
 
 
 

Visual.NET Extensions – Tutorial 
 

“vdxExplorerTree - Standard datamanipulation  
with treeview“ 

 
The extensive application development framework  

for the simple development of Microsoft  
Visual Studio.NET database applications! 

 

 
 
 

Devigus Engineering AG 
Grundstrasse 3 

CH-6343 Rotkreuz 
Internet: http://www.devigus.com 

Email: deag@devigus.com 
 
 

Version: 1.1.a 
Last Update: 22.11.2002



Visual .NET Extensions Framework  
Tutorial 

 
1 vdxExplorerTree –Standard datamanipulation with treeview. ........................................................3 

1.1 Implementing the ExplorerAddress class .................................................................................3 
1.2 Creation of the  SelectionAddress-class ...................................................................................4 
1.3 Creation of the SelectionListAddress-class..............................................................................6 

1.3.1 DataSet dsAddressList and vdxDataGrid binding.............................................................7 
1.4 Creation of the DataDetailAddress-class..................................................................................8 

1.4.1 DataSet dsAddress, dsAddrType and dsCountry binding..................................................9 
1.4.2 Configuration of the vdxDataStatusManager .................................................................10 

1.5 Creation of the SelectionAddress-control...............................................................................10 
1.5.1 Overwriting the VdxFillSearchParameters-method .......................................................10 

1.6 Creation of the DataDetailAddress-control ............................................................................12 
1.7 Configuration of the ExplorerAddress-control.......................................................................13 
1.8 Programming the ExplorerAddress-control............................................................................14 

1.8.1 Overwriting the der VdxLoadData-method.....................................................................14 
1.8.2 Overwriting the VdxFillData-method .............................................................................15 
1.8.3 Overwriting the VdxUpdateNode-method.......................................................................16 
1.8.4 Overwriting the VdxUpdateSelectionList-method...........................................................17 

1.9 Programming the vdxActionItems .........................................................................................18 
 



Visual .NET Extensions Framework  
  Tutorial 

1 vdxExplorerTree –Standard datamanipulation with treeview. 
This tutorial describes the usage of the vdxExplorerTree-Control showing the implementation of a 
standard datamanipulation with treeview. This szenario describes the treeview based management of 
specific data, such as an address table. 
 
The following screen shows the vdxExplorerTree-Control with its child-controls SelectionListAddress 
und DataDetailAddress: 
 

 

 
 

1.1 Implementing the ExplorerAddress class 
This section explains the construction and integration of the address container class.  The database 
controls for searching addresses and reading addresses and address details will be embedded in this 
container.  The data access logic of the embedded controls will also be written.  A method will only 
be implemented in a control class where it is not possible or does not make sense to do so otherwise 
(more on this later). 
 
Following steps describe the creation of the ExplorerAddress class: 
 

1. Add a new, derived Control class to the project (Project  Add Inherited Control...). 
 
2. Name the class ExplorerAddress because all of the embedded controls are used to explore, i.e. 

view and process addresses. 
 

3. Click Open to open the dialogue box for selecting the base class. 
 

4. Click Browse... to supply the appropriate assembly (DLL file).  Select 
vdxControls\bin\release\vdxControls.dll from the VDX installation subdirectory.  Select the 
vdxExplorerTree class from the component list.  The following figure shows the selection 
window. 

 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 3 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

 

 
 

 
The newly created class consists of a Titlebar, a TreeView, and a container for displaying data, all 
of which are inherited. 
 

 

 
 

 
5. Add the following VDX namespace references in the code to allow easier access to the VDX 

classes. 
 

 
using System.Data; 
using Deag.Vdx.Common; 
using Deag.Vdx.Common.Enums; 
using Deag.Vdx.Controls; 
 

 
The ExplorerAddress class serves as a container for individual address controls which are used for 
address searching and displaying the read addresses and address details.  These will be created in the 
following sections. 

1.2 Creation of the  SelectionAddress-class 
This section explains how to build and integrate the control class which allows a user to enter search 
for addresses. 
 

