

Visual.NET Extensions – Tutorial

“Setup of a new Client Application using the
VDX Framework”

The extensive application development framework

for the simple development of Microsoft
Visual Studio.NET database applications!

Devigus Engineering AG
Grundstrasse 3

CH-6343 Rotkreuz
Internet: http://www.devigus.com

Email: deag@devigus.com

Version: 1.1
Last Update: 22.11.2002

Visual .NET Extensions Framework
Tutorial

1 Setup of a new Client Application using the VDX Framework ..3

1.1 Set Up Client Project ..4
1.2 Create and Integrate the Main Window..5
1.3 Add the Main Menu ...6
1.4 Add the Toolbar ImageList ..7
1.5 Add the Toolbar..7
1.6 Add the Outlookbar ImageList ...8
1.7 Add the vdxOutlookbar ..8

1.7.1 Configuration of the vdxOutlookBar ..9
1.8 Add the TreeView ImageList ...10
1.9 Add the Splitter -Control ..10
1.10 Add the vdxDataActionManager ..11
1.11 Add the vdxMultiContainer Control...13

1.11.1 Programming the vdxMultiContainer-Controls...13

Visual .NET Extensions Framework
Tutorial

1 Setup of a new Client Application using the VDX Framework
This section shows how to build a sample database application using the VDX class libraries. The
following figure shows the completed application, which is also supplied with VDX (see also product
delivery in the VDX Technical Reference). In the following tutorials, this application gets completed
step-by-step.

The following concepts apply to the design of the application:

Server:

• Distributed server application based on XML Webservices.

• Clients and servers communicate via SOAP so that even clients behind a firewall can access

the Web services.

• 3-tier architecture

• The services supplied by the server, i.e. the Web services, can be easily moved to another

computer at any time.

• The server database is based on MS SQL Server 2000.

• The services are implemented with C# .NET. They could be implemented with any SOAP-

compatible language, but it is recommended to use a .NET language in order to take
advantage of various server classes offered by the VDX Framework, which could not be used
otherwise.

Client:

• There is a locally installed .NET application on each client which is built using the VDX
classes.

• The clients access the server via SOAP proxy objects.

VDXTut1_Start_en .doc Page 3 from 15 09.09.2002

Visual .NET Extensions Framework
Tutorial

• The sample application is a single-document interface (SDI) application without additional
dialog windows, i.e. the entire application uses one window, with the exception of message
boxes.

Requirements for the development of the address application:

• The .NET framework class libraries, which can be downloaded from Microsoft’s web site,
must be installed. These contain the CLR (run-time component for .NET programs) and a
command-line compiler.

• Visual Studio .NET is recommended for a more comfortable development environment.

• Basic OO knowledge

1.1 Set Up Client Project
Set up an empty VDX client project.

1. Start Visual Studio .NET.

2. Create a new C# project. Select the Empty Project template (not Windows Application) and

rename it MyVdxSampleApplication.

3. Add the following assembly references to the project (via Project Add Reference...):

Assembly Path
vdxControls %VDX_Installationspath%\vdxControls.dll
vdxCommon %VDX_Installationspath%\vdxCommon.dll

4. Add the following Web Reference (via Project Add Web Reference...) in order to access the

supplied server application.

http://%Computername%/vdxSampleWebServices/vdxSampleWebServices.vsdisco

NOTE: The Installation of the WebServices is described in the file readme.doc (under
Program Files\VDX\VDX 1.1 SampleClient\).

5. Click on Add Reference.

6. Rename the added reference from localhost to vdxSampleWebServices.

7. Add a new class to the project (via Project Add Class...) and rename it to SampleApp.cs.

8. Insert the following VDX namespace references at the top of the code in the SampleApp class

to allow easier access the VDX classes.

using Deag.Vdx.Common;
using Deag.Vdx.Controls;

9. In order to use the VDX functions in the sample application, inherit it from the vdxApp class

by modifying the code as follows.

VDXTut1_Start_en .doc Page 4 from 15 09.09.2002

Visual .NET Extensions Framework
Tutorial

public class SampleApp : vdxApp

10. Insert the following method into the SampleApp class:

[STAThread]
static void Main()
{
 new SampleApp();
 VdxStartApp();
}

This is the entry point for the application. For the time being it will only start the application,
execute its own constructor to initialize its properties with appropriate values, but not display
a window yet.

NOTE: Because the variables and methods of the vdxApp class are declared as static, you do
not need to create a local instance of SampleApp.

