Introduction

ADVANCE \d 12Thank you for your interest in FOCUS. We have made every effort create a valuable collection of Visual FoxPro tools. We are constantly improving this library, so you may want to check our Web site (http://www.FastWrite.com.) regularly to download newer versions

We have developed FOCUS at FastWrite s.c., a long time ago. This project is actually rooted in Clipper. In fact it all started in 1990 while we were developing Do-It!, a powerful library designed especially for Clipper Autumn '86.

As the project continued, we included more and more functions in Do-It! Many of them were developed in Assembler, and C. From time to time we also included Clipper functions as well, as the Clipper compiler produced .OBJs.

Do-It! was also accompanied with a powerful screen generator, The Builder. Many functions that we have included in Do-It! were just needed by the screen generator. We have updated Do-It! With the many new versions of Clipper : Summer '87, then Clipper 5.0, finally Clipper 5.2. We thought that nothing was worse than this step : adapting our library to new versions of the language. This process has led us to "subclass" all Clipper routines to ours, a treatment we called "code floating". We have passed from Lattice C, to Microsoft C 4.0, then Microsoft C 5.0. From Microsoft Macro Assembler 4.0 to 5.0 ... and we have survived them all!

In 1993, we saw the BIG change : turning Do-It! to FoxPro 2.5 for Windows. Not only the language was different, but so was the target operating system—Windows 3.11. Many of the Assembler routines we have created were simply not portable to Windows code. The Clipper code called many features that FoxPro didn't support : static variables, multi-dimensional arrays (we're talking about arrays whose each individual element can be in turn an array), code blocks (pointers to functions if you want, but much more than that), and also powerful preprocessor. Basically all the Clipper code had to be removed and because FoxPro didn't (still doesn't) produce real .OBJs we could not turn any Clipper code to FoxPro in order to include this code in the library itself. Additionally, we have gone away from Microsoft C 5.0 in favor of Microsoft Visual C++ 1.0, 1.5, 2.0, and 2.2.

That was a major earthquake but we eventually did it. We have adapted our "subclasses" to FoxPro API routines; we have turned our old DOS code to Windows code; we have fine-tuned the memory allocation routines to properly avoid the infamous GPFs! We grab the opportunity of these major changes to introduce a new one : we change from Do-It to FOCUS. After this work has been completed we once again updated FOCUS to work with a new version of FoxPro—version 2.6.

In 1995, we have once more introduced a major change : the shift to a new paradigm with the introduction of Visual FoxPro 3.0. Call it evolution or revolution, we called it a nightmare! Not only was the version of FoxPro different, but we also faced for the first time the importance of 32-bit code. Yes ... we were obliged to replace our old 16-bit code with 32-bit code. We have simplified our task in the sense we decided not to support the 16-bit platform anymore, namely Windows 3.11 and the like.

Once again, we updated our code to be compatible with Visual FoxPro 5.0. That was very easy ... for the first time! So easy, that we actually decided once to have a library that would work for both versions. We did it for several months up to the moment we only supported version 5. But the miracle is that FOCUS seems to be compatible, without any change, with version 6. A miracle, we say.

Today, FOCUS is designed to suit any need (we hope) in the 32-bit environment, that is Windows 95, Windows 98 and Windows NT. Although some of our machines are already equipped with Windows 98, we haven't performed any test yet. We'll see what the future brings.

You may ask, why not develop classes as well? We did. In November 1996 we have announced FOCUS classes on CompuServe although we didn't grab much attention from the FoxPro community. That was surprising to us as FOCUS.FLL was such a success (more than 8.000 downloads). Perhaps we came too late with our classes?

The classes we planned to distribute included features not seen anywhere else. Of course, because we used our own library and classes in our projects, some of the features were geared to our own way of doing things. We in Belgium, for example, have a special need for multi-lingual applications : we have 3 national languages (yeah ... for such a small country). That's the reason why we have included many features that you can also find in Steven Black Intl product, a flagship product. Anyone serious with multi-lingual needs should get his development arsenal. Multi-lingual needs drove us to develop Artificial Intelligence routines, a feature that's not available in any other library of classes, we can assure you.

