S T E M R O U T I N E S

<i_cPwd>

User password

Returns a boolean value that identifies whether the user has changed or not.

This function is stored in 'CP_SEC.PRG'. The variables i_NCodute and i_cPwd input in
the function contain the user code and password and manage the number of
connection trials. In case the number of trials is higher than the defined limit the
returned value is FALSE and the function is terminated. The routines also determine
whether users have been defined or not. Only if they have been defined they search
for the value defined in i_Ncodute. If the value is not found the returned value is
FALSE. If the value is found the password in the table is compared with the one
input in i_cPwd. If both values (user code and password) are matched, the returned
value is TRUE. Otherwise the total number of connection trials is increased.

.cp_ChangeUser ("1","password")

...

6.2.6 cp_Class

Defines the code of standard CodePainter classes.

The cp_Class.prg file stores all classes defined in CodePainter for managing Visual
Objects. You can add custom classes simply defining them in this file and adding the
class name in the file classes.cpl under the CodePaiters 'Classes' directory.

Add the following instructions in the file cp_Class.prg
define class cp_myclass as custom

var&=''

enabled&=.t.

proc Calculate(xValue)

local p,n

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M R O U T I N E S 8 5

n&=stuff(n,p,1,'(this.parent.oContained,')

n&=strtran(n,'w_','.w_')

...

endde

...

Add the new class name in the Class.cpl file.
...

My Class

cp_myclass

classes\my.bmp

var&='w_???'

100,100

...

6.2.7 cp_CreateAzi

Allows creating a new company and all declared tables related to the companies.
Cp_CreateAzi(<icName>, <icDescr>)

<icName>

New company name (max 10 characters)

<icDescr>

P R O G R A M M I N G & U T I L I T I E S G U I D E

8 6 S Y S T E M R O U T I N E S

New company description (max 30 characters)

Returns a boolean value which identifies whether the new company has been created
or not.

The function is stored in 'CP_DBADM.PRG'. The variables icName and icDescr
contain the name and description of the company that must be created. First of all
the routine checks the name uniqueness. It then analyzes which and how many tables
must be created and then creates the company starting from generic tables. The value
TRUE is returned if the creation run with no errors. The value FALSE is returned if
errors occured, i.e. the company name already exists, the name is blank, the server
connection is not active or if the data dictionary does not exist.

...

cp_CreateAzi ("ZucchettiTools","ITSolutions")

...

6.2.8 cp_Dbinst

Monitors the creation of databases.
Cp_Dbinst()

Returns a boolean value to identify whether the database has been created or not. If
the value FALSE is returned the creation is terminated

The function is stored in 'CP_DBADM.PRG' and monitors the first creation of
databases in order to launch the configuration procedure CP_INST if required.

CP_INST is typically a programm or a routine function displaying a configuration
dialog window in which configuration variables can be defined. CP_INST must always
return a logical value that allows to go on with (if TRUE) or inhibit (if FALSE) the
database creation.

...

if !cp_Dbinst()

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M R O U T I N E S 8 7

return(.f.)

endif

...

6.2.9 cp_DeleteAzi

Allows deleting a company.
Cp_DeleteAzi (<icAzi>)

<icAzi>

Company code to be deleted

Returns a boolean value to identify whether the company has been deleted or not.

The function is stored in 'CP_DBADM.PRG'. The variable icAzi contains the name
of the company. The function checks if the company and the data dictionary exist,
and if the server connection is active. If the checking is not successful the value
FALSE is returned. Otherwise the value TRUE is returned and all references and
related tables deleted.

...

cp_DeleteAzi ("Codelab")

...

6.2.10 cp_ErrorMsg

Displays an error message
Cp_ErrorMsg(<i_msg>,<i_xIcon>,<i_cTitle>)

P R O G R A M M I N G & U T I L I T I E S G U I D E

8 8 S Y S T E M R O U T I N E S

<i_msg>

Character value. Text displayed as error message

<i_xIcon>

Character value. Type of icon that must be displayed. The values 'Stop' , '!' and '?' are
accepted. If the value is left empty no icon is created.

<i_cTitle>

Character value. Error window title. If the value is left empty the window title is
'Error'

The routine stored in 'CP_LIB.PRG' executes the VFP command 'MessageBox' that
defines the message, the icon, the window title and enables the 'OK' button.

...

cp_ErrorMsg('Value incorrect','!','Warning')

...

6.2.11 cp_ExistAzi

Verifies if a company exists or not.
Cp_ExistAzi (<icName>)

<icName>

Name of the company for which we need to check the existence.

