Visual.NET Extensions Framework
Product Overview
Page 10

Visual.NET Extensions

Database Application Framework

for the .NET Developer

The extensive Application Development Framework
that makes Microsoft Visual Studio.NET
Database Application Development easy!

[image: image5.png]vds Sample Apy
Fle Edt Vew DebugDataset Output

Devigus, Attuo
Mayor, Carole
Beal, Blum
Wanner, Urs
Kumann, Stefan
Inan, Cunyed
Iboden, Edwin
Kuummenacher, Fuedi
2 Koler, Marina
2 Dehen, Roland

DRz EoRs S KO MR

[Deviaus Engineeiin AG

Company

Street [Grundsiase 3

P e e a—
Country hl
Phone [-4iOmTsBa®E
s
EMail |deag@devigus.com

Internet (URL) [nto:/7wdevigus.com

AddessTope [oetat]

Neme [Franame [Phone [Fax Emal
> [Devus Ao

Mayer Cacke

Beat Blum

Wamer Uis

Kumam Stefan

o]

Devigus Engineering AG

Grundstrasse 3

CH-6343 Rotkreuz

Internet: http://www.devigus.com

EMail: ad@devigus.com

Document Information

Version: 1.1

Date of last Update: 06.03.2002 20:53

1 Table of Contents

21
Table of Contents

32
Copyright

33
Introduction

33.1
Introduction

33.2
What is VDX

44
The VDX Architectural Approach

44.1
The VDX Multi Tier Architecture

64.2
Architectural Overview of a VDX Application

74.3
Security in Multi Tiered Environments

74.4
Impersonification of Database Access

84.5
The VDX Sample Application

84.6
The VDX User Interface

94.7
The VDX Data Manipulation Concept

2 Copyright

Visual.NET Extensions (short: VDX) is a product from Devigus Engineering Ltd, CH-6343 Rotkreuz (Switzerland). Any reuse of VDX related material needs the written permission of Devigus Engineering Ltd, all VDX related publications must have the copyright notice of Devigus Engineering Ltd.

3 Introduction

3.1 Introduction

The Microsoft.NET Framework offers a new way to create Windows Forms and Web Forms Applications. It is out of the scope of this documentation to communicate all the basics of the .NET Framework itself. There are a number of very good resources giving you an introduction to the .NET Framework such as http://msds.microsoft.com.

However, this documentation tries to give you a good overall view of the base architecture of a modern .NET based application developed with the productive VDX Database Application Framework. It is clear, that based on such a wide field such as the .NET Framework itself, a lot of possible detail impementation strategies might evole. The VDX Application Framework is one way how you could focus your own development, but certainly not the only one.

We are convinced, that the VDX Database Application Framwork makes also you much more productive and are completely dedicated to this approach of .NET Windows Forms development. We started with the development of VDX by the end of 2000 with beta 1. We went through beta 2 and now, the final version arrived. We at Devigus Engineering developed already more than one great .NET Applications which are productive at our clients sites and want to develop much more great .NET Applications in the future. The current version of VDX evolved over a long enough time so the concepts and techniques used within this Application Framework should also convince you.

3.2 What is VDX

VDX is a Framework for the database application developer who works with the Microsoft Visual Studio.NET development environment to produce state of the art Windows Forms Applications which base on a logical Multi Tier Architecture upon XML. When your goal is the development of .NET Windows Forms Applications which are presented in an Outlook Style user interface using optional Data Exploring capabilities through the usage of Treeviews, then VDX is your Framework of choice.

4 The VDX Architectural Approach

4.1 The VDX Multi Tier Architecture

The VDX Application Framework builds completely on the fact, that it’s beneficial to clearly separate the “Data Access and the Business Logic” from the “User Interface” Tier. A VDX Application could also be deployed as a classical “Client/Server” Application, but in most situations its not the recommended way. A strict logical separation between Data Access/ Business Layer and the User Interface Layer is the base architecture of every scalable VDX Windows Forms application.

	[image: image2.png]Presentation

Application
Logic

Dataand
Resources

	In three-tiered architectures, presentation, application logic, and data components are separated into distinct units. Presentation components manage user interaction and make requests for application services by calling middle-tiered components. Application components perform business logic and make requests to databases and other resources using their native interfaces.

For a comparison of the classical Single- and Two-Tier Client/Server Architectures with its disadvantages over Multi-Tier Architectures, it is recommended to read our .NET Technology Backgrounder which is available on our web site at Devigus Engineering Ltd.

At least three logical tiers are involved in a VDX Windows Forms Applications. These are the

· User Interface Tier,

· the Middle Tier with the Webservices and

· the Database

Depending on the goals you have with your development project, you could separate the Middle Tier Layer into two different layers in order to provide database independency. Therefore, the layers would be

· The User Interface,

· The Business Layer, partially exposed as Webservices and

· the Data Access Layer (DAL) as pure Data Access Components, and

· the Database

This multi tiered approach offers a lot of advantages. The tiers cover the following:

	Logical Tier
	Task

	User Interface
	This is the Windows Forms User Interface. The communication between the User Interface and the Business Layer is based on XML/ Soap over HTTP (also other techniques such as SOAP over TCP might be used here, see also Remoting. Not yet implemented in VDX).