FOCUS.VCX grew up very rapidly and has known a number of revisions. We have rebuilt FOCUS.VCX many times; we have "childed" FOCUS.VCX with POINTDBF.VCX, FOCUS2.VCX, etc. Now we're back with our original FOCUS.VCX, cleaned up from many features that are only suitable for us. FOCUS.VCX can be obtained from our Web Site (http://www.FastWrite.com) and is constructed as a wrapper around FOCUS.FLL. Of course we have developed many additional classes. And like many other libraries it provides an application framework (which is by no means the last word on frameworks ... see also the fabulous work of Alan Griver with CodeBook, or the incredible framework developed at MaxTech, Inc by Drew Speedie). FOCUS.VCX is not documented yet (although we plan to document both the FLL and the VCX herein). Go to our Web Site to follow a tutorial on these classes.

ADVANCE \d 12Sorry

From time to time (or very often) you might find English mistakes all along this document. This is due to the fact that the authors are non native English persons. We sincerely apologize for this. Should anyone want to correct some parts of this document, he (or she) is very welcomed.

Writing code can be a team effort, but in the case of FOCUS.FLL it is mostly a solo activity. So was the documentation … up to October 98, period at which Pete Cuiry turned words into prose and reviewed the documentation. "Pete, you went above and beyond the call of duty. Thank you".

Most Common Questions

1. What is an alias?

FOCUS.FLL treats aliases as alternate names for the same function. It helps developers to find the function they want to use according to a logical category. When such functions can be placed under different categories, they are most likely available under each category. That makes it very simple to find them. On the other hand, when such functions are also known from other libraries, the alias technique makes it simple to keep calling the same function, even if it is in fact called differently in FOCUS.FLL itself. For example, consider the SYS_dskspa() function that returns the number of bytes that are currently available on a specified disk drive. This function can also be called with DiskRoom(), SYS_DiskSpace(), SYS_DiskSpaceLeft(), or SYS_DiskEmpty().

2. What are long function names?

Long function names are available to Visual FoxPro developers that want to take advantage of improved readability rather than to stick with 10 character function names. It is indeed simpler to use FIL_ReadIni() than FIL_reaini(), even though both names point to the same internal service. Long function names are usually aliases.

3. What library do I have to use with Visual FoxPro?

You need 2 dynamic link libraries:

1. FOCUS.FLL
2. KERNEL.DLL.

FOCUS.FLL is the only library you'll consciously deal with. However, FOCUS.FLL uses KERNEL.DLL internally.

FOCUS.FLL should be available in your project directory (the directory of your application). KERNEL.DLL should be placed in the SYSTEM directory of Windows (most likely C:\WINDOWS\SYSTEM for Windows 95 or C:\WINNT\SYSTEM32 for Windows NT 4.0). KERNEL.DLL cal also be placed in the application's home directory.

4. FOCUS.EXE|KERNEL.EXE is not a valid Win32 application.

When downloading FOCUS.FLL and KERNEL.DLL from Web sites, some browsers assign an .EXE extension to the files when saving them to your hard disk. Should this happen, simply rename FOCUS.EXE to FOCUS.FLL or KERNEL.EXE to KERNEL.DLL. This should solve the problem.

5. FOCUS.FLL is invalid.

FOCUS.FLL depends on KERNEL.DLL to work correctly.

6. What are long function names?

Long function names are available to Visual FoxPro developers that want to take advantage of improved readability rather than to stick with 10 character function names. It is indeed simpler to use FIL_ReadIni() than FIL_reaini(), even though both names point to the same internal service. Long function names are usually aliases.

Under construction

Some functions are indicated as being under construction. These functions have been requested and accepted by FastWrite but are not implemented yet. However, you can expect to get these ... one of these days!

Web Site

You can find the latest information as well as on-line documentation about FOCUS on our web site: http://www.FastWrite.com/products/Focus.

Change Control

With version 7.87 of FOCUS.FLL we have introduced the Change Control Table so that you can follow what changes have been made to FOCUS.FLL. Change Control is also a necessity to comply with a set of rules such as FDA CFR Title 21 Part 11. With it, you can rest assured that your library remains in full compliance with the rules of your industry.