1. Add a new derived User Control class to the project (Project  Add Inherited Control...). 
 

2. Rename the class SelectionAddress.  The user will be able to filter the found addresses or 
define a selected subset of all addresses. 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 4 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

 
3. Click Open to open the dialog box for selecting the base class. 

  
4. Click Browse... to supply the appropriate assembly (DLL file).  Select 

vdxControls\bin\release\vdxControls.dll from the VDX installation subdirectory.  Select the 
vdxSelectionTab class from the component list. 

 
5. Add the following VDX namespace references in the code to allow easier access to the VDX 

classes. 
 

 
using Deag.Vdx.Common; 
using Deag.Vdx.Common.Enums; 
using Deag.Vdx.Controls; 
 

 
6. The base class already contains a tab control and allows one to easily design various search 

forms.  The derived control already contains two Buttons:  The Go button starts the search and 
the Clear button deletes the contents of the text boxes on the control.  Select the 
VdxTabPages property and add two TabPages to it. 
 

7. Rename the first TabPage tbpAddress and the second tbpAddressId.  Set the Text and Name 
properties of the two new TabPages as shown in the following table. 
 
Added TabPage Text Name 
vdxTabPage1 Address tbpAddress 
vdxTabPage2 Address ID tbpAddressId 

 
 

8. Click the Address TabPage and add three Label and three TextBox controls from the Windows 
Forms toolbox.  Set the Text und Name properties of the controls as shown in the following 
table. 
 
Added Control Text Name 
vdxLabel1 Company lblCompany 
vdxLabel2 ZIP lblZip 
vdxLabel3 City lblCity 
vdxTextBox1  txtCompany 
vdxTextBox2  txtZip 
vdxTextBox3  txtCity 

 
9. Arrange the new controls.  The following figure offers a suggestion. 

 
 

 
 

 
10. Click the Address ID TabPage and add a Label and a TextBox control.  Set the Text and Name 

properties of the controls as shown in the following table. 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 5 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

 
Control to be added Text Name 
vdxLabel1 Address ID lblAddressId 
vdxTextBox1  txtAddressId 

 
11. Arrange the controls as shown in the following figure. 

 
 

 
 

1.3 Creation of the SelectionListAddress-class 
This section describes how to build the control class which displays the found addresses to the user in 
a list.  This list contains the same addresses as the tree view on the left side. 
 

 

 
 

 
1. Add a new derived UserControl class to the project (Project  Add Inherited Control...). 
 
2. Rename the class SelectionListAddress. 

 
3. Click Open to open the dialogue box for selecting the base class. 

 
4. Click Browse... to supply the appropriate assembly.  Select 

vdxControls\bin\release\vdxControls.dll from the VDX installation subdirectory.  Select the 
vdxSelectionListDataGrid class from the component list. 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 6 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

1.3.1 DataSet dsAddressList and vdxDataGrid binding 
A DataSet of type SelectionListAddress must be added in order to display the selected addresses in a 
list.  The DataSet is part of the server application and will be integrated via a reference. 
 

1. Drag a DataSet control from the Data tab of the toolbox onto the control. 
 
2. Select the MyVdxSampleApplication.vdxSampleWebServices.dsAddressList DataSet from the 

drop-down list in the displayed dialogue box as shown in the following figure. 
 

 
 

 
 

 
3. Rename the DataSet dsAddressList. 

 
4. The dsAddressList DataSet must be tied to the vdxDataGrid control.  Select the vdxDataGrid 

properties and set them as shown in the following table. 
 

Property Selection 
DataSource dsAddressList 
DataMember Address 

 
NOTE: First, select the DataSource-Property and then select the DataSet with the table. This 
way, the DataMember-property gets automatically set. 

 
Compile the project to check the previous code for errors. 
 
NOTE: If the “Property or indexer 'System.Windows.Forms.DataGrid. VisibleColumnCount' cannot 
be assigned to -- it is read-only” error is displayed by the compiler, then remove the following line of 
code. 

