MAPI Functions

MAPI Functions

Functions Synopsis

Back to early versions of FOCUS.FLL we have created a library dedicated to MAPI services: FOCUMAPI.DLL. We have decided to include these services in FOCUS.FLL directly.

What is Microsoft Mail ?

Mail is an electronic mail program for PC networks. It supports major desktop systems including MS-DOS systems, OS/2 systems, Macintosh systems, the Windows environment and remote MS-DOS systems. Mail runs on every key PC network, and integrates with Microsoft Mail for AppleTalk Networks. It also offers gateways to popular messaging environments.

Mail can be supported in many different network configurations and topologies. Mail is Network Operating Systems (NOS) independent and can run on single local area networks, bridged LANs, wide area networks, and on many more corporate backbone networks. Mail itself can connect to foreign systems and can backbone through a foreign system. By backboning systems, messages can be routed from one Mail system through a foreign mail system to another Mail system.

YOU CAN USE MAIL AS A TRANSPORT MECHANISM.

What is MAPI ? What it is not ?

MAPI stands for Messaging Application Program Interface. It is a set of mechanisms Microsoft provides the developer with to interface an application with MS-Mail in general.

The MS-Mail program and API fits a larger picture : Workgroup computing. Sharing information and resources with a workgroup of connected computers provides a more efficient work environment in which to use the PC.

As stated earlier, this training session will make full use of simple MAPI which is only a subset of the powerful function group known as MAPI. However, it might be important to draw up few lines that'll make you understand the the larger picture I was talking about.

In addition to MAPI, Microsoft has also designed FFAPI (File Format Application Program Interface) which is a group of programs you can make use of in order to exchange electronic mail between Microsoft Mail and other mail systems or applications. Armed with the appropriate expertise you'll learn how to access the Mail data files from within your application. In that sense, FFAPI is the primary layer you can make use of.

FFAPI is divided into two separate products :

· Gateway FFAPI

· Application FFAPI

Use gateway FFAPI to build a gateway to connect to Microsoft Mail with another electronic messaging system. This is pretty advanced !

Use Application FFAPI to create a custom application that uses Microsoft Mail to transport information. With a modified version of Application FFAPI, Application Remote FFAPI, you can also create applications for remote use.

Transport of information is the corner stone of the larger picture. Because it is not limited to messages in general but rather opened to all types of data (order forms, objects, etc.) it can be used in a wide variety of situations where communication between two or more workstations is exactly what is required. Getting acquainted with the Mail transport layer simply opens your applications to a broad set of professional features.

THIS PART OF THE DOCUMENTATION MUST BE CONTINUED. MAPI FUNCTIONS ARE NOT YET OPERATIONAL

The Messaging Application Program Interface for C programmers

The simple messaging application program interface is a set of C functions that helps you create mail-enabled applications.

With simple MAPI you can easily add messaging to any Windows application. Some MAPI functions include a user interface (a dialog box), but you can also call MAPI functions without generating user interface concerns.

Simple MAPI Functions

Simple MAPI consists of the following functions :

	Function
	Description

	MAPILogon
	Begins a session with the messaging system.

	MAPIFindNext
	Returns the ID of the next (or first) mail message of a specified type.

	MAPIReadMail
	Reads a mail message.

	MAPISaveMail
	Saves a mail message.

	MAPIDeleteMail
	Deletes a mail message.

	MAPISendMail
	Sends a mail message, allowing greater flexibility than MAPISendDocuments in message generation.

	MAPISendDocuments
	Sends a standard mail message using a dialog box.

	MAPIAddress
	Addresses a mail message.

	MAPIResolveName
	Displays a dialog box to resolve an ambiguous recipent name.

	MAPIDetails
	Displays a recipient details dialog box.

	MAPIFreeBuffer
	Frees memory allocated by the messaging system.

	MAPILogoff
	Ends a session with the messaging system.

Simple MAPI structures

Message information is stored in MAPI structures :

	Structure
	Description

	MapiFileDesc
	Contains file attachment information.

	MapiMessage
	Contains message information.

	MapiRecipDesc
	Contains recipient information.

MapiFileDesc

typedef struct {
 ULONG ulReserved ; // Reserved for future use. Must be 0
 ULONG flFlags ; // Flags
 ULONG nPosition ; // Attachment position in message body
 LPSTR lpszPathName ; // Full path name of attached file
 LPSTR lpszFileName ; // Original filename (optional)
 LPVOID lpFileType ; // Attachment file type (reserved)
} MapiFileDesc, *lpMapiFileDesc;

MapiMessage

typedef struct {
 ULONG ulReserved ; // Reserved for future use. Must be 0
 LPSTR lpszSubject ; // Message subject
 LPSTR lpszNoteText ; // Message text
 LPSTR lpszMessage Type ; // Message class
 LPSTR lpszDateReceived ; // In YYYY/MM/DD HH:MM format
 LPSTR lpszConversationID ; // Conversation tread ID
 ULONG flFlags ; // Unread, return receipt
 lpMapiRecipDesc lpOriginator; // Originator descriptor
 ULONG nRecipCount ; // Number of recipients
 lpMapiRecipDesc lpRecips ; // Recipient descriptors
 ULONG nFileCount ; // Number of file attachments
 lpMapiFileDesc lpFiles ; // Attachment descriptors
} MapiMessage, *lpMapiMessage;