	Version
	Date
	Description of the Changes

	7.86
	
	Introduction of FTP functions

	7.87
	27 August 2000
	1. COM functions reworked – still temporary state

2. Files.c reworked (FIL_ReadByte() modified, FIL_GetUniversalName() added). No code impact.

3. Win.c reworked WIN_SetForegroundWindow() with SetForegroundWindow() alias. No code impact.

4. Misc.c reworked, MIS_false() updated, MIS_true() updated, MIS_argc() updated, MIS_argv() updated. No code impact.

5. Focus.c reworked to add new alias definitions, better syntax support, and better code standardization.

6. Start on conversion for FOCUS.FLL 8.x

7. Start working on integration for FOCUS.FLL "Small Footprint" – available after FOCUS.FLL 8.0 will be launched.

8. Start working on new Internet functions: HTTPS, Gopher, SMTP, POP3, Ping, WhoIS, News and Finger.

9. Start working on the integration of many ActiveX controls that will complete the FOCUS product line offering.

10. Start working on the integration of MAPI functions by reworking the FOCUMAPI.FLL code.

11. Locale.c reworked to add functions to enumerate the installed locales: LOC_EnumSystemLocales() and LOC_GetSystemLocales(). No code impact.

12. Win.c: WIN_MsgBox() documentation reviewed.

13. SYS_IsNT() documentation updated to accommodate Windows 2000.

14. Documentation updated

	7.88
	22 September 2000
	1. MAPI.c: first set of MAPI functions – very temporary state

2. NTEvent.c: first set of NTEvents functions - very temporary state

3. FTP.c : FTP_CloseAllSessions() added.

4. VER_GetFileVersionInfo() documentation updated

5. List of dependencies introduced on the Web Site and in the documentation

6. STR_GeneratePassword(): new function

7. HTTP_LastGetURLTime(): new function

8. HTTP_GetURL(): accepts an optional new parameter. No code impact.

9. NET_LastError(): NET_*() functions do comply with «Last Error» strategy which means that now the developer can obtain extended information concerning the last "Network" operation. No code impact.

10. NET_EthernetAddress(): the parameter is now optional. If not passed, the full Ethernet Address is returned. No code impact.

11. NET_ConnectionDialog(): compliant with «Last Error» strategy. Accepts an optional parameter (Resource Type). No code impact.

12. _retdw(): has been introduced to the EXTEND.H interface file. Impact on all sources. No code impact.

13. NET_GetConnection(): the function has been suppressed and mapped to an alias of the FIL_GetUniversalName() function. No code impact.

14. FIL_GetUniversalName() has now 2 additional aliases: NET_GetConnection() and NET_GetUniversalName().

15. DDA_GetSto(), DDA_GetStop(),DDA_GetStopProc(), are all aliases of the same function. The dynamic syntax has been updated. No code impact.

16. DDA_LastVersion(): the dynamic syntax has been updated. No code impact.

17. NET_CancelConnection(): WNetCancelConnection() and WNetCancelConnection2() are 2 new aliases. Possible code impact for people having declared these services as Win32 API services.

	7.89
	17 October 2000
	1. SND_play(): the second parameter is now optional. No code impact.

2. HTTP_CombineURL(): new function.

3. SYS_LastError(): This function has been renamed SYS_LastErrorCode() and SYS_LastError() now returns an error string instead of an error code. Possible code impact.

4. HTTP_CrackURL(): new function. No code impact.

5. HTTP_IsURL(): new function. No code impact.

6. All EVE_*() functions have been reworked and new functions have been introduced. No code impact.

7. New syntaxes supported in the list of dynamic syntax identifiers.

	7.90
	21 October 2000
	1. STR_Like(): new function (in test)

2. STR_LikeGetToken(): new function (in test).

3. DBF_Skip(): new function.

4. FIL_WriteIni(): the function now flushes all Windows INI cache. Possible code impact (very unlikely).

	7.92
	14 February 2001
	1. PRN_SetDefaultPrinter(): old function that got documented.

2. STR_*(): whole module rewritten.

3. HTTP_*(): whole module rewritten.

4. FIL_*(): whole module rewritten.

5. FTP_*(): whole module rewritten.

	7.93
	1 March 2001
	1. SYS_IsDriveReady(): whole code rewritten. Potential code impact. Please notice that the previous code didn't work at all.

2. SYS_DiskSpace(): support for large drives. No code impact.

3. SYS_DiskSize(): support for large drives. No code impact.

	7.94
	20 May 2001
	1. STR_nSet(): Takes an additional parameter to indicate where the string needs to be processed. This parameter is optional. No code impact.