Returns a boolean value to identify whether the company exists or not.

The function is stored in 'CP_DBADM.PRG'. The variable icName contains the
company name. The returned value is TRUE if the value in icName is different from
blank, the server connection is active and the company name is found . Otherwise the
returned value is FALSE.

...

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M R O U T I N E S 8 9

if !cp_ExistAzi ("Codelab")

wait window"Company not found!"

endif

...

6.2.12 cp_Exprt

Allows exporting data from a cursor to an external table.
Cp_Exprt(<i_cTableName>,<i_cCursor>)

< i_cTableName >

External table of destination

< i_cCursor >

Memory cursor in which are contained the data to export

Returns a boolean value: ".t." if the data transfer was successful, ".f." if it was not
successful.

This function is stored under the VFCSIM directory and opens the external table
'i_cTableName' (if the table cannot be opened an error message is displayed) and
exports data stored in the cursor 'i_cCursor'.

...

if cp_Exprt('Clienti', 'Curs_Cli')

wait windows "Export was successful"

else

wait windows "Export was not successful"

P R O G R A M M I N G & U T I L I T I E S G U I D E

9 0 S Y S T E M R O U T I N E S

endif

...

6.2.13 cp_GetProg

Assignes the next progressive number to a autonumbered field. This procedure has been defined to
work within a routine.

cp_GetProg(<i_cFile>, <i_cTable>,<i_var>,< i_x1>,[<ix5>])

<i_cFile>
Table name

<i_cTable>
AutoNumber table name

<i_var>
AutoNumber variable

<i_x1>..<i_x5>
Fixed parts of the key

This routine is stored in 'CP_LIB.PRG'. It assignes the next progressive number to the
variable i_var in the i_cFile basing on the i_cTable. The variable can be numeric or
alphanumeric.

a)

this.w_newprg&=cp_GetProg('items','prart',this.w_newprg)

b)

this.w_newprg&=cp_GetProg('items','prart',this.w_newprg,this.magart)

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M R O U T I N E S 9 1

N.B.

The w_newprog variable must be created within the routine procedure. The variable
length and type must be identical to the autonumbered field.

6.2.14 cp_info

Shows information on the selected entity pressing < ALT < and > F11 >
cp_info(this)

The routine ecpInfo is contained in cp_forms. It calls the cp_info.prg program and
passes on the current entity as parameter (cp_Info(this)). If the cp_info.prg does not
exist (what happens as default) the routine displayed a standard Messagebox showing
procedure name, version, and FXP date (last update).

You can use information windows for customized entities creating the new file named
cp_info.prg under the application directory or under EXE for large applications.

The Information window can be created using the Dialog Window Painter; in order to
decode the variable values use the instructions shown in the next picture:

You further need to add under 'Blank Record End in the manual area the code listed
below'.

i_n&=substr(this.oParentObject.class,2)

P R O G R A M M I N G & U T I L I T I E S G U I D E

9 2 S Y S T E M R O U T I N E S

i_fxpsize&=0

i_fxpdate&={//}

do case

case adir(i_a,i_n+'.fxp')&=1

i_fxpsize&=i_a[2]

i_fxpdate&=i_a[3]

case adir(i_a,'..\vfcssrc\'+i_n+'.fxp')&=1

i_fxpsize&=i_a[2]

i_fxpdate&=i_a[3]

case adir(i_a,i_cBmpPath+i_n+'.fxp')&=1

i_fxpsize&=i_a[2]

i_fxpdate&=i_a[3]

endcase

with this

.w_UltRev &= Alltrim(.oParentObject.infodaterev)

.w_NomeOgg &= upper(i_n)+'.FXP'

.w_DataOgg &= dtoc(i_fxpdate)

.w_SizeOgg &= Alltrim(str(i_fxpsize) + ' byte')

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M R O U T I N E S 9 3

.w_FileName &= upper(.oParentObject.cFile) + '.DBF'

endwith

this.SetControlsValue()

6.2.15 cp_Msg

Displays messages.
cp_Msg(<i_cMsg>)

<i_cMsg>

Character type value. Message displayed

The routine stored in 'CP_LIB.PRG' executes the 'wait window' with the defined text.
...

cp_Msg('Processing Start')

6.2.16 cp_NextProg

Assignes the next progressive number of autonumbered fields with no table.
cp_NextProg(<i_oObj>,<i_nConn>,<i_cTable>,<i_cProg>)

<i_oObj>

Name of the object containing the proposed AutoNumber

<i_nConn>

Connection number

<i_cTable>

P R O G R A M M I N G & U T I L I T I E S G U I D E

9 4 S Y S T E M R O U T I N E S

Name of the file in which the AutoNumber is searched

<i_cProg>

Variable in which the autonumber is input.