11. To define this method as the entry point for the application, open the project properties (select

the project and then Project Properties) and set the Output Type and Startup Object to the
specified values:

Property Selection
Output Type Windows Application
Startup Object MyVdxSampleApplication.SampleApp

NOTE: The Startup Object must contain the fully-qualified name of the SampleApp class,
where the Namespace part depends on the name of your project (MyVdxSampleApplication
for the sample application).

The initial client-side setup of the VDX application is concluded for now. The following sections
systematically describe how to build the client application.

1.2 Create and Integrate the Main Window
This section shows how to build the actual application – the SDI window in which the Address
database application will run. This window class will contain the GUI part as well as some of the
logic. The following steps create and integrate an empty window.

1. Add a new Windows Form class to the project (via Project Add Windows Form...) and
name it MainForm.

2. Add the following VDX namespace references to the MainForm code.

using Deag.Vdx.Common;
using Deag.Vdx.Common.Enums;
using Deag.Vdx.Controls;

3. This windows class must implement the IvdxMainForm interface so that the application can

be controlled by the SampleApp class. odify the class declaration as follows:

VDXTut1_Start_en .doc Page 5 from 15 09.09.2002

Visual .NET Extensions Framework
Tutorial

public class MainForm : System.Windows.Forms.Form, IvdxMainForm

4. The IvdxMainForm interface defines a Show method which will be called by VDX. Because

it is an interface, the method must be implemented. Add the following code to the MainForm
class.

public new void Show()
{
 this.ShowDialog();
}

5. So that VDX can show the MainForm window at the desired time, the SampleApp class must

define a reference to it. Add the following code between the new SampleApp and the
VdxStartApp statements in the SampleApp class.

new SampleApp();
VdxMainForm = new MainForm();
VdxStartApp();

NOTE: The VdxMainForm variable is defined in the vdxApp base class and is used to access
the MainForm class.

6. Compile and run the project. An empty window should be displayed.

1.3 Add the MainMenu
Add the main menu to the sample application:

1. Select the design view of the MainForm class and drag & drop a MainMenu control from the
Toolbox mto the MainForm.

2. Rename the menu mainMenu.

3. Add the following MenuItems to the mainMenu. The Name property of the respective

MenuItem is enclosed in square brackets:

File [mnuFile] Edit [mnuEdit]
New Address [mnuFileNewAddress] Undo (Ctrl+Z) [mnuEditUndo]
New Person [mnuFileNewPerson] Save (Ctrl+S) [mnuEditSave]
(Separator) [mnuFileSeparator1] (Separator) [mnuEditSeparator1]
Exit (Alt+F4) [mnuFileExit] Edit Record (Ctrl+E) [mnuEditEditRecord]
 Add Record (Ctrl+N) [mnuEditAddRecord]
 Copy Record [mnuEditCopyRecord]
 Delete Record (Ctrl+D) [mnuEditDeleteRecord]
 (Separator) [mnuEditSeparator2]
 Find (Ctrl+F) [mnuEditFind]

NOTE: Insert separators with the Insert Separator command on the mainMenu context menu.
To define shortcuts for menu items, set the Show Shortcut property to true and select the
desired keystroke sequence for the Shortcut property. The shortcuts are only visible at run
time.

VDXTut1_Start_en .doc Page 6 from 15 09.09.2002

Visual .NET Extensions Framework
Tutorial

4. Compile and run the project. The windows forms and its menu should be displayed.

The MenuItems will be linked to actions after all of the controls have been placed on the form.

1.4 Add the Toolbar ImageList
Define the Images Collection for the toolbar.

1. Select the design view of the MainForm class and drag an ImageList control onto it from the
Windows Forms tab of the toolbox.

2. Rename the ImageList imageListToolBar.

3. Set the ImageSize property to 16x16 pixels, the default.

4. Add the following Images to the list, assigning them to the specified index. To open the

collection editor, click the selection button of the Images property. The icons are in the
icons\toolbar\ VDX installation subdirectory.

Collection Index Image

0 Add.ico
1 Copy.ico
2 Edit.ico
3 Delete.ico
4 Save.ico
5 Undo.ico
6 Find.ico

The following figure shows the collection editor and the added icons.

The ImageList will be used by the buttons of the toolbar which will be added in the next section.

1.5 Add the Toolbar
The next steps define the toolbar for the sample application. The toolbar is used for quick access to
the most important menu commands.

VDXTut1_Start_en .doc Page 7 from 15 09.09.2002

Visual .NET Extensions Framework
Tutorial

1. Select the design view of the MainForm class and drop a Toolbar control onto it from the
Windows Forms tab of the toolbox.