 
 
this.vdxDataGrid.VisibleColumnCount = 4; 
 

 
Whenever a derived DataGrid is changed, Visual Studio .NET changes the read-only properties and 
these must then be manually removed.  Because the Visual Studio .NET Designer also creates 
duplicate statements, remove the duplicates of the following statements. 
 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 7 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

 
((System.ComponentModel.ISupportInitialize)(this.vdxDataGrid)).BeginInit(); 
((System.ComponentModel.ISupportInitialize)(this.vdxDataGrid)).EndInit(); 
  

1.4 Creation of the DataDetailAddress-class 
This control displays the details of a specified address.  The display can be activated by either 
selecting an address in the tree view or by double-clicking on an address in the address list, i.e. in 
SelectionListAddress. 
 
Create and integrate the control class: 
 
 

1. Add a new, derived UserControl class to the project (via Project  Add Inherited Control...). 
 
2. Rename the class DataDetailAddress. 

 
3. Click Open to open the dialogue box for selecting the base class. 

 
4. Click Browse... to supply the appropriate assembly.  Select 

vdxControls\bin\release\vdxControls.dll from the VDX installation subdirectory.  Select the 
vdxDataDetail class from the component list. 

 
5. Add the following VDX namespace references to the code. 
 

 
using System.Diagnostics; 
using Deag.Vdx.Common; 
using Deag.Vdx.Common.Enums; 
using Deag.Vdx.Controls; 
using Deag.Vdx.Controls.Delegates; 
using Deag.Vdx.Controls.EventArguments; 
 

 
6. Select the design view of DataDetailAddress and drag the following controls onto it.  The 

VDX variants are on the VDX tab of the toolbox. 
 

Control to be added Text Name 
vdxLabel Company: lblCompany 
vdxLabel Street: lblStreet 
vdxLabel ZIP: lblZip 
vdxLabel City: lblCity 
vdxLabel Country: lblCountry 
vdxLabel Phone: lblPhone 
vdxLabel Fax: lblFax 
vdxLabel E-Mail: lblEmail 
vdxLabel URL: lblUrl 
vdxLabel Address Type: lblAddrType 
vdxButton Go btnGoEmail 
vdxButton Go btnGoUrl 
vdxTextBox  txtCompany 
vdxTextBox  txtStreet 
vdxTextBox  txtZip 
vdxTextBox  txtCity 
vdxTextBox  txtPhone 
vdxTextBox  txtFax 
vdxTextBox  txtEmail 
vdxTextBox  txtUrl 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 8 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

vdxComboBox  cboCountry 
vdxComboBox  cboAddrType 

 
7. Arrange the controls as show in the figure below. 
 

 

 
 

1.4.1 DataSet dsAddress, dsAddrType and dsCountry binding 
Three DataSets derived from the DataDetailAddress class must be added in order to display the 
various address details.  These DataSets are part of the server application and will therefore be 
accessed via references. 
 

1. Drag a DataSet onto the control from the Data tab of the toolbox. 
 
2. Select the MyVdxSampleApplication.vdxSampleWebServices.dsAddress DataSet from the 

drop-down list in the displayed dialogue box as shown in the following figure. 
 

 

 
 

 
3. Rename the DataSet dsAddress. 
 
4. To show alternatives to the current value in the ComboBoxes, add additional DataSets.  Drag 

another DataSet onto the control from the Data tab of the toolbox. 
 
5. Select the MyVdxSampleApplication.vdxSampleWebServices.dsCountry DataSet from the 

drop-down list in the displayed dialogue box. 
 

6. Repeat steps 4 and 5 for a dsAddrType DataSet.and rename it to dsAddrType. 
 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 9 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

 
7. The dsAddress DataSet must be bound to the appropriate TextBox controls as shown in the 

following table. 
 
Control Property DataBindings.Text 
txtCompany dsAddress - Address.Company 
txtStreet dsAddress - Address.Street 
txtZip dsAddress - Address.ZIP 
txtCity dsAddress - Address.City 
txtPhone dsAddress - Address.Phone 
txtFax dsAddress - Address.Fax 
txtEmail dsAddress - Address.Email 
txtUrl dsAddress - Address.URL 

 
8. The ComboBox bindings must also be defined as shown in the following table. 

 
Property Control cboCountry Control cboAddrType 
SelectedValue1) dsAddress - Address.Country dsAddress - Address.AddrTypeID 
DataSource dsCountry dsAddrType 
Display Member Country.Descr AddrType.Descr 
Value Member Country.Country AddrType.AddrTypeId 

1) Property-Window: (DataBindings) SelectedValue 
 

NOTE: If the selection for a specific property does not offer the desired options, recompile 
your solution. To force the designer to write your changes in the code, change the size of your 
control (or something else) and recompile. 