The routine is stored in 'CP_LIB.PRG'. It reads the current value from the
<I_cTable> table and assignes the next progressive value to the defined variable.

N.B.

Before the procedure execution the variable to which the next number is assigned must be defined
as 0 .

...

Code &= 0

i_nConn &= i_NextProp[this.customers_IDX,3]

cp_NextProg(this,i_nConn,i_"customers","w_CODCLI")

...

6.2.17 cp_NextTableProg

Assignes the next progressive value of an autonumbered field associated to a table.
cp_NextTableProg(<i_oObj>,<i_nConn>,<i_cProgId>,<i_cProg>)

<i_oObj>

Name of the object containing the suggested AutoNumber.

<i_nConn>

Connection number

<i_cProgId>

Name of the file in which the AutoNumber is searched.

<i_cProg>

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M R O U T I N E S 9 5

Variable in which the AutoNumber is input.

The routine is stored in 'CP_LIB.PRG'. It reads the current value in the <I_cProgID>
table and assignes the next value to the defined variable

N.B.

Before the procedure execution the variable to which the next number is assigned must be defined
as 0 .

...

Code &= 0

i_nConn &= i_TableProp[this.customers_IDX,3]

cp_NextTableProg(this,i_nConn,i_"PRCLI","w_CODCLI")

...

6.2.18 cp_NullValue

Returns the null value basing on the variable type.
cp_NullValue(<cs>)

<cs>

Variable for which the null value is required

Returns the null value basing on the variable type that has been passed as paramenter.

The routine is stored in 'CP_LIB.PRG'. Depending on the variable type different
values are returned:

For Character or Memo values the returned value is a string of blanks

For Numeric values the returned value is 0.00

For Date or Time values the returned value is (\ \ \)

For Logical values the returned value is False

P R O G R A M M I N G & U T I L I T I E S G U I D E

9 6 S Y S T E M R O U T I N E S

...

* Set variables to zero

Code &= cp_NullValue(Code)

Balance &= cp_NullValue(Balance)

...

6.2.19 cp_szoom

Executes Visual Zooms with selection
Cp_szoom (<i_cCursor>,<i_cFilename>,<i_cZoomTitle>,<i_cZoomFile>)

Or

do Cp_szoom with
<i_cCursor>,<i_cFilename>,<i_cZoomTitle>,<i_cZoomFile>

<i_cCursor>

Name of the cursor created by the selected records

<i_CFileName>

Name of the Table on which the zoom is working.

<i_CZoomTitle>

Title of the zoom window.

<i_CZoomFile>

Name of the configuration file;

 <i_cZoomFile> <i_cFileName>_vzm is opened:

<i_cZoomFile>.<i_cFileName>_vzm

If the argument was not specified the routine searches: 'default.<i_cFileName>_vzm'.

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M R O U T I N E S 9 7

default.<i_cFileName>_vzm

If also this configuration was not found than all table fields are displayed

The procedure allows executing Visual Zooms in which the record can be selected
setting the flag next to each row.

This procedure can be used only with the Routine Painter in order to create cursors in
which data can be processed.

...

cp_szoom with "test_sel","antxtpre","LIST OF DIAGNOSIS",""

...

6.2.20 cp_ToStr

Returns the value converted into a string
cp_ToStr(<cs>,[<ty>])

<cs>

Variable to convert

<ty> optional
If the type of the variable is Character or Memo we can specify if we wont the text
contained between apexes

1 - the text will be between apexes

0 - the text will be without apexes.

The routine stored in 'CP_LIB.PRG' converts the variable <cs> to character format.
...

Total &= Quantity, * Price

cp_Msg('The balance is: ' + cp_ToStr(Totale))

P R O G R A M M I N G & U T I L I T I E S G U I D E

9 8 S Y S T E M R O U T I N E S

...

6.2.21 cp_YesNo

Confirmation request
cp_YesNo(<i_cMsg>)

<i_msg>

String displayed as confirmation request message

Returns a numeric value

6 - Yes

7 - No

The routine cp_YesNo is stored in 'CP_LIB.PRG'. It executes the VFP MessageBox
command without defining any window title, displaying the question mark icon and
enabling the 'Yes' and 'No' button.

You can change the question text.
...

IF cp_YesNo('Print Report?') &= 6

vq_exec with 'Stam_art.vqr'

endif

...

6.2.22 GetCtrl

Allows positioninig the pointer on the defined field or variable.