2. STR_like(): Takes 2 additional parameters: an optional LastMatch parameter, and the position the string needs to be processed.

3. MQSeries functions implemented within FOCUS.FLL. FOCUS.FLL won't load unless MQSeries
 (Server) will be present on the machine. These functions are simply commented out for the time being. They will certainly be extracted from FOCUS.FLL to form 2 brand new FLLs: FOCUSMQS.FLL (server) and FOCUSMQC.FLL (client). No code impact.

4. IP_ping(): documented. The function was present but was not documented. No code impact.

5. SPI_GetWorkArea(): This function was not supported by Windows NT. Now, in Windows 2000, it is! The function copes with that distinction. Minor code impact.

	7.95
	14 July 2001
	1. STR_AtLine(): this function was introduced with version 7.94 but was left undocumented. No code impact.

2. SPI_GetWorkArea(): unexpected MessageBox() removed.

3. SYS_processes(): compatible with Windows NT via the PSAPI.DLL system DLL. Minor code impact because the function wasn't working at all before (at least under NT).

4. SYS_EnumDeviceDrivers(): new function. Only works with Windows NT. No code impact.

5. MTH_factorial(): documented + new alias created MTH_factorielle(). No code impact.

6. MTH_combinations(): new function. No code impact.

7. MTH_permutations(): new function. No code impact.

8. Few functions of MQSeries documented (creation of FOCUSMQS.FLL and FOCUSMQC.FLL).

9. STR_Like(): accepts a second parameter sent by reference. No code impact.

10. ARR_elements(): new function. No code impact.

11. ARR_rows(): new function. No code impact.

12. ARR_columns(): new function. No code impact.

13. ARR_LastVersion(): new function. No code impact.

14. Documentation update.

15. STR_ltrim(): this function was left undocumented. Now it is part of the documentation. No code impact.

16. STR_rtrim(): this function was left undocumented. Now it is part of the documentation. No code impact.

17. PRN_dialog(): documentation corrected.

18. IP_GetIP(): new function. No code impact.

19. STR_TrimLeft(): Trims off x characters from the left of a string. New function. No code impact.

20. STR_TrimRight(): Trims off x characters from the right of a string. New function. No code impact.

21. FIL_crypt(): Function is now operational. No code impact.

22. FIL_decrypt(): Function is now operational. No code impact.

23. FIL_ReadSub(): New function. Reads a portion of a file (similar to SUBSTR() on files!). No code impact.

	7.96
	14 November 2001
	1. KEY_HookF12(): new function. No code impact.

2. KEY_UnHookF12(): new function. No code impact.

3. KEY_HookF12Proc(): new function. No code impact.

4. KEY_HookPrtScr(): new function. No code impact.

5. KEY_UnHookPrtScr(): new function. No code impact.

6. KEY_HookPrtScrProc(): new function. No code impact.

7. PRN_GetJobs(): New function. No code impact.

8. TIM_SetFormat(): Returns a string instead of a logical .T.. Possible code impact.

9. FIL_common(): New function. No code impact.

10. FIL_Canonicalize(): New function. No code impact.

11. SHE_AddIcon(): New function. No code impact.

12. SHE_DeleteIcon(): New function. No code impact.

13. SHE_DeleteAllTrayIcons(): New function. No code impact.

14. SYS_HookWindowsProc(): New function. No code impact.

15. SYS_UnHookWindowsProc(): New function. No code impact.

16. SHE_SetTrayIconProc (): New function. No code impact.

17. FIL_IsUNC(): New function. No code impact.

18. STR_Replace(): Replaces a substring with another in a string.

19. Correcting a bug in FIL_Decrypt(). No code impact.

20. FIL_BrowseForFolders(): The context menu control has been removed + new textbox. Possible, but limited, code impact.

HTML_Encode(): New function. No code impact.

	7.97
	20 November 2001
	1. HTTP_GetCookie(): new function. No code impact.

2. SHE_GetSettings(): this function was introduced in 7.96 but was left undocumented. It should have no code impact. However, this function caused the DLL to be reported invalid on many systems. Instead of making a direct call to SHGetSettings(), we now LoadLibrary("shell32.dll") and try to obtain the function pointer via GetProcAddress(). This implementation is safer than the previous one.

