Event Functions

Event Functions

Functions Synopsis

In FOCUS.FLL for FoxPro (as opposed to Visual FoxPro), there were numerous Event functions. These were no longer needed with the advent of Visual FoxPro ... until we wanted to grab more control over event processing. For example, with the advanced event scheme of FOCUS.FLL it is now possible to detect idle time and to branch the execution of the program to a certain routine (see EVE_OnIdleInterval(), EVE_OnIdleCommand(), EVE_GetIdleSince()).

EVE_CustomizeEventCommand() : Customizes the command associated to a given event.

Syntax

EVE_CustomizeEventCommand(nEvent,szCmd)  lSuccess

Parameters

nEvent
event number. The following events are supported by VFP and FOCUS.FLL:

	#define activateEvent
	1
	Activate window

	#define deactivateEvent
	2
	Deactivate window

	#define showEvent
	3
	Show window

	#define hideEvent
	4
	Hide window

	#define updateEvent
	5
	Redraw window

	#define sizeEvent
	6
	Size window event

	#define moveEvent
	7
	Move window event

	#define closeEvent
	8
	Close window

	#define mouseDownEvent
	9
	Left mouse down

	#define mouseUpEvent
	10
	Left mouse up

	#define mMouseDownEvent
	11
	Middle mouse down event

	#define mMouseUpEvent
	12
	Middle mouse up event

	#define rMouseDownEvent
	13
	Right mouse down event

	#define rMouseUpEvent
	14
	Right mouse up event

	#define mouseMoveEvent
	15
	Mouse move event

	#define mouseWheelEvent
	16
	Mouse wheel event

	#define keyDownEvent
	17
	Key down

	#define hotkeyEvent
	18
	An ON KEY LABEL was pressed

	#define menuInitEvent
	19
	Menu initialization event

	#define menuUpdateEvent
	20
	Menu update required

	#define menuHitEvent
	21
	Menu hit

	#define toolbarEvent
	22
	Toolbar button hit

	#define alarmEvent
	23
	Alarm/Timer event

szCmd
the command to associate to the specified event.

Returns

lSuccess
.T. if the function is successful; .F. if not.

Remark

This function has been temporarily disabled for performance degradation. Please notice that the associated command will only be fired at first null event.

EVE_End() : Ends event processing.

Alias

StopEvents(), TerminateEvents()

Syntax

EVE_End()  .T.

Parameters

None.

Returns

.T.
the function always returns .T..

See Also

EVE_Start().

EVE_GetIdleSince() : Gets the last time when an event did occur that postponed the inactivity in a program.

Alias

GetIdleSince()

Syntax

EVE_OnIdleSince()  nMilliSeconds

Parameters

None.

Returns

nMilliSeconds
tick count when the last event did happened.

See Also

EVE_OnIdleCommand(), EVE_OnIdleInterval()
Example

LOCAL szIdleInterval
LOCAL szIdleCommand

&& If we have to logout if there is too long idle time
IF (oApp.ReadIni("FDA","IdleCompliance") == "YES")
 && Take the idle interval from the INI file
 szIdleInterval = STR_dionly(oApp.ReadIni("FDA","IdleInterval"))
 && If this idle time seems to be correct
 IF (! EMPTY(szIdleInterval))
 && Idle command
 szIdleCommand = ALLTRIM(oApp.ReadIni("FDA","IdleCommand"))
 && If there is something to execute
 IF (! EMPTY(szIdleCommand))
 && That's the command that must be executed when idle
 EVE_OnIdleCommand(szIdleCommand)
 && Let's inform FOCUS about the idle interval
 EVE_OnIdleInterval(VAL(szIdleInterval))
 ENDIF
 ENDIF
ENDIF

FUNCTION CheckIfTooLong()
 LOCAL nMilliSeconds

 nMilliSeconds = SYS_GetTickCount() - EVE_GetIdleSince()
 WAIT WINDOW "You're inactive for " + ;
 ALLTRIM(STR(nMilliSeconds / 1000)) + "sec." NOWAIT

 IF (FILE(oApp.RunPath + "\waiting.wav")) && If file exists
 SND_play(oApp.RunPath + "\waiting.wav") && Play a sound
 ENDIF

 && If we're not already busy with a logon
 IF (! oApp.LogonBusy)
 && Activate the main window (see Step #58)
 oApp.SetForegroundWindow(_SCREEN.caption)
 && And log off/log on service (for example)
 LogoffLogon()
 ENDIF

RETURN (VOID)

EVE_LastError() : Last error encountered in EVE functions.