1.4.2 Configuration of the vdxDataStatusManager 
Because the DataDetailAddress control will be used to change and store data, the referenced 
vdxDataStatusManager must be configured accordingly.   
 

1. Select the design view of the DataDetailAddress-class and make sure, that you select the 
DataDetailAddress object in the Properties-Drop-Down-Menu. 

 
2. Set the vdxDataStatusManager  object’s properties in the given order to the values shown in 

the table below: 
 

Property Selection 
VdxBindingContainer DataDetailAddress 
VdxDataSet dsAddress 
VdxBusinessObjectClassName [MyVdxSample…]BoAddressSoap 
VdxMainDataTable dsAddress.Address 
VdxUpdateDataSetMethodName UpdateDataSet 

 
 
At this point, the design and naming tasks have been completed for the address controls.  Compile the 
application to check the previous code for errors. 

1.5 Creation of the SelectionAddress-control 

1.5.1 Overwriting the VdxFillSearchParameters-method 
In order to send the user-entered search criteria to a Web service, they must be “packed” into the 
appropriate method.  The following steps implement this functionality: 
 

1. Select the Class View of the project (via View  Class View). 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 10 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

 
2. Navigate to the vdxFillSearchParameters method in the vdxSelection class 

(MyVdxSampleApplication  SelectionAddress  Bases and Interfaces  vdxSelectionTab 
 Bases and Interfaces   vdxSelection). 

 
3. Execute the Add  Override command from the context menu of the 

vdxFillSearchParameters method.  This adds an empty method to the SelectionAddress class, 
overwriting the base class’. 

 
4. Remove the return null statement and add the following code. 

 
 
vdxSearchParameters sp; 
 
if (this.VdxSelectedTabPage.Text == "Address") 
{ 
   sp = new vdxSearchParameters("SelectionAddressByDescr"); 
 
   sp.Add(new vdxSearchParameter("Company",this.txtCompany.Text, 
      vdxSearchType.StartWith)); 
 
   sp.Add(new vdxSearchParameter("Zip",this.txtZip.Text, 
      vdxSearchType. StartWith)); 
 
   sp.Add(new vdxSearchParameter("City",this.txtCity.Text, 
      vdxSearchType.Equal)); 
 
   sp.Add(new vdxSearchParameter("OrderBy","Company", 
      vdxSearchType.Equal));  
} 
else 
{ 
   sp = new vdxSearchParameters("SelectionAddressId"); 
 
   int intAddrId; 
   try 
   { 
      intAddrId = System.Convert.ToInt32(this.txtAddressId.Text); 
   } 
   catch 
   { 
      intAddrId = 0; 
   } 
 
   sp.Add(new vdxSearchParameter("AddressId",intAddrId, 
      vdxSearchType.Equal));  
} 
 
return sp; 
 

 
This method is called when the user clicks the Go button on the search control.  The 
parameters are passed by a vdxSearchParameters object named SelectionAddress or 
SelectionAddressId, depending on which search form the user used.  A vdxSearchParameters 
object contains one or more vdxSearchParameter objects, each containing a specific search 
criterion.  The Add method adds such an object to the vdxSearchParameters object. 

 
The vdxSearchParameter’s constructor requires a name for the search criterion, the search criterion, 
and the search method.  The following search methods are supported: 
 

• vdxSearchType.Equal – Indicates that the database value must exactly match the search value 
(SQL:  field = value). 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 11 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

 
• vdxSearchType.StartWith – Indicates that the database value must begin with the search value 

(SQL:  field LIKE value%). 
 

• vdxSearchType.Contains – Indicates that the database value must contain the search value 
(SQL:  field LIKE %value%). 

 
• vdxSearchType.BetweenStart – Must be combined with the vdxSearchType.BetweenEnd 

method (SQL:  field BETWEEN startValue AND endValue).  It indicates that database value 
must be greater than or equal to this search value. 