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M R O U T I N E S 9 9

object&=[parent.]GetCtrl('<FieldName/Variable>')

<FieldName/Variable>

Field or variable name from which the pointer must be obtained.

This function is stored in the cp_forms file and returns the pointer to the defined
field or variable. It is typically used in routine procedures where methods must be
executed or properties set for fields or variables of calling forms. In these cases the
object must referenced with the clause 'parent'. During the 'Codify' phase the 'parent'
clause will be translated with the calling object reference (oParentObject).

...

*in object oMyVar position the pointer to Desart

oMyVar&=parent.GetCtrl('w_Desart')

*hide the variables

o.MyVar.hide&=.t.

...

6.2.23 LookTab

Allows searching and finding field values on linked tables
LookTab('<TableName>','<ReturnedField>','<ComparisonField1>',<Comparis
onValue1>'[,'<ComparisonField_i>',<ComparisonValue_i>'])

<TableName>

Table name in which the value must be searched

<ReturnedField>

Field name to be returned

<ComparisonField[n]>

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 0 0 S Y S T E M R O U T I N E S

Search field name

<ComparisonValue[n]>

Search value name

You can define up to 5 comparison fields and values. To optimize efficiency use
always primary key fields of the linked table.

This routine is stored under the VFCSIM directory and returns the <ReturnedField>
value after having created the SQL sentence that will be used for data extraction. The
SQL sentence uses the received values as follows:

SELECT <ReturnedField>;

FROM <TableName>

WHERE <ComparisonField1>&=<ComparisonValue1> [and

<ComparisonField_i>&=<ComparisonValue_i>]

INTO CURSOR __TMP__
...

LookTab('Items','DESART','CODART',artmov)

...

Reads the Items table and returns the item description value for which
the expression CODART&=artmov is true.

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M V A R I A B L E S 1 0 1

Chapter 7

System Variables

7.1 System Variables for MS Visual
FoxPro

This chapter analyzes functionalities of system variables used by CODEPAINTER
REVOLUTION, in particular those variables used to make library routines and
generated procedure work properly.

7.1.1 Global Variables

In this section you will find some configuration global variables that e.g. allow to
define the company and the fiscal year on which the user wants to work.

i_datsys

Date, 8 or 10 bytes depending on whether the SET CENTURY ON clause is defined
or not. Contains the system date. The default value is: i_datsys&=date()

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 0 2 S Y S T E M V A R I A B L E S

i_codute

Numeric, 4 bytes. Contains the user code. The default value is: i_codute &= 1

i_codazi

Character, 10 bytes. Contains the company code. The default value is 'XXX' defined in
CP3START.

7.1.2 cTrsName Variable

The variable 'cTrsname' contains the temporary file name for Detail and
Master/Detail entities. This variable can be used within routines in order to reference
the temporary name of the entity that is in use.

Example

I n a rout ine p rocedure you a re requ i red to c l ear the tempo rary f i l e o f a
Deta i l o r Mas te r /Deta i l en t i t y . You need to add two s ta tements :

Select (this.cTrsName)

Zap

The f i r s t s ta tement a l l ows se l ec t i ng the tempora ry f i l e . The second
executes the ' z ap ' c ommand tha t a l l ows de le t ing a l l r ecords conta ined i n
the temporary f i l e .

7.1.3 The i_cSuperPwd Variable

This variable is initializated in CP3START with the value 'CodePainter' and is used to
manage default passwords.

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M V A R I A B L E S 1 0 3

The default password is required to access the 'User Administration' option. For more
information please refer to Chapter 6 'User Management'.

7.1.4 The i_cBmpPath Variable

This variable is initializated in CP3START with the value " " and is used to manage
the search path for bitmap and icon files.

When added to SET PATH it allows defining the search path for images used within
the generated application.

7.1.5 The i_cStdIcon Variable

This variable is initializated in CP3START.PRG with the value "painter.ico" and is
used to associate the icon to the main window.

7.1.6 The i_demolimits Variable

This variable is stored in CP3START and defines the limits for the application demo
version.

The first value is generic and is valid for all tables. The other values define exceptions.
E. g. i_demolimits&='250, items&=50, orders&=30, warehouse&=0' defines that all tables
have a limit of 250 records except the Items table that has a limit of 50 records,
Orders having a limit of 30 and warehouse without any limit. When tables have been
filled up to two thirds of their capacity and are opened once again the message
warning that the demo limit is about to be reached is displayed. When the capacity is
reached no more records can be added.

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 0 4 S Y S T E M V A R I A B L E S

7.1.7 The i_TableProp Variable

This variable is a public array for table management. For more information please
refer to Chapter 2 'File Management'.