	7.98
	03 March 2002
	1. FIL_save(): new function. Save File Dialog Box. No code impact. Alias = DLG_save().

2. EDI_FileName(): Determines the name of the file that is currently edited. This function was included in FOCUS.FLL for a long time but has only been documented with version 7.98.
3. SYS_P3Serial(): new function. No code impact. please notice that the user has the ability to switch off the publication of its serial number in which case the function returns simply an empty string.

4. FIL_IsUNC(): documented.

5. PRN_GetJobs(): documented.

6. FIL_Canonicalize(): documented.

7. FIL_Common(): documented.

8. SHE_DeleteAlltrayIcons(): documented.

9. PRN_EnumPrinters(): Enumerates available printers. new function. No code impact.

10. REG_GetData(): can now handle REG_DWORD values. Minor code impact.

11. FIL_IsDirShared(): is a given directory shared? New function. No code impact. This has been implemented as an alias of FIL_IsShared() which remains valid.

12. FIL_IsShortcut(): is a given file object a shortcut? New function. No code impact.

13. STR_Encode64(): base64 encoding. New function. No code impact.

14. STR_Decode64(): base64 decoding. New function. No code impact.

15. DDA_SetStop():bug corrected. Documentation corrected. Minor code impact.

	7.99
	24 March 2002
	1. NET_InternetTime(): new function. Atomic clock setting. No code impact.

2. HTTP_GetURL(): Modification of the original function. Now the function uses Winsock instead of Wininet. Major code impact even though the parameters are still the same.
3. HTTP_GetURL2(): Rename of the original HTTP_GetURL() function. Uses Wininet instead of Winsock.
4. STR_Hexa(): speed improvement up to a factor of 3000. The function is now also capable to deal with binary data.

5. STR_htos(): speed improvement and bug fix. The function is now also capable to deal with binary data.

6. HTTP_GetURL(): minor bug fix when reading HTTP headers. No code impact.

7. CLP_SetText(): new function. No code impact.

8. STR_*(): compatible with entry/exit macros for advanced debugging.

9. CLP_*(): compatible with entry/exit macros for advanced debugging.

10. ARR_*(): compatible with entry/exit macros for advanced debugging.

11. BMP_*(): compatible with entry/exit macros for advanced debugging.

12. internal syntax array externalized. Potential code impact if the focussyntax.txt is not present in the System directory of Windows.

13. When FOCUS.FLL loads in memory, it grabs more system information about the current process (your application). It helps FOCUS.FLL to better cope with system internals when you call a single function.

14. SYS_*(): compatible with entry/exit macros for advanced debugging.

15. SYS_IsLoaded(): determines whether a given EXE or DLL is loaded. New function. No code impact.

16. SYS_GetEnvironmentStrings(): although the function has been around for a while it hasn't been documented so far. Now the function is safe to use. Can be considered as a new function and therefore should have no code impact.

17. SYS_WriteConsole(): new function. No code impact.

18. SYS_AllocConsole(): new function. No code impact.

19. SYS_FreeConsole(): new function. No code impact.

20. SYS_GetStdHandle(): new function. No code impact.

21. SYS_GetConsoleHWND(): new function. No code impact.

22. SYS_GetConsoleTitle(): new function. No code impact.

23. FW_SYS_SetConsoleTitle(): new function. No code impact.

	8.0
	1 September 2002
	1. PRN_GetDefaultPrinter(): new function. No code impact.

2. STR_FindBackward(): new function. No code impact. BOYER algorithm.

3. STR_Find(): new function. No code impact. BOYER algorithm.

4. DAT_doy(): new function. No code impact. Returns the day of the year for a specific date.

5. HTTP_GetURL(): a timeout mechanism has been introduced. The string that is returned can be as large as needed to the opposite of the 512Kb of the original function. No code impact (GET method).

6. HTTP_PostURL(): new function. No code impact (POST method).

7. HTTP_SetURLTimeout(): new function. No code impact. Set the timeout value for HTTP_GetURL(), HTTP_GetURL2() and HTTP_PostURL() functions.