Syntax

EVE_LastError()  szLastError

Parameters

None.

Returns

szLastError
last error that occurred while using the EVE_*() functions.

EVE_LastVersion() : Returns the file stamp of EVE functions.

Remark

This function helps the developer identifying the last version of a set of functions. Sometimes the global version information of FOCUS.FLL (MIS_major() and MIS_minor()) does not help tracking down the changes in a project. Starting with version 6.0 of FOCUS.FLL, each source file has now an internal date and time stamp.

Syntax

EVE_LastVersion()  szLastVersion

Parameters

None.

Returns

szLastVersion
string identifying the last version of the functions set.

EVE_OnIdleCommand() : Gets/Sets the idle command.

Alias

OnIdleCommand()

Syntax

EVE_OnIdleCommand([szCommand])  szCurrentCommand

Parameters

szCommand
command to be executed at the next idle time.

Returns

szCurrentCommand
current command executed when idle interval is elapsed.

See Also

EVE_OnIdleInterval().

Example

LOCAL szIdleInterval
LOCAL szIdleCommand

&& If we have to logout if there is too long idle time
IF (oApp.ReadIni("FDA","IdleCompliance") == "YES")
 && Take the idle interval from the INI file
 szIdleInterval = STR_dionly(oApp.ReadIni("FDA","IdleInterval"))
 && If this idle time seems to be correct
 IF (! EMPTY(szIdleInterval))
 && Idle command
 szIdleCommand = ALLTRIM(oApp.ReadIni("FDA","IdleCommand"))
 && If there is something to execute
 IF (! EMPTY(szIdleCommand))
 && That's the command that must be executed when idle
 EVE_OnIdleCommand(szIdleCommand)
 && Let's inform FOCUS about the idle interval
 EVE_OnIdleInterval(VAL(szIdleInterval))
 ENDIF
 ENDIF
ENDIF

FUNCTION CheckIfTooLong()
 LOCAL nMilliSeconds

 nMilliSeconds = SYS_GetTickCount() - EVE_GetIdleSince()
 WAIT WINDOW "You're inactive for " + ;
 ALLTRIM(STR(nMilliSeconds / 1000)) + "sec." NOWAIT

 IF (FILE(oApp.RunPath + "\waiting.wav")) && If file exists
 SND_play(oApp.RunPath + "\waiting.wav") && Play a sound
 ENDIF

 && If we're not already busy with a logon
 IF (! oApp.LogonBusy)
 && Activate the main window (see Step #58)
 oApp.SetForegroundWindow(_SCREEN.caption)
 && And log off/log on service (for example)
 LogoffLogon()
 ENDIF

RETURN (VOID)

EVE_OnIdleInterval() : Gets/Sets the idle interval.

Alias

OnIdleInterval()

Syntax

EVE_OnIdleInterval([nMilliSeconds])  nInterval

Parameters

None.

Returns

nMilliSeconds
number of milliseconds before executing the OnIdleCommand.

See Also

EVE_OnIdleCommand().

Example

LOCAL szIdleInterval
LOCAL szIdleCommand

&& If we have to logout if there is too long idle time
IF (oApp.ReadIni("FDA","IdleCompliance") == "YES")
 && Take the idle interval from the INI file
 szIdleInterval = STR_dionly(oApp.ReadIni("FDA","IdleInterval"))
 && If this idle time seems to be correct
 IF (! EMPTY(szIdleInterval))
 && Idle command
 szIdleCommand = ALLTRIM(oApp.ReadIni("FDA","IdleCommand"))
 && If there is something to execute
 IF (! EMPTY(szIdleCommand))
 && That's the command that must be executed when idle
 EVE_OnIdleCommand(szIdleCommand)
 && Let's inform FOCUS about the idle interval
 EVE_OnIdleInterval(VAL(szIdleInterval))
 ENDIF
 ENDIF
ENDIF

FUNCTION CheckIfTooLong()
 LOCAL nMilliSeconds

 nMilliSeconds = SYS_GetTickCount() - EVE_GetIdleSince()
 WAIT WINDOW "You're inactive for " + ;
 ALLTRIM(STR(nMilliSeconds / 1000)) + "sec." NOWAIT

 IF (FILE(oApp.RunPath + "\waiting.wav")) && If file exists
 SND_play(oApp.RunPath + "\waiting.wav") && Play a sound
 ENDIF

 && If we're not already busy with a logon
 IF (! oApp.LogonBusy)
 && Activate the main window (see Step #58)
 oApp.SetForegroundWindow(_SCREEN.caption)
 && And log off/log on service (for example)
 LogoffLogon()
 ENDIF

RETURN (VOID)

EVE_ResetIdleSince() : Resets the last event.