Value Meaning

1 Logical Name

2 Physical Name

3 Connection No.(0 &= Local Visual FoxPro Database)

4 Counter for number of openings

5 Server Number (if exists the connection must be opened)

7.1.8 The i_ServerConn Variable

This variable is a public array for managing Servers. For more information please refer
to Chapter 2 'File Management'. The table returns the value and the value taken on
from each array element.

P R O G R A M M I N G & U T I L I T I E S G U I D E

S Y S T E M V A R I A B L E S 1 0 5

Value Meaning

1 Server Name

2 ODBC Connection Number

3 ODBC Data Source

4 When the database must be opened (1&=Start,2&=Program, 3&=F10)

5 Counter for the number of openings

6 Database Type (Oracle, SQLServer, Access, VFP, ...)

7 Use/ Does not use Post-INs and Warnings

7.1.9 The i_CpDic Variable

Name of the Data Dictionary

This variable is used by the CP3START function GetConfigFile() to read procedure
configuration files and routines required to open the database.

The configuration file must be defined with one of the following names:
<DesignName>.CNF or CP3START.CNF. It contains all application configuration
paramenters: parametrical pictures, environment setting variables, and global variables.

7.1.10 The CP_PATH Variable

This variable defines the path of application programs.

Added to the SET PATH allows to define the path to search for application programs.

7.1.11 The CP_DBTYPE Variable

Defines the database type.

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 0 6 S Y S T E M V A R I A B L E S

This variable takes on one of the following values: VFP, Access, SQLServer, Oracle,
DB2, Abadas.

7.1.12 The CP_ODBCCONN Variable

Defines the name of the ODBC connection.

This variable contains the name of the ODBC connection to the selected database.

To defined a connection please refer to the ODBC Administrator manuals or to the
driver vendor.

N.B.

You can also define the entire connection string and the connection name (DSN), thus avoiding to
create it in the ODBC. The syntax you need to use is:

"DRIVER"=<drivername>;DATABASE&=<databasename>;
SERVER&=<servername>;UID&=<username>;PWD&=<password>"

P R O G R A M M I N G & U T I L I T I E S G U I D E

M A N A G I N G A U T O N U M B E R V A L U E S 1 0 7

Chapter 8

Managing
AutoNumber Values

8.1 Managing AutoNumber Values in
MS Visual FoxPro

8.1.1 Introduction

Business/Commercial Applications typically have a high level of data input. In these
cases managing the primary key efficiently becomes crucial.

To avoid errors in inputting the primary key, CodePainter manages the
autoNumbering of values.

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 0 8 M A N A G I N G A U T O N U M B E R V A L U E S

8.1.2 AutoNumber Values

You can manage progressive numbering of values automatically simply setting the
'AutoNumber' flag in the desidered fields during the Codify phase. This option
generates the required code and manages a record in which the last progressive value
is stored. When you define the AutoNumber working variable in the Codify phase
(Globals menu, AutoNumber option) you can define whether to link a table managing
progressive values or not.

If you do not define any 'Table Name' the system will automatically assign the next
progressive value to the record going to the end of the file, reading the last value and
adding one unit to that value. These values cannot be maintained. It is therefore
advisable to define a support table to manage progressive numbers.

P R O G R A M M I N G & U T I L I T I E S G U I D E

M A N A G I N G A U T O N U M B E R V A L U E S 1 0 9

AutoNumber values having a support table can be directly maintained in the
generated application. Open the 'Utility' menu and select the 'Table Administration for
AutoNumbered Variables' option. The 'AutoNumbered Variable Table' displayes all
values for which the 'AutoNumber' flag was set. Selecting one value from the list, its
current progressive value is displayed. You can update it typing the required value in
the 'AutoVar' field and clicking the 'Update' button.

Example

The ' I tem' t ab l e p r ima ry key i s ' CodA r t ' . The f i e ld can be ed i ted and i s
l i nked to an AutoNumber i ng t ab l e . User A changes the de fau l ted va lue
000501 to 005001 by m i s t ake . I f the tab l e cou ld not be ma i ta ined you
wou ld loo se thousands o f va lues w i thou t any l og i c a l r eason . Go ing i n t he
Tab le Admin is t ra t ion fo r AutoNumbered Var i ab les ' op t i on you can re s t ore
the cor re c t va lue . Be fore do ing tha t you shou ld de le te the w rong
t ransac t i on ' 005001 ' .