2. Rename the Toolbar toolbar.

3. Associate the previously created ImageList with the toolbar by setting the ImageList property

to imageListToolbar.

4. Select the Button property and add the following Buttons and Separators to the Collection.

Button Name Icon Index ToolTip Text Text
tbbAddRecord 0 Add
tbbCopyRecord 1 Copy
tbbEditRecord 2 Edit
tbbDeleteRecord 3 Delete
tbbSeparator1
tbbSave 4 Save
tbbUndo 5 Undo
tbbSeparator2
tbbFind 6 Find Find

The Toolbar Buttons will be linked to actions later.

1.6 Add the Outlookbar ImageList
Similar to the toolbar, you must define the ImageList for the Outlookbar.

1. Select the design view of the MainForm class and drag an ImageList control onto it from the
Windows Forms tab of the toolbox.

2. Rename the ImageList imageListOutlookBar.

3. Set the ImageSize to 32x32 pixels.

4. Add the following Images to the list, assigning them to the specified index. The icons are in

the icons\outlookbar\large VDX installation subdirectory.

Collection Index Image
0 Address.ico
1 Person.ico
2 Language.ico
3 Country.ico

The ImageList will be used by the buttons of the Outlookbar which will be added in the next section.

1.7 Add the vdxOutlookbar
The next steps define the Outlookbar for the sample application. The Outlookbar is used to access
various subunits of the application, e.g. addresses, country codes, etc.

1. Select the design view of the MainForm class and drag a vdxOutlookBar control onto it from
the VDX tab of the toolbox.

2. Rename the Outlookbar vdxOutlookBar.

3. Dock the Outlookbar to the left side of the application window by setting the Dock property

to Left.

VDXTut1_Start_en .doc Page 8 from 15 09.09.2002

Visual .NET Extensions Framework
Tutorial

1.7.1 Configuration of the vdxOutlookBar
To fill the Outlookbar with groups and icons within the groups, follow these steps:

1. Select the Outlookbar’s ImageListLarge property and select the previously created
imageListOutlookBar ImageList.

2. Repeat the previous step for the ImageListSmall property.

NOTE: In case alternate or optimized icons are to be used for the small icon view of the
Outlookbar, define an additional ImageList with those icons, assigning them the same
collection index as in the imageListOutlookBar main image list.

3. Click the GroupList property of the Outlookbar to open the vdxOutlookBarGroup collection

editor.

4. Click Add three times and set the properties of the new groups as follows.

Group Text Name
vdxOutlookBarGroup1 Address groupAddress
vdxOutlookBarGroup2 Person groupPerson
vdxOutlookBarGroup3 Tables groupTables

The Collection-Editor looks like this:

5. Insert the icons into their respective groups. Select the groupAddress group and click the

IconList property. Click Add and set the properties of the icon as follows.

Text Name ImageIndex
Explore iconAddressExplore 0

Select the groupPerson group and repeat the previous step:

Text Name ImageIndex
Explore iconPersonExplore 1

Do the same for the groupTables group: The icons of the Outlookbar will be linked to actions
later.

Text Name ImageIndex
Address Type iconTablesAddrType 0
Language iconTablesLang 2

VDXTut1_Start_en .doc Page 9 from 15 09.09.2002

Visual .NET Extensions Framework
Tutorial

Country iconTablesCountry 3

1.8 Add the TreeView ImageList
The sample application supplies a TreeView to navigate the selected data. The following steps define
the icons for the various nodes of the TreeView.

1. Select the design view of the MainForm class and drag an ImageList control onto it from the
Windows Forms tab of the toolbox.

2. Rename the control imageListTreeView.

3. Confirm that the ImageSize is set to 16x16 pixels.

4. Add the following Images to the list, assigning them to the specified index. The

icons\treeview\ VDX installation subdirectory contains a selection of icons which can be
used.

Collection Index Image

0 Arrow.ico
1 Selection.ico
2 Address.ico
3 Person.ico

1.9 Add the Splitter -Control
A Splitter control will be added to allow the user to change the size of the Outlookbar at run time.

1. Select the design view of the MainForm class and drag a Splitter control onto it from the
Windows Forms tab of the toolbox. The Splitter should be positioned against the left edge of
the Outlookbar. It does not require any further configuration.

The following figure shows the current state of the MainForm.

To verify the work up to this point, build the application (via Build Rebuild Solution) and run it.