8. WHOIS_whois(): new function. No code impact.

9. STR_ntoken(): new optional parameter (start position). No code impact.

10. STR_numtok(): new optional parameter (start position). No code impact.

11. STR_ntokenEx(): same as STR_ntoken() but ALL parameters are mandatory). New function. No code impact.

12. ARR_min(): determines the minimum of all numeric elements of an array. New function. No code impact.

13. ARR_max(): determines the maximum of all numeric elements of an array. New function. No code impact.

14. ARR_average(): determines the average value of all numeric elements of an array. New function. No code impact.

15. REG_EnumKeyEx(): retrieves all subkeys associated with a given key of the registry. New function. No code impact.

16. ARR_create(): creates an array of given dimensions. New function. No code impact.

17. ARR_IsArray(): determines if parameter is an array or not. New function. No code impact.

18. ARR_Dimensions(): determines the dimensions (rows and cols) of an array. New function. No code impact.

19. SCR_GetFullScreenDimensions(): determines the usable dimensions of the Windows desktop (Desktop area). New function. No code impact.

20. SCR_GetScreenDimensions(): determines the dimensions of the Windows desktop (Desktop area minus the system tray area). New function. No code impact.

21. WIN_MakeOval(): determines the dimensions of the Windows desktop (Desktop area minus the system tray area). New function. No code impact.

22. STR_AllChars(): New function. No code impact.

23. STR_soundex(): New function. No code impact.

24. STR_SetLikeCharConversion(): New function. No code impact. Influence on STR_Like() that otherwise remains unchanged.

25. STR_Like(): function modified. It does not set the wildcard buffer to NULLs (improvement in performance) and it does take character conversions into account (without performance degradation). The algorithm is also faster when patterns are not star terminated. In case of long patterns, the function uses also an internal improvement by performing a BOYER-MOORE search on the first word of the pattern. As the code has been profoundly changed, it may have a potential code impact.

26. STR_ResetLikeCharConversions(): New function. No code impact.

	8.01
	8 October 2002
	1. STR_Like(): turning optimization off because of some weird problems on some strings. We will have to rework our fast string search algorithm.

2. STR_strstr(): new function. No code impact. However, the function is not yet documented and should not be used by the developers before FastWrite gives the green light.

	8.02
	12 October 2002
	1. STR_FndExe(): internal bug corrected (no impact on the VFP code). Documentation reflects what the function really does now.

2. RG_Compile(): first introduction of Regular Expressions inside FOCUS.FLL. Before long, all functions that were once created in the FOCUSReg.dll, will be included in FOCUS.FLL for ease of use. The RG_Compile() function works fine but we recommend not using it so far.

3. RG_Execute(): first introduction of Regular Expressions inside FOCUS.FLL. Before long, all functions that were once created in the FOCUSReg.dll, will be included in FOCUS.FLL for ease of use. The RG_Execute() function works fine but we recommend not using it so far.

4. Documentation has been reviewed and many inconsistencies were corrected.

5. HTTP_GetDefaultBrowser(): new function. No code impact. Determines the location of the default browser.

6. NUM_BinHi(): new function. No code impact. Determines the high byte value of a number.

7. NUM_BinLow(): new function. No code impact. Determines the low byte value of a number.

	8.03
	12 January 2003
	1. LOG_Append(): internal bug fixed when strategy set to “Reduce to Half Size”.

2. EnumWindows(): this was an internal alias of WIN_EnumChildren(). This is no longer the case as it became the alias of WIN_EnumWindows(). Potential code impact.

3. GetWindows(): this was an internal alias of WIN_GetChildren(). This is no longer the case as it became the alias of WIN_GetWindows(). Potential code impact.

4. WIN_EnumWindows(): new function. No code impact. Initiates the retrieval a list of top-level windows of Windows.

5. WIN_GetWindows(): new function. No code impact. Completes the retrieval of the list of the top-level windows started via WIN_EnumWindows().

6. WIN_BringWindowToTop(): new function. No code impact. Was kept internal to FOCUS.FLL. We have finally decided to document it.

7. SYS_GlobalMemoryStatus(): bug fix. The size returned by the function couldn't fit with large memory as we find in the computers nowadays. The visible effect was that the number returned was a negative number. This has been corrected to return a positive number instead. Potential code impact.

8. SYS_ExitProcess(): new function. Makes it possible to return an error level to the calling application or ,command file. No code impact.

9. TIM_MakeTime():Correction of a vicious bug that happened when the function was called at a moment when the local time expression was laying into another day than the GMT time (for example GMT is 23PM and local time is 01AM). Potential code impact.