P R O G R A M M I N G & U T I L I T I E S G U I D E

A D V A N C E D O P T I O N S 1 1 1

Chapter 9

Advanced Options

9.1 Module Management

Large projects generally include a core functionality and a series of linked modules.
The core must contain all functionalities and all tables required for a thorough
management of the basic module. The linked modules typically include functionalities
and tables that not each customer may require and therefore may not be prepared to
buy.

To meet these market requirements the SW developer must be able to subdivide SW
applications in more modules and develop a program that during run-time links the
submodules to the basic module.

To deliver these types of solution using CODEPAINTER REVOLUTION you simply
need to create more Design Plans and include them in the same project. When you
need to customize the SW application you simply need to copy the Design Plans
required for your project.

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 1 2 A D V A N C E D O P T I O N S

You can also create one large Design Plan and then create different groups
representing the various modules. On CodePainter Front End go on 'Project View'
and then 'Groups'. Open the 'Project' menu and select the 'Groups' 'Add/Modify'
option.

Picture 1 - More
Design Plans In

One Window

P R O G R A M M I N G & U T I L I T I E S G U I D E

A D V A N C E D O P T I O N S 1 1 3

The 'Group' setup window is divided in two tab-strips. in the 'Name' tab-strip you can
define the group name, the path where the new group must be stored, and bitmaps.

Picture 2 - How To
Access Groups

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 1 4 A D V A N C E D O P T I O N S

In the 'Files' tabstrip you can define which plan, entities, etc. must be included to that
particular group.

Picture 3 - Group
Setup Window

P R O G R A M M I N G & U T I L I T I E S G U I D E

A D V A N C E D O P T I O N S 1 1 5

Another useful feature is given by 'External Entities'. This entity simply links to the
entity of another design that thus becomes part of the current design. To add an
'External Entity' go to your design plan and click the 'External Entity' button on the
'Painter Tools' bar. The 'Opens' window is opened and you can select the Design Plan
from which you want to retrieve your entity.

Picture 4 - Defining
Group
Components

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 1 6 A D V A N C E D O P T I O N S

The 'External Entities' window is opened and you can select the entity. If you need to
go into another plan click the 'File' button.

9.2 Multilanguage Management

Often the same Business/Commercial application is used in different countries. It
becomes therefore important for SW developers to be able to develop application
releases in different languages quickly and efficiently.

Sometimes the same Business/Commercial application is used within the same
company by people speaking different languages, e.g in companies based on the
borders between two countries. In this case SW developers are required to create the
same dialog windows, menus, warning messages, etc. in different languages to be used
within the same application.

Picture 5 - Defining
Group

Components

P R O G R A M M I N G & U T I L I T I E S G U I D E

A D V A N C E D O P T I O N S 1 1 7

CODEPAINTER REVOLUTION passes each string that must be displayed in the
application through a routine that reads a translation database. Further a global
variable has been defined in which values can be entered to recognize in which
language procedures must be displayed. If this global variable is left empty the string
is returned in the original language, otherwise the string and the defined language
build the search key for finding the corresponding translation in the database. If no
match is found the string is returned in the original language.

Here to follow you will see the same dialog window opened by two users for which
different languages have been defined.

Picture 6 - A:
Customer Dialog
Window in English

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 1 8 A D V A N C E D O P T I O N S

To link a language to a user you need to define the default language for a given user in
the 'User Administration' option. Each time that given user will log in the application
the application will be displayed in the defined language.

Picture 7 - B:
Customer Dialog
Window in Italian

P R O G R A M M I N G & U T I L I T I E S G U I D E

A D V A N C E D O P T I O N S 1 1 9

9.2.1 Implementation

During the Design phase you should pay attention to the size of fields, variables, etc.
Indeed depending on the languages you will translate the application into, fields,
variables, etc. may have different sizes. During the translation you may therefore incur
in two kind of problems : either strings are cut off, or the layout adjustment for
comment strings goes lost. As general rule you should always define strings longer
than the original text and adjust strings to the right. In case the string becomes larger
it increases on the left leaving the fields on the right unchanged. CodePainter
prototypes are generated according to these standards.

Messages you define in routine procedures or in manual areas must be translated using
the routine CP_TRANSLATE. Let us consider for example that you define in a
routine procedure a statement that executes the following message:

wait wind "Warning!"

You have to change it to:

wait wind cp_translate("Warning!")

If you then define the translation in the database the routine will return the translated
string.

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 2 0 A D V A N C E D O P T I O N S

If the message is made of fixed and variable sections you should translate the fixed
sections only and link the strings together, e.g.:

wait wind "File "+name+" not found"

Must be changed to:

wait wind cp_translate("File")+""+ name+""+cp_translate("not found")

Applying this method you simply need to translate 'File' and 'Not Found'. If you
would have changed the statement in:

cp_Translate("File "+name+" not found")

you would need to translate the statement for each single file.