VDXTut1_Start_en .doc Page 10 from 15 09.09.2002

Visual .NET Extensions Framework
Tutorial

1.10 Add the vdxDataActionManager
A vdxActionManager will be added to associate the click of a button with an action. For
demonstration purposes, only the standard buttons and the menu items Add, Copy, Delete, Save, Undo
and Find will be implemented. The application-specific ActionItems will be implemented in the
appropriate places as needed.

1. Select the design view of the MainForm class and drag a vdxDataActionManager control onto
it from the VDX tab of the toolbox.

2. Rename the control vdxDataActionManager.

3. To link action events with the appropriate controls, the appropriate properties of the

vdxDataActionManager must be set as shown in the following table.

Property Selection
ToolBar1 toolBar
VdxDataActionItemAdd.VdxInvokerMenu1 mnuEditAddRecord
VdxDataActionItemAdd.VdxInvokerToolBarButton1 tbbAddRecord
VdxDataActionItemCopy.VdxInvokerMenu1 mnuEditCopyRecord
VdxDataActionItemCopy.VdxInvokerToolBarButton1 tbbCopyRecord
VdxDataActionItemDelete.VdxInvokerMenu1 mnuEditDeleteRecord
VdxDataActionItemDelete.VdxInvokerToolBarButton1 tbbDeleteRecord
VdxDataActionItemEdit.VdxInvokerMenu1 mnuEditEditRecord
VdxDataActionItemEdit.VdxInvokerToolBarButton1 tbbEditRecord
VdxDataActionItemSave.VdxInvokerMenu1 mnuEditSave
VdxDataActionItemSave.VdxInvokerToolBarButton1 tbbSave
VdxDataActionItemUndo.VdxInvokerMenu1 mnuEditUndo
VdxDataActionItemUndo.VdxInvokerToolBarButton1 tbbUndo

4. Double-click the VdxDataActionItemAdd.VdxActionInvoked event of the

vdxDataActionManager object. The
vdxDataActionManager_VdxDataActionItemAdd_vdxActionInvoked event listener method
will be added to the MainForm class.

NOTE: If the name of the event listener method is inserted incorrectly, repeat this step, but
first delete the event listener method and the corresponding registration of the event (‚+=’
statements) in the InitializeComponent method.

5. Add the following code to the new event listener method.

if (this.vdxDataActionManager.VdxDataStatusManager != null)
{
 this.vdxDataActionManager.VdxDataStatusManager.Add();
}

Clicking the Add button or selecting the Add menu item will execute the Add method of the
DataStatusManager, which inserts a new record.

6. Double-click the VdxDataActionItemCopy.VdxActionInvoked event of the

vdxDataActionManager object. The
vdxDataActionManager_VdxDataActionItemCopy_vdxActionInvoked event listener method
will be added to the MainForm class.

7. Add the following code to the new event listener method.

VDXTut1_Start_en .doc Page 11 from 15 09.09.2002

Visual .NET Extensions Framework
Tutorial

if (this.vdxDataActionManager.VdxDataStatusManager != null)
{
 try
 {
 this.vdxDataActionManager.VdxDataStatusManager.Copy();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

NOTE: If the copy method fails, the thrown exception will be caught in the catch block
where you can implement the error handling of your choice.

8. Double-click the VdxDataActionItemDelete.VdxActionInvoked event of the

vdxDataActionManager object. The
vdxDataActionManager_VdxDataActionItemDelete_vdxActionInvoked event listener method
will be added to the MainForm class.

9. Add the following code to the new event listener method.

if (this.vdxDataActionManager.VdxDataStatusManager != null)
{
 try
 {
 this.vdxDataActionManager.VdxDataStatusManager.Delete();
 }
 catch (System.Exception ex)
 {
 this.vdxDataActionManager.VdxDataStatusManager.Undo();
 MessageBox.Show(ex.Message);
 }
}

Clicking the Delete button or selecting the Delete menu item will execute the Delete method
of the DataStatusManager, which deletes a record. If the deletion throws an exception, the
Undo method will be executed to reverse the deletion.

10. Double-click the VdxDataActionItemEdit.VdxActionInvoked event of the

vdxDataActionManager object. The
vdxDataActionManager_VdxDataActionItemEdit_vdxActionInvoked event listener method
will be added to the MainForm class.

11. Add the following code to the new event listener method.

if (this.vdxDataActionManager.VdxDataStatusManager != null)
{
 this.vdxDataActionManager.VdxDataStatusManager.Edit();
}

12. Double-click the VdxDataActionItemSave.VdxActionInvoked event of the

vdxDataActionManager object. The

VDXTut1_Start_en .doc Page 12 from 15 09.09.2002

Visual .NET Extensions Framework
Tutorial

vdxDataActionManager_VdxDataActionItemSave_vdxActionInvoked event listener method
will be added to the MainForm class.