 
• vdxSearchType.BetweenEnd – Must be combined with the vdxSearchType.BetweenEnd 

method (SQL:  field BETWEEN startValue AND endValue).  It indicates that the database 
value must be less than or equal to the search value. 

 
• vdxSearchType.SamllerAs – Indicates that the database value must be less than the search 

value (SQL:  field < value). 
 

• vdxSearchType.LargerAs – Indicates that the database value must be greater than the search 
value (SQL:  field > value). 

1.6 Creation of the DataDetailAddress-control 
In order to display the address entered in the URL textbox, the click event of the corresponding Go  
button must be programmed. 
 

1. Open the DataDetailAddress control. 
 
2. Double-click  the Click event of the btnGoUrl button. 
 
3. Add the following code to the btnGoUrl_Click method of the event listener method. 

 
 
if (txtUrl.Text != "") 
{ 
   Process process = new Process(); 
   try 
   { 
      process.StartInfo.FileName = txtUrl.Text; 
      process.Start(); 
   } 
   catch (System.Exception ex) 
   { 
      MessageBox.Show(ex.Message); 
   } 
} 
 

 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 12 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

4. Implement the clicking of the Go button of the email TextBox (btnGoEmail_Click) in the 
same manner. 

 
 
if (txtEmail.Text != "") 
{ 
   Process process = new Process(); 
   try 
   { 
      process.StartInfo.FileName = "mailto:" + txtEmail.Text; 
      process.Start(); 
   } 
   catch (System.Exception ex) 
   { 
      MessageBox.Show(ex.Message); 
   } 
} 
 

 
5. The following code must be inserted in the constructor of the DataDetailAddress class in 

order to fill the Country and Address Type ComboBoxes with the appropriate country and 
address type codes.  Insert the code after the call to InitializeComponent. 

 
 
vdxSampleWebServices.BoCountrySoap boCountry = new  
   vdxSampleWebServices.BoCountrySoap(); 
 
this.dsCountry.Merge(boCountry.GetDataSetCountry()); 
 
vdxSampleWebServices.BoAddrTypeSoap boAddrType = new  
   vdxSampleWebServices.BoAddrTypeSoap(); 
 
this.dsAddrType.Merge(boAddrType.GetDataSetAddrType()); 
 

 
Compile the project to check the previous code for errors. 
 

NOTE: If you do not get a satisfying result, please close all project files and reopen them. 
 

1.7 Configuration of the ExplorerAddress-control 
The linking of the individual address controls (DataDetailAddress, SelectionAddress and 
SelectionListAddress) is implemented centrally in the ExplorerAddress class. 
 

1. Open the design view of the ExplorerAddress class and set the focus on the 
VdxSelectionControlClassName property. 

 
2. Select the SelectionAddress control from the appropriate drop-down list. 

 
3. Select the SelectionListAddress control for the VdxSelectionListControlClassName in the 

same manner. 
 

4. Select the DataDetailAddress control for the VdxMainDataDetailControlClassName property 
in the same manner.  The following table summarizes the settings. 

 
Property Selektion 
VdxSelectionControlClassName MyVdxSampleApplication.SelectionAddress 
VdxSelectionListControlClassName MyVdxSampleApplication.SelectionListAddress 
VdxMainDataDetailControlClassName MyVdxSampleApplication.DataDetailAddress 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 13 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

 
The address controls are now connected to their container, the ExplorerAddress class. 
 

1.8 Programming the ExplorerAddress-control 
The logic of the embedded controls will be implemented centrally in der class ExplorerAddress. 
Following steps describe the implementation of the corresponding functionality: 

1.8.1 Overwriting the der VdxLoadData-method 
When the user presses the Go-Button in the selection dialog, the corresponding data loading process 
must be invoked. The data loading will be implemented in the method VdxLoadData. Follow these 
steps, to implement the data loading: 
 

1. Select Class View within the project (Menu View  Class View). 
 

2. Navigate to the VdxLoadData-method; you find this method in the class vdxOutlookDetail 
(MyVdxSampleApplication  ExplorerAddress  Bases and Interfaces  vdxExplorerTree 

 Bases and Interfaces  vdxOutlookDetail). 
 