10. ARR_average():Correction of a bug on one-dimensional arrays Potential code impact.

11. MET_FeetToMeters(): a metric function to convert feet to meters. New function. No code impact.

12. MET_MetersToFeet(): a metric function to convert meters to feet. New function. No code impact.

13. NUM_gcd(): Euclid's implementation of the greatest common divisor of two integers. New function. No code impact.

14. NUM_UniversalID(): creates a globally unique identifier of 66 bytes maximum. Use this function when you absolutely need a unique number that you will use as a persistent identifier in a distributed environment. To a very high degree of certainty, this function returns a unique value – no other invocation, on the same or any other system (networked or not), should return the same value. The algorithm that is followed assures that the ID is unique in space and unique in time.

15. The Test Status grid of each function has been removed.

16. Font functions are gone (FNT_*()) as announced in 2002.

17. User functions are gone (USR_*()) as announced in 2002.

	8.04
	22 February 2003
	1. FIL_CreateHardLink(): creates a new logical name for a file and referring to the file with that logical name. Very similar to UNIX. New function. No code impact.

2. Introduction of TAO functions. Even though simple, and maybe seen by some programmers as useless, empty functions make it possible to return results from basically any input. This makes them very suitable to build long expressions that are nothing else but chaining of commands. TAO functions were existing in FOCUS for a long time but they were kept sparse (consider MIS_nothing() for example). Now all the same functions have been gathered in one source. All TAO_*() functions are totally new and hence do not have any code impact.

3. PRN_GetJobs(): internal bug corrected. Code impact.

4. PRN_GetJobInfo(): new function. No code impact.

5. TAO_false(): returns always .F.. New function. No code impact. Identical to MIS_false().

6. TAO_true(): returns always .T.. New function. No code impact. Identical to MIS_true().

7. TAO_string(): returns always "". New function. No code impact. Identical to STR_null().

8. TAO_datetime(): returns always { / / : : }. New function. No code impact.

9. NUM_base(): converts the digits of a given integer argument to a string, by taking into account a given radix. New function. No code impact.

10. STR_FormatByteSize(): Converts a numeric value into a string that represents the number expressed as a size value in bytes, kilobytes, megabytes, or gigabytes, depending on the size. New function. No code impact.

11. TIM_FormatTimeInterval(): Converts a time interval, specified in milliseconds, to a string. New function. No code impact.

12. HTML_Decode(): the function was present in the library but was not documented. New function. No code impact.

13. HTTP_GetURL2(): the function uses a bigger temporary buffer and is now much faster than previously. A bug has been removed in the function (endless loop in case of lost server connection). The function has been documented (it wasn't before) and does not accept a second parameter anymore (optional memory). For those of our users that didn't use the function yet, there should be no code impact. For the others, please make sure that the second parameter isn't used anymore.

14. STR_Ascii2Ebcdic(): Converts a string from ASCII to EBCDIC. New function. No code impact. The conversion table is fixed and it may not perfectly correspond to the implementation of EBCDIC/ASCII that you face. Use STR_SetConvTable() in conjunction with STR_ConvertA2B() and STR_ConvertB2A() for tighter control.

15. STR_Ebcdic2Ascii(): Converts a string from EBCDIC to ASCII. New function. No code impact. The conversion table is fixed and it may not perfectly correspond to the implementation of EBCDIC/ASCII that you face. Use STR_SetConvTable() in conjunction with STR_ConvertA2B() and STR_ConvertB2A() for tighter control.

16. STR_SetConvTable(): sets the conversion table used by STR_ConvertA2B() and STR_ConvertB2A(). New function. No code impact.

17. STR_ConvertA2B(): Convert a character string according to a conversion table set with and STR_SetConvTable(). New function. No code impact.

18. STR_ConvertA2B() : Convert a character string according to a conversion table set with and STR_SetConvTable(). New function. No code impact.

19. STR_Sort(): sorts a character string. New function. No code impact.

20. STR_SetCharConversion(): sets a single character conversion. New function. No code impact.

21. DDA_Evaluate() did not evaluate memo fields correctly. That was a bug. Function fixed. No code impact.

	8.05
	17 April 2003
	1. NUM_int_min(): determines the minimum of an integer. New function. No code impact.