13. Add the following code to the new event listener method.

if (this.vdxDataActionManager.VdxDataStatusManager != null)
{
 try
 {
 this.vdxDataActionManager.VdxDataStatusManager.Save();
 }
 catch (System.Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

14. Double-click the VdxDataActionItemUndo.VdxActionInvoked event of the

vdxDataActionManager-Objektes. The
vdxDataActionManager_VdxDataActionItemUndo_vdxActionInvoked event listener method
will be added to the MainForm class.

15. Add the following code to the new event listener method.

if (this.vdxDataActionManager.VdxDataStatusManager != null)
{
 this.vdxDataActionManager.VdxDataStatusManager.Undo();
}

The ToolBarButtons and MenuItems will now trigger the appropriate actions but will not carry out
these actions because the necessary controls do not yet exist. Compile and run the application to the
previous code for errors.

The next sections explain the implementation and integration of the database controls for the currently
empty right section of the MainForm. These controls will all be placed into a Container control
which manages all of them.

1.11 Add the vdxMultiContainer Control
Select the design view of the MainForm class and drag a vdxMultiContainer control from the VDX tab
of the toolbox onto the right, empty area of the window. Rename the control vdxMultiContainer. Set
the Dock property to Fill.

The vdxMultiContainer control manages the controls embedded on it. For example, a most recently
loaded control which displays addresses is stored in the vdxMultiContainer control so that the
addresses can be shown again instantly at any time without delay. The vdxMultiContainer control also
provides four events which are always executed when an embedded control is created, activated,
deactivated or reactivated. These events will not be linked to actions yet.

1.11.1 Programming the vdxMultiContainer-Controls
To link the embedded objects with the vdxMultiContainer-Objekt, follow these steps:

1. Select the vdxMultiContainer-Object in the designer area of the MainForm-class.

2. Double-click the VdxControlActivated event.

VDXTut1_Start_en .doc Page 13 from 15 09.09.2002

Visual .NET Extensions Framework
Tutorial

3. Repeat these steps for the vdxControlCreated- and vdxControlDeactivated-Events. Following

table lists these events with their corresponding Event-Listener-Methods entered in the
MainForm class.

Event Event-Listener
VdxControlActivated vdxMultiContainer_vdxControlActivated
VdxControlCreated vdxMultiContainer_vdxControlCreated
VdxControlDeactivated vdxMultiContainer_vdxControlDeactivated

4. Add the following code in the vdxMultiContainer_vdxControlCreated event listener method.

You find this method in the MainForm class.

((vdxOutlookDetail)e.Control).Show();

((vdxOutlookDetail)this.vdxMultiContainer.VdxCurrentControl).
 VdxImageList = this.imageListTreeView;

The first statement loads the Address-Selection, if the ExplorerAddress class gets loaded for
the first time. In the second statement the corresponding ImageList, needed for the
visualization of the Tree-Node-Icon, gets set.

5. Add the following code in the vdxMultiContainer_vdxControlActivated event listener method:

((vdxOutlookDetail)this.vdxMultiContainer.VdxCurrentControl).
 VdxDataActionManager = this.vdxDataActionManager;

In order to link the vdxDataActionManager with the visible controls, we set the
VdxDataActionManager every time, an Address-Control gets activated.

6. Add the following code in the vdxMultiContainer_vdxControlDeactivated event listener
method:

((vdxOutlookDetail)this.vdxMultiContainer.VdxCurrentControl).
 VdxDataActionManager = null;

Contrasting with the above, the vdxDataActionManager gets removed, as soon as an Address-
Control gets deactivated.

Compile and run the project. Following window should be displayed:

VDXTut1_Start_en .doc Page 14 from 15 09.09.2002

Visual .NET Extensions Framework
Tutorial

VDXTut1_Start_en .doc Page 15 from 15 09.09.2002

In the following tutorials, the VDX Sample Application gets completed with specific application
scenarios.

	Setup of a new Client Application using the VDX Framework
	Set Up Client Project
	Create and Integrate the Main Window
	Add the MainMenu
	Add the Toolbar ImageList
	Add the Toolbar
	Add the Outlookbar ImageList
	Add the vdxOutlookbar
	Configuration of the vdxOutlookBar

	Add the TreeView ImageList
	Add the Splitter -Control
	Add the vdxDataActionManager
	Add the vdxMultiContainer Control
	Programming the vdxMultiContainer-Controls