3. Select Add  Override from the context menu of the VdxLoadData-method. This adds an 
empty method in the ExplorerAddress-class, overwriting the method from the base class. 

 
4. Add following code: 

 
 
DataSet dsRet = null, ds = null; 
vdxSampleWebServices.BoAddressSoap boAddress; 
 
switch(dataLoadContext) 
{ 
   // Lade die Adress-Treedaten. 
   case vdxDataLoadContext.Selection: 
      boAddress = new vdxSampleWebServices.BoAddressSoap(); 
      ds = boAddress.GetDataSetAddressList(vdxSearchParameters. 
         GetParameters()); 
      if (ds.Tables["Address"].Rows.Count > 0) 
      { 
         dsRet = ds; 
      } 
      else 
      { 
         MessageBox.Show("No Data found. Please try again!", 
            "VDX Sample Application",MessageBoxButtons.OK, 
            MessageBoxIcon.Information); 
      } 
      break; 
 
   // Lade die Detaildaten der entsprechenden Adresse. 
   case vdxDataLoadContext.Detail: 
      switch (vdxSearchParameters.VdxSearchName) 
      { 
         case "Address": 
            boAddress = new vdxSampleWebServices.BoAddressSoap(); 
            ds = boAddress.GetDataSetAddress(vdxSearchParameters. 
               GetParameters()); 
            if (ds.Tables["Address"].Rows.Count > 0) 
            { 
               dsRet = ds; 
            } 
            break; 
      } 
      break; 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 14 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

} 
 
return dsRet; 
 

 
This method is always called when data is accessed.  The parameters determine in which 
context the data is being accessed and with which search criteria the access is being carried 
out with. 
 
Data is accessed in the following situations: 
 

• Selection – The Go button in the search form (e.g. SelectionAddress) is clicked and 
the corresponding data is loaded. 

 
• SubSelection – A tree node is clicked and the corresponding detail data are loaded.  

This situation has not been implemented yet, because there are no sub-nodes in the 
tree yet. 

 
• Detail – A tree node is expanded and the corresponding sub-nodes are loaded.  

Currently only the address detail data is loaded. 
 

NOTE: The detail block is implemented prematurely and enclosed with a switch statement.  
This way, as soon as further tree node levels are added, the details of those levels will be 
displayed. 

1.8.2 Overwriting the VdxFillData-method 
The display of previously loaded data is implemented in the vdxFillData method as follows: 
 

1. Select Class View of the project. 
 

2. Navigate to the vdxFillData method of the vdxExplorerTree class (VdxSampleApplication  
ExplorerAddress  Bases and Interfaces  vdxExplorerTree). 

 
3. Execute the Add  Override command from the context menu of the vdxFillData method.  

This adds an empty method to the ExplorerAddress class, overwriting the base class’. 
 

4. Add the following code to the method. 
 

 
if (dataLoadContext == vdxDataLoadContext.Selection | dataLoadContext == 
vdxDataLoadContext.SubSelection) 
{ 
   nodeToFill.Nodes.Clear(); 
   nodeToFill.IsDummy = false; 
    
   foreach(DataTable dataTable in dataSet.Tables) 
   { 
      switch (dataTable.TableName) 
      { 
         case "Address": 
            foreach (DataRow rw in dataTable.Rows) 
            { 
               string company = ""; 
               if (!Convert.IsDBNull(rw["Company"])) 
               { 
                  company = (string)rw["Company"]; 
               } 
               vdxSearchParameters sp = new  
                  vdxSearchParameters("Address"); 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 15 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

 
               sp.Add(new vdxSearchParameter("AddressId",  
                  ((int)rw["AddressId"]),vdxSearchType.Equal)); 
 
               nodeToFill.Nodes.Add(new vdxTreeNode(company,2,0,true,sp,  
                  "MyVdxSampleApplication.DataDetailAddress")); 
            } 
            break; 
      } 
   } 
} 
 

 
This method is always executed after the vdxLoadData method, assuming it returns a 
DataSet.  The method’s parameters determine in which context the data is displayed, which 
DataSet is to be used, and if necessary, which tree node’s sub-nodes are to be displayed. 
 