Remark

Under various circumstances you probably need to reset the internal last call milestone. For example, when a process is entirely automatic, driven for example via a DDE conversation, we can consider that there is some kind of activity. This activity, of course, is not monitored by FOCUS.FLL. By calling EVE_ResetIdleSince() during the DDE conversation you will force FOCUS to reset its internal counter.

Alias

ResetIdleSince()

Syntax

EVE_ResetIdleSince()  .T.

Parameters

None.

Returns

.T.
always.

See Also

EVE_GetIdleSince().

Example

PROCEDURE DoTopic(nChannel,szAction,szItem,szData,szFormat,nAdvise)
 LOCAL lResult
 LOCAL szToPoke && Whatever needs to be fetched

 && Disable DDE because we don't want interruptions !
 DDEEnabled(.F.)

 oApp.Log.Append("DDE communication")

 lResult = .F.

 DO CASE
 CASE (szAction == "INITIATE")
 lResult = .T.
 oApp.DDE.ConnectionCounter = oApp.DDE.ConnectionCounter + 1
 EVE_ResetIdleSince()
 CASE (szAction == "EXECUTE")
 lResult = ProcessDDEExecute(nChannel , ;
 szAction , ;
 szItem , ;
 szData , ;
 szFormat , ;
 nAdvise)
 IF (lResult)
 EVE_ResetIdleSince()
 ENDIF
 CASE (szAction == "REQUEST")
 lResult = ProcessDDERequest(nChannel , ;
 szAction , ;
 szItem , ;
 szData , ;
 szFormat , ;
 nAdvise , ;
 @szToPoke)
 IF (lResult)
 DDEPoke(nChannel,szItem,szToPoke)
 EVE_ResetIdleSince()
 ENDIF
 CASE (szAction == "TERMINATE")
 lResult = .T.
 oApp.DDE.ConnectionCounter = oApp.DDE.ConnectionCounter - 1
 IF (oApp.DDE.ConnectionCounter < 0)
 oApp.DDE.ConnectionCounter = 0
 ENDIF
 EVE_ResetIdleSince()
 ENDCASE

 && Re-enable DDE services now
 DDEEnabled(.T.)

RETURN (lResult)

EVE_SetUserDefinedAtNullCommand() : Sets a command to be launched at firts null event.

Remark

This function was somehow existing in FOCUS.FLL for FoxPro 2.6. Since then, it has been removed ... and now, here we go again, reappears. Why? Because we actually found a need for it when developing advanced DDE techniques. For example, when the DDEExecute() function is supposed to trigger, in the server, a modal process, the function will return a logical .F. because the server didn't return on time (that is before the DDE timeout has elapsed). What's the trick then? Well, simply let the server carry out the operation when it will have the time to do so and in the meantime already return a logical .T., informing the client that it has understood what is expected from it. Therefore ... execution goes on, the server can already reply, and the operation will be executed at first NULL event.

Alias

SetUserDefinedAtNullCommand()

Syntax

EVE_SetUserDefinedAtNullCommand([szCommand])  szCurrentCommand

Parameters

szCommand
the command that must be carried out when a null event is encountered (when the application has nothing to do).

Returns

szCurrentCommand
the current command. As soon as the command has been carried on, it is removed and won't be executed again unless it is once again fetched in the queue of FOCUS.FLL.

Example

&& A typical example of what has been said is the case where the client
&& wants the server to display its About dialog box (assuming that this is
&& a modal process).
&& Imagine that the server receives a demand of execution of the "ABOUT"
&& item, and that it must execute the oApp.AboutBox() in respond for it.
&& The proper way for it would be to execute the following command then:

SetUserDefinedAtNullCommand("oApp.AboutBox()")

EVE_Start() : Starts event processing.

Syntax

EVE_Start()  .T.

Parameters

None.

Returns

.T.
the function always returns .T..

See Also

EVE_End().