You can also format the translated string with CP_MsgFormat:
 wait window cp_MsgFormat(cp_Translate("File %1 not found"),name)

 The function cp_MsgFormat will substitute %1 with the value contained in name.

To implement a multilingual application you need to load the translations in the file
cp_lang.dbf. The file can then be distributed as part of the application or the user
can load it during the run-time.

To translate open the 'Utility' menu in your application, open the 'User
Administration' option and click the 'Translate' button. In the 'Translations' dialog
window header there are the field containing the 'Original' string and the
'Autolearning' flag. In the window body there are the field containing the language
code and the translated string.

This procedure is like any other procedure developed with CodePainter and therefore
you can load, change, delete and query records.

P R O G R A M M I N G & U T I L I T I E S G U I D E

A D V A N C E D O P T I O N S 1 2 1

The 'Autolearning' functionality helps you (or the user) loading all original strings in
the table rapidly and correctly. Set the flag and browse through the application
opening all dialog windows available. The original strings are automatically loaded into
the table and you can start translating the application. Please notice that you can
translate one original string in different languages simultaneously simply defining
language codes.

9.2.2 Technical Notes

The database containing original strings and translations is local to the application and
independent from the database created by the application itself. The multilanguage
database is a Visual FoxPro database whereas the application database can be of any
kind (ORACLE, DB2, etc.).

The multilanguage database is made of one transaction only. The structure is: one
field in the header (orig_str) and two in the body (language and tran_str).

The field ORIG_STR in the header is the primary key, string type, character, length
60 and contains the original string.

The field LANGUAGE in the body is a key field, string type, character, length 3 and
contains the language code.

The field TRAN_STR in the body string type, character, length 200 and contains the
translated string.

The global variable i_cLanguage identifying the language is initializated as blank in
the starting program CP3START. The language variable is defined in the log-in dialog
window (user specific).

Routines for translations CP_TRANSLATE, CP_MSGFORMAT are stored in
CP_LIB.

Many strings are followed by the character ':'. In these cases the routine deletes the
character, searches for the translation and restores the character ':'. You are therefore
not required to translate these kind of strings.

P R O G R A M M I N G & U T I L I T I E S G U I D E

C H A N G I N G T H E D A T A B A S E 1 2 3

Chapter 10

Changing The
Database

10.1 MS Visual FoxPro Databases

One of the fundamental features of developing Client/Server applications with
CODEPAINTER REVOLUTION is that they are fully independent from the database
used. This means that in whichever development stage you are, or even once the
application has been installed, you can always change the database. This makes
CodePainter very flexible and makes you save money and time.

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 2 4 C H A N G I N G T H E D A T A B A S E

This chapter will show you how you can change your application's databases (Visual
FoxPro 5.x) into Jet (Acces/.mdb) or into SQL Server 6.5.

10.1.1 From Visual Fox Pro to Jet

To convert from Visual FoxPro to Jet (the engine used by MS Access) you need to
create a Windows 95/98 ODBC connection. Open the 'Start' menu, select 'Set-up' and
open the 'Control Panel' containing the system icons.

P R O G R A M M I N G & U T I L I T I E S G U I D E

C H A N G I N G T H E D A T A B A S E 1 2 5

Double click 'ODBC' or '32bit ODBC' to open the 'ODBC Modules' window. In the
first sheet click the 'Add' button to add a new module.

Picture 8 - The
Control Panel

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 2 6 C H A N G I N G T H E D A T A B A S E

You now need to define the driver for the new connection. Select 'Microsoft Access
Driver' and click 'End'.

Picture 9 - 'ODBC
Modules' Dialog

Window

P R O G R A M M I N G & U T I L I T I E S G U I D E

C H A N G I N G T H E D A T A B A S E 1 2 7

You are now required to define the connection name and to give a brief description.
Name the connection 'Trial' and input the description 'Trying to change the database'.

Picture 10 -
Selecting the Driver

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 2 8 C H A N G I N G T H E D A T A B A S E

Click 'Create' to create a new database. You are required to name the file and to select
the path in which to save it. Browse to find the directory in which you saved your
project plan (C:\Newapp) and save the file naming it 'Plan'. You have just configured
a new ODBC connection, which allows interfacing the Jet database (MS Access).