2. NUM_int_max(): determines the maximum of an integer. New function. No code impact.

3. NUM_long_min(): determines the minimum of a long. New function. No code impact. Even though NUM_long_min() is a different function than NUM_int_min(), they both return the same value.

4. NUM_long_max(): determines the maximum of a long. New function. No code impact. Even though NUM_long_max() is a different function than NUM_int_max(), they both return the same value.

5. NUM_radix(): reverse function of NUM_Base(). New function. No code impact.

6. PRN_GetPrnData(): takes additional flags to obtain the following information: printer attributes, printer priority, printer default priority, printer start time, printer until time, printer status, printer job count, printer average page per minute. New parameters. No code impact.

7. WIN_Select(): selects a given window an redirects the VFP output to it. New function. No code impact.

8. WIN_bottom(): the parameter of the function can either be the title of the window, or its WHANDLE. New parameter. No code impact.

9. WIN_top(): the parameter of the function can either be the title of the window, or its WHANDLE. New parameter. No code impact.

10. WIN_height(): the parameter of the function can either be the title of the window, or its WHANDLE. New parameter. No code impact.

11. WIN_width(): the parameter of the function can either be the title of the window, or its WHANDLE. New parameter. No code impact.

12. WIN_left(): the parameter of the function can either be the title of the window, or its WHANDLE. New parameter. No code impact.

13. WIN_right(): the parameter of the function can either be the title of the window, or its WHANDLE. New parameter. No code impact.

14. WIN_setPort():Changes the user output window to be the specified window. New function. No code impact.

15. WIN_getPort():Returns the WHANDLE of the window that is currently selected for user output. New function. No code impact.

16. FIL_wipe(): Wipes a file. New function. No code impact.
17. STR_hexa(): internal bug corrected. No code impact.
18. ZIP_Compress(): compresses a set of files and put them in an archive (ZIP, compatible with WinZIP/PKWare). New function. No code impact.
19. ZIP_Expand(): expands a set of files contained in an archive (ZIP, compatible with WinZIP/PKWare). New function. No code impact.
20. ZIP_SetCallback(): sets a callback function that is executed from within compression/expansion routines (ZIP_Compress() and ZIP_Expand()). New function. No code impact.
21. HTTP_SetCallback(): sets a callback function that is executed from within the HTTP_GetURL*() functions. New function. No code impact.
22. SYS_ExitWindows (): a bug was preventing the function to operate in normal conditions if the security privileges were not granted. This has been corrected to grant the missing privileges in the function itself. impact.
23. SYS_WinExecEx(): identical in behavior as SYS_WinExec() but this time the function returns the resulting Process Identifier (PID). New function. No code impact.
24. The LZE_*() functions have been removed from the library because they are now obsolete (ZIP_*()). Code impact.

	8.06
	17 April 2003
	1. GDI_ScreenToClient() : ??????????. New function. No code impact.
2. GDI_ClientToScreen() : ??????????. New function. No code impact.
3. NUM_Between() :?????????. New function. No code impact.
4. GDI_PaintDesktop() : ??????????. New function. No code impact.
5. MTH_PtBelongsToLine() : ??????????. New function. No code impact.
6. MTH_TriangleSurface() : ??????????. New function. No code impact.
7. GDI_Line(): This function supersedes the GRA_Line() function. New function. Code impact if you used GRA_Line().
8. CAP_BmpToClipboard(): Copies a BMP file in the clipboard. Call to FOCUSCapture.dll. New function. No code impact.
9. CAP_ClipboardToBmp(): Sends the contents of the clipboard in a BMP file. Call to FOCUSCapture.dll. New function. No code impact.
10. CAP_DllGetVersion(): Retrieves the DLL version number as a string. Call to FOCUSCapture.dll. New function. No code impact.
11. CAP_WinToBmp(): Copies the definition of a window to a BMP file. Call to FOCUSCapture.dll. New function. No code impact.
12. CAP_WinToBmpEx(): Copies a rectangle of a window to a BMP file. Call to FOCUSCapture.dll. New function. No code impact.
13. CAP_WinToClipboard(): Copies the definition of a window to the clipboard (BMP format). Call to FOCUSCapture.dll. New function. No code impact.

� MQSeries is a product of IBM for Queue Messaging