	Business Layer
	Data Centric Business Layer Functionality. This layer is NOT allowed to directly “speek “to the Database. It can only access the Database through the DAL. Usually, this Layer is exposed through Webservices to the User Interface or other Services.

	Data Access Layer
	Provide Database specific Data Access using individual Data Adapters using embedded SQL and parametrized queries or stored procedures. For each Database Platform, a separate DAL Functionality exists.

	Database
	Database Server (SQL, Oracle, DB2, Sybase, …). Persistent Data Store with Transactional Capabilities and Isolation Features.

Of course, sometimes, you will also have an additional layer in the User Interface, the so called “User Interface Centric Business Layer”. Since the base functionality of the VDX Framework is not affected based on this fact, this layer is not described here.

The above describes a logical view of the different layers. Of course, this might defer from the actual physical implementation. However, its beneficial to keep the Data Access Layer and the Business Layer side by side in order to provide a maximum of performance. A typical physical implementation might look like this:

	Physical Tier
	Task

	Client PC
	Windows Forms GUI

	Application and Webserver
	DAL and Business Logic. (If you use also Web Forms, a separate HTML rendering aspx Webserver might be usefull)

	Database Server
	Database Tier running SQL Server, Oracle, DB2, …

4.2 Architectural Overview of a VDX Application

The following chart illustrates the architectural overview of a VDX Application.

[image: image3.emf]Busines Services with or without Webservices Interface.

Can reside in IIS or can be used using Remoting.

The Business Layer does only communicate with the DAL Interface it never accesses directly

a specific Data Adapter for a specific Database Implementation.

Here resides the Connection and Transaction Management with Begin and End Transaction.

Middle Tier

1.

Request

Client User Interface Tier

Data

Tier

Depending how the individual Data Adapters are used from within the DAL,

Stored Procedures might be used instead of embedded SQL on the DAL Layer.

Business Layer

Database Layer

Windows-Forms

DataSet as XML Schema.

Typed or untyped.

TCP/IP or other Protocol SQL or OleDBProvider

2.

Send DataSet

3. Return modified

rows in DataSet

Bind controls

Extract modified rows.

Only modifications are sent

back.

Merge updated with unchanged rows

or visualize errors table.

4. Return updated

Rows in DataSet

or Errors Table

XML/SOAP over

HTTP(S)

DAL for SQL Server

Implements DAL Interface

Uses SQL Server Data Adapters

DAL for ORACLE

Implements DAL Interface

Uses ORACLE Data Adapters

DAL for Other DB

Implements DAL Interface

Uses Other DB Data Adapters

Data Access Layer (DAL) Interface

Visual.NET Extensions Architecture Overview

In this chart, the different tiers are visible: The Database Tier, the Middle Tier with the DAL and the Business Layer and the User Interface. The flow is as follows:

1. The user interface calls a Webservice over HTTP using a SOAP message in order to get some data. Usually, this is invoked through a standard mechanism from within the VDX Framework.

2. The Business Layer receives the call and calls the DAL Interface to fetch the data. This data is placed in a typed or untyped Dataset and is sent back to the client.

3. The client changes some data in the Dataset. In every standard VDX Data Manipulation, there is one main table eventually with additional other tables (usually with one to many relations, but also parent relations are possible). Only the effectively changed rows from each table within the Dataset are sent back to the Business Layer, where they are processed and passed to the DAL in order to update the database.

4. The update might be successful. In this case, the updated dataset is sent back to the client, where it is merged with the unchanged data items from the Dataset on the client. The client sees the state “after succesfull update” and all this with a minimum of network traffic, since only the effectively changed data have been transferred.

In case the data operation failed, an errors table is placed in the Dataset and sent back to the client where the VDX Framework automatically presents the error messages. The user can try to correct the data and try again or he can undo his changes, if he cannot correct the errors.

4.3 Security in Multi Tiered Environments

The client accesses the Business Layer through Webservices. The Business Layer which is exposed through this Webservice Interface defines the logical accessibility of the Middle Tier. Usually, the Business Tier will be hosted in IIS (Internet Information Services), although other techniques, such as Remoting are possible. The advantages, using IIS as a hosting container for the Webservices are great. Using IIS as a hosting platform for the Webservices especially offers the same security features (and, of course also risks) such as regular IIS based Webservers in terms of authentication.

NOTE: Since lots of companies still don’t trust IIS beeing exposed directly on the Web, thanks to the standard Web Protocolls beeing used by Webservices (which is pure XML/ SOAP over HTTP), whatever “entry server” can be placed in front of publicly available .NET Webservices. This might greatly improve the acceptance of .NET based applications in “non Microsoft” environments.

4.4 Impersonification of Database Access

The communication between the Data Access Layer and the Database is based on the TCP/IP Network Protocoll used by the Database. Security and Encryption features are the same as with any other Database centric application using the same database engine. The biggest difference however is, that in a multi tiered environment, only the System Account or any other impersonated Account accesses the database layer. This makes the implementation of role based security versus data/ user centric security a must.