Data is generally displayed in the following cases: 
 

• Selection – Display the appropriate tree nodes, based on the data returned by a 
selection. 

 
• Sub-selection – Display the appropriate sub-nodes of an expanded tree node. 

 
NOTE: Use namespace of your project instead of MyVdxSampleApplication.  If you have 
used the naming conventions of this tutorial, then nothing needs to be changed. 
 
For each DataRow in the Address table, a Company is tied to the tree node as a description 
and a vdxSearchParameters object is tied to the tree node as a primary key.  The primary key 
is needed to find the person data which belong to the address. 

 
The following table describes the parameters of the vdxTreeNode constructor. 

 
Parameter and type Description 
1. string The description of the corresponding tree node 

2. int The imageListTreeView index for tree nodes which are not 
selected 

3. int The imageListTreeView index for selected tree nodes 
4. bool True, if the node should always be expandable 
5. vdxSearchParameters The primary key of the corresponding tree node 
6. string The Fullqualified type of the corresponding tree node 

 
The tree view can now be filled. 

1.8.3 Overwriting the VdxUpdateNode-method 
If a user changes the details of an address, the corresponding tree view node must be changed.  The 
next steps implement this. 
 

1. Select the Class View of the project. 
 
2. Navigate to the vdxUpdateNode method in the vdxExplorerTree class. 

 
3. Execute the Add  Override command from the context menu of the vdxUpdateNode 

method.  This adds an empty method to the ExplorerAddress class, overwriting the base 
class’. 

 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 16 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

4. Add the following code to the method. 
 

 
switch (nodeToUpdate.TreeNodeType) 
{ 
   case "vdxSampleApplication.DataDetailAddress": 
      string company = ""; 
      if (!Convert.IsDBNull(dataRowFromDataDetailControl["Company"])) 
      { 
         company = (string)dataRowFromDataDetailControl["Company"]; 
      } 
      nodeToUpdate.Text = company; 
       
      // Falls die Drag’n Drop-Funktionalität von Tree-Knoten auf die  
      // Outlookbar aktiviert ist, dann sollten jeweils die Suchparameter  
      // nach einem Knoten-Update neu gesetzt werden. Damit können auch  
      // neu eingefügte Tree-Knoten per Drag’n Drop auf die Outlookbar  
      // gezogen werden. 
      nodeToUpdate.VdxSearchParameters = new  
         vdxSearchParameters("Address"); 
      nodeToUpdate.VdxSearchParameters.Add(new vdxSearchParameter( 
         "AddressId",((int)dataRowFromDataDetailControl["AddressId"]),  
         vdxSearchType.Equal)); 
      break; 
 
   default: 
      break; 
} 
 

 
This method is always called when an address’ detail data is changed and stored and the detail 
data is being held in the context of the tree view. 
 
The nodeToUpdate parameter determines which tree node is affected by the change.  The 
current data for the corresponding tree node are read as parameters.  The data in the DataRow 
are used to change the corresponding tree node. 

1.8.4 Overwriting the VdxUpdateSelectionList-method 
The following steps describe the implementation of a method which updates the changed address data 
to the list. 
 

1. Select the Class View of the project. 
 
2. Navigate to the vdxUpdateSelectionList methode of the vdxExplorerTree class. 

 
3. Execute the Add  Override command from the context menu of the vdxUpdateSelectionList 

method.  This adds an empty method to the ExplorerAddress class, overwriting the base 
class’. 

 
4. Add the following code to the method. 

 
 
if (sourceDataRow.Table.TableName == "Address") 
{ 
   targetValues = base.VdxDataRowToSelectionListValueArray(sourceDataRow); 
   base.VdxUpdateSelectionList(targetValues,sourceDataRow); 
} 
 

 
This method receives the list values of the corresponding DataRow and passes them to the 
DataGrid in the SelectionListAddress class. 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 17 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

 
NOTE: Because the targetValues parameter is normally passed by reference, all local 
changes have an effect on the original targetValues variable. 