The new connection must be communicated to the application, by creating a new file
named 'PLAN.CNF' containing the information on the database and the 'ODBC'
connection address. Open the MS Windows 'Notepad' and type the following
instructions:

CP_DBTYPE='Access'

CP_ODBCCONN='trial'

Picture 11 -
Defining The New

Module

P R O G R A M M I N G & U T I L I T I E S G U I D E

C H A N G I N G T H E D A T A B A S E 1 2 9

Save the file in the application's directory ('Newapp') naming it 'PLAN.CNF'.

Open MS Visual FoxPro and run the application as usual. You can notice that the
database update window is opened. This happens because tables do not exist in the
new database. Click the 'Update Database' button and confirm the windows that
follow.

All databases used by the application are created again. This happens because the
system has noticed the existence of a new 'PLAN.CNF', i.e. the name of your project.
The file has been read and the new databases created linking via ODBC to the Jet
database. Your application manages the Jet database via ODBC and not using Visual
FoxPro. Enter some data in the files to verify it.

Picture 12 - The
Database
Maintenance'
Window

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 3 0 C H A N G I N G T H E D A T A B A S E

The application's functionalities have not changed. The only thing that has changed is
the database management. Indeed the system deals with this aspect using Jet and the
ODBC connection.

Using MS Access you can now verify whether the created tables are managed
correctly. Open the 'File' menu, select 'Open', go to the application directory
(C:\Newapp) and open the only file available (PLAN.MDB), i.e. the file you created
via ODBC. A new window opens up showing how the database is build. You can
notice that in the 'Tables' sheet there are all application's tables.

Click 'Items' and then 'Open'. The list of records input in the application is displayed.

Check the other database tables to verify that the change of database has fully
succeeded and that the two programs are now compatible.

Picture 13 -
Application Tables

viewed with MS
Access

Picture 14 -
Corresponding List

of Records

P R O G R A M M I N G & U T I L I T I E S G U I D E

C H A N G I N G T H E D A T A B A S E 1 3 1

10.1.2 From Visual Fox Pro to SQL Server

To change the database from Visual FoxPro to SQL Server you need a Server NT, an
installed SQL Server and an existing database.

Again, you need to create an ODBC connection. Open the 'Start' menu, select 'Set-up'
and open the 'Control Panel' containing the system icons.

Double click 'ODBC' or '32bit ODBC' to open the 'ODBC Modules' window. In the
first window click the 'Add' button to add a new module.

You now need to define the driver for the new connection. Select 'SQL Server' and
click 'End'.

You are now required to define the connection name and to give a brief description.
Name the connection 'Trial' and input the description 'Trying to change the database'.
On the 'Server' row digit the name of the server you are going to use. Click 'Options'
and on the 'Database Name' row digit the name of the database on the Server NT
(e.g. 'Trial').

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 3 2 C H A N G I N G T H E D A T A B A S E

You have configured a new ODBC connection that allows you to interface the SQL
Server Database.

You now need to communicate the new connection to your application, creating a
new file and name it 'PLAN.CNF' containing information on the database and the
'ODBC' connection address. Open the MS Windows 'Notepad' and type the following
instructions:

CP_DBTYPE='SQLserver'

CP_ODBCCONN='trial'

Save the file in the application directory ('Newapp') and name it 'PLAN.CNF'.

Open MS Visual FoxPro and run the application as usual. You are asked to input a
login and a password. Input 'SA' (System Administrator) as login and click 'OK'.

Picture 15 -
Defining the

ODBC Module for
SQL Server

P R O G R A M M I N G & U T I L I T I E S G U I D E

C H A N G I N G T H E D A T A B A S E 1 3 3

You can notice that the database update window is opened. This happens because
tables do not exist in the new database. Click the 'Update Database' button and
confirm the windows that follow.

All databases used by the application are created again. This happens because the
system has noticed the existence of a new 'PLAN.CNF', i.e. the name of your project.
The file has been read and the new databases created linking via ODBC to the SQL
Server. Your application manages the SQL Server database via ODBC and not using
Visual FoxPro. Enter some data in the files to verify it.

Picture 16 - SQL
Server Log-On
Requirements

Picture 17 -
Database
Maintenance
Window

P R O G R A M M I N G & U T I L I T I E S G U I D E

1 3 4 C H A N G I N G T H E D A T A B A S E

The application's functionalities have not changed. The only thing that has changed is
the database management. Indeed the system deals with this aspect using the SQL
Server and the ODBC connection.

Using MS Query (MSQUERY32.exe) you can now verify whether the created tables
are managed correctly. You can open a database and execute a query on the files. For
example you can execute a query on the 'Items' file and verify the success of the
database change.

Picture 18 -
Example Of A

SQL Server Query