In the following paragraph, the architectural approach is illustrated and further explained.

4.5 The VDX Sample Application

In the VDX Sample Application, we show best practices and proven concepts using the VDX Application Framework. We explicitely used a database independent approach using a Data Access Layer and individual database specific implementations. Of course, you can always decide, that you don’t want to implement this additional layer and add all the Data Adapters directly in your Business Layer.

The VDX Framework provides a great amount of freedom for individual implementations.

4.6 The VDX User Interface

To get a first impression what the VDX Windows Forms User Interface looks like, it is usefull to have a look at the user interface using the VDX sample application which is part of the VDX product. The main user interface looks like this:

[image: image4.png]vds Sample Apy
Fle Edt Vew DebugDataset Output

Devigus, Attuo
Mayor, Carole
Beal, Blum
Wanner, Urs
Kumann, Stefan
Inan, Cunyed
Iboden, Edwin
Kuummenacher, Fuedi
2 Koler, Marina
2 Dehen, Roland

DRz EoRs S KO MR

[Deviaus Engineeiin AG

Company

Street [Grundsiase 3

P e e a—
Country hl
Phone [-4iOmTsBa®E
s
EMail |deag@devigus.com

Internet (URL) [nto:/7wdevigus.com

AddessTope [oetat]

Neme [Franame [Phone [Fax Emal
> [Devus Ao

Mayer Cacke

Beat Blum

Wamer Uis

Kumam Stefan

o]

The main user interface components are the “Main Menu”, the “Main Toolbar”, the “Outlookbar” and the “Data Explorer”. Within the Data Explorer you see a Treeview and in the right pane the user controls with the actual data of the currently selected node.

On the following picture, you see these main UI components outlined within the previous screenshot:

[image: image1.png]Database Application
Framework

Already here, its important to note, that the above user interface gets achieved purely using the VDX class library which is a true .NET Framework implementation. No legacy ActiveX controls or other toolsets are used to produce this user interface. This greatly improves the distribution and security capabilities of VDX based applications.

The outlined elements in the above screenshot are used in a consistent manner which makes the usage of all VDX based applications much easier.

The shown sample application is part of the VDX product and is a great way to learn VDX.

4.7 The VDX Data Manipulation Concept

Now, that you have a first Impression how the base architecture and the User Interface looks like, it’s important to share some basics regarding the VDX Data Manipulation Concepts.

The Dataset, which is used on the client is managed through a VDX Data Status Manager (short: DSM). The DSM is responsible for all the main data manipulation tasks. If a user changes a record, inserts a new one or deletes it, the DSM takes care of it. In a real application, you have a lot of different data manipulation scenarios, every one of them with its own DSM.

The DSM itself has so called VDX Table Managers to manage all the tables within the Dataset he has to manage. In fact, the table managers are responsible for all the operations on the tables. Every table in the Dataset has his own VDX Table Manager.

Within the Dataset, always a “Main Table” exists. If you have a scenario, where you have one parent record with many child records, the parent table is the so called Main Table. If the user presses the “New” or “Delete” button on the toolbar, we assume, that the main table should be managed. Of course, the VDX Framework allows you to intercept all the DSM Events and pass them to the selected table, but this does not change the fact, that within a Dataset you have always a main table.

Lets look at a one to many example: If you select an order within the treeview by clicking on the node, the order gets fetched from the Middle Tier together with some child rows. On the right pane, the fetched data are presented in the VDX User Control. If the user starts to delete a child row, the DSM detects this and switches into an “Edit Mode”. This indicates, that something has changed within this Data Manipulation Scenario. In our example, the user started to modify, let’s say an order. The user could also directly modify the Order Parent record. In such a scenario, the DSM has to handle all this and detect the changes and send only the modified rows on the Business Layer as described in the VDX Application Architecture.

However, if the user deletes the current record in the Main Table, immediately (of yourse after a confirmation question beeing asked) a server roundtrip starts and the record gets deleted from the Main Table, if possible.

The fact, that you always have a Main Table in every VDX Data Manipulation scenario is a very basic aspect of the VDX Framework itself and it is therefore very important to note this architectural design from the beginning.

Using VDX, we assume that we fetch always just one record from the main table with optionally one or more records in other tables which could be child records as described above, or also parent records, if you need to do so.

The design, that a VDX Application only fetches all the fields of a record when it is really needed for a data manipulation scenario is a key aspect of the framework and has a lot of performance benefits when the applications have to deal with low bandwith. As always, within a framework, we must be as open as possible, that’s why also other implementations are possible, where you fetch lots of rows with all fields and let the user modify them “offline”. However, we do not show such a concept in the current VDX Sample Application. Probably this is something for a future VDX release.

VDX Main Toolbar

VDX Main Menu

VDX Data Explorer (all within red frame!) consists of a VDX Treeview, VDX Infobar and any VDX Usercontrols to display the data associated with the selected node.

VDX Infobar

VDX Treeview

VDX User Control

_1062747864