 
Compile the project to check the previous code for errors. 

1.9 Programming the vdxActionItems 
In order to load the address maintenance form by clicking on the address icon on the Outlookbar, 
either the corresponding click event must be implemented or the icon must be linked to the 
vdxDataActionManager object.  The following steps describe the latter approach: 
 

1. Select the properties of the vdxDataActionManager object on the MainForm. 
 
2. Open the collection editor of the VdxActionItem properties. 

 
3. Click Add and rename the new vdxActionItem to aiAddressExplore. 

 
4. To link the action event with the corresponding control, select the iconAddressExplore  entry 

in the VdxInvokerControl1 property. 
 

5. Select the properties of the aiAddressExplore object. 
 

6. Select the events view (button with the yellow lightning bolt) and double-click on the 
vdxActionInvoked event of the aiAddressExplore object.  This adds the 
aiAddressExplore_vdxActionInvoked event listener method to the MainForm class. 

 
7. NOTE: Because one cannot switch to the various events directly from the collection editor, 

one must close the collection editor and select the ActionItem object by selecting it from the 
ComboBox of the Properties window. 

 
8. Add the following code to the method: 

 
 
this.vdxMultiContainer.VdxCurrentControlType = typeof(ExplorerAddress); 
((vdxOutlookDetail)this.vdxMultiContainer.VdxCurrentControl).Show(); 
 

 
When the address icon on the Outlookbar is clicked, this code will load the appropriate search 
form using the SelectionAddress class.  If a selection already exists, then it will be displayed. 

 
To enable the user to start another address search, the Find button will be linked to the 
ActionManager  An alternative would be to link the Find button to an event handler.  The following 
steps describe the first variation. 
 

1. Select the properties of the vdxDataActionManager object. 
 
2. Open the collection editor of the VdxActionItemProperties. 

 
3. Click on Add and rename the vdxActionItem to aiFind. 

 
4. Select the mnuEditFind item for the VdxInvokerMenu1 property in order to link the action 

event to the menu item. 
 

5. Select the tbbFind entry for the VdxInvokerToolBarButton1 property in order to link the 
action event with the corresponding toolbar Button. 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 18 from 19 09.09.2002 



Visual .NET Extensions Framework  
  Tutorial 

VDXTut2_vdxExplorerTree-Standard_en.doc Page 19 from 19 09.09.2002 

 
6. Select the aiFind object properties. 

 
7. Double-click the vdxActionInvoked event of the aiFind object.  This adds the 

aiFind_vdxActionInvoked event listener method to the MainForm class. 
 
8. Add the following code to the method. 

 
 
if ((vdxOutlookDetail)this.vdxMultiContainer.VdxCurrentControl != null) 
{ 
   ((vdxOutlookDetail)this.vdxMultiContainer.VdxCurrentControl). 
      Show(vdxExplorerMode.Selection); 
} 
 

 
The address part of the sample application is now complete.  Compile and run the project to execute 
the previous code.  Click on the Explore button under the Address category on the Outlookbar to start 
the address maintenance.  You can enter search criteria and retrieve the corresponding addresses.  
These can be edited and the changes saved to the database.  You can also add new addresses or copy 
existing addresses. 
 
The maintenance of persons will be implemented next.  Since this is very similar to the maintenance 
of addresses, only the differences will be highlighted. 


	vdxExplorerTree –Standard datamanipulation with t
	Implementing the ExplorerAddress class
	Creation of the  SelectionAddress-class
	Creation of the SelectionListAddress-class
	DataSet dsAddressList and vdxDataGrid binding

	Creation of the DataDetailAddress-class
	DataSet dsAddress, dsAddrType and dsCountry binding
	Configuration of the vdxDataStatusManager

	Creation of the SelectionAddress-control
	Overwriting the VdxFillSearchParameters-method

	Creation of the DataDetailAddress-control
	Configuration of the ExplorerAddress-control
	Programming the ExplorerAddress-control
	Overwriting the der VdxLoadData-method
	Overwriting the VdxFillData-method
	Overwriting the VdxUpdateNode-method
	Overwriting the VdxUpdateSelectionList-method

	Programming the vdxActionItems