MapiRecipDesc

typedef struct {
 ULONG ulReserved ; // Reserved for future use.
 ULONG ulRecipClass ; // Recipient class
 LPSTR lpszName ; // Recipient name
 LPSTR lpszAddress ; // Recipient address
 ULONG ulEIDSize ; // Size in bytes of lpEntryID
 LPVOID lpEntryID ; // System-specific recipient reference
} MapiMessage, *lpMapiMessage;

Even if it is not really important to know all these functions and structures in a very detailed manner, it gives you a good insight of what's possible and what's not.

Simple MAPI C Functions insight

To determine whether MAPI is available at run time, check for the MAPI variable in the [Mail] section of WIN.INI. If this variable is present and nonzero, it indicates that a MAPI.DLL library is available. If the MAPI variable is not present or is 0, then you cannot call the MAPI functions, and you should not enable applications for mail.

Although very simple in its principle, this strategy imposes to be able to read *.INI files and to rely on the user maturity (having a mail section in the WIN.INI file does not imply that the MAPI.DLL file is physically present on the workstation : this file might have been deleted or removed to a non appropriate place). You'll see later how we came to an acceptable solution to this problem.

Because we want to step logically into MAPI, we won't go along the usual alphabetical order. Therefore, before actually wondering whether MAPI is available or not, we'll consider that MAPI is properly installed, up and ... not running.

Logon/logoff process

It is pretty straightforward that we'll have to deal with MAPILogon and MAPILogoff services in order to start and stop a Mail session.

Logon

MAPILogon() begins a session with the messaging system. You can sign in to the messaging system in 2 ways :

· Implicitly sign in

· Explicitely sign in

Implicit log on

Any MAPI function call made outside of an established MAPI session generates a sign-in dialog box. We won't cover these techniques.

Explicit log on

If you want to maintain a session over a number of simple MAPI calls, you can use the MAPILogon() function to provide a session handle to the messaging system. This handle can be used in subsequent MAPI calls to explicitly provide user credentials to the messaging system.

The code of such a function is coming up (However it is not our definite code yet) :

MAPILogon() prototype

ULONG MAPILogon(ULONG ulUIParam , // Parent window handle
 LPSTR lpszName , // Client account-name string
 LPSTR lpszPassword, // Credential string
 ULONG flFlags , // Flags to start the session with
 ULONG ulReserved , // Reserved for future use
 LHANDLE *lphSession) // Pointer to a session handle

MAPILogon() return

	Manifest constant
	Value
	Description

	MAPI_E_FAILURE
	2
	One or more unspecified errors occurred during sign-in.

	MAPI_E_INSUFFICIENT_MEMORY
	5
	Not enough memory to proceed.

	MAPI_E_LOGIN_FAILURE
	3
	No default sign-in and the user failed to sign-in successfully.

	MAPI_E_TOO_MANY_SESSIONS
	8
	Too many sessions open simultenously.

	MAPI_E_USER_ABORT
	1
	The user cancelled the process.

	SUCCESS_SUCCESS
	0
	OK. Pointer to session handle set successfully.

C code to interface with FoxPro

FOCUSFNC FW_MAI_logon(XBASE_PARAMETERS)
/*-------------------------------------*/
{
 FLAGS flFlags = MAPI_LOGON_UI; // Display dialog if required
 char _far *Name = NULL; // NULL by default
 char _far *PassWord = NULL; // NULL by default
 short nParam = PCOUNT(); // n parameters

 AccessDenied = FALSE; // Access = OK

 switch (nParam) // How many parameters ?
 {
 case 2:_initparc(2);
 PassWord = _parc(2); // User password

 case 1:_initparc(1);
 Name = _parc(1); // User name
 }

 if (MAILForceDownLoad) // Should we force a download ?
 flFlags |= MAPI_FORCE_DOWNLOAD;

 _retni((long) MAPILogon(FOXWINDOW() , // Returns session handle
 Name ,
 PassWord ,
 flFlags ,
 0L ,
 &hMAPISession
)
);

 switch (nParam) // How many parameters ?
 {
 case 2:_deinitparc(2); // Free handle 1
 case 1:_deinitparc(1); // Free handle 2
 }

 return 0; // Return an int
}

That's it ! Now, we have to be able to log off.

Logoff

MAPILogoff() prototype

ULONG MAPILogoff(LHANDLE lphSession, // Session handle
 ULONG ulUIParam , // Parent window handle
 ULONG flFlags , // Reserved for future use. Must be 0
 ULONG ulReserved) // Reserved for future use. Must be 0

MAPILogoff() returns

	Manifest constant
	Value
	Description

	MAPI_E_INSUFFICIENT_MEMORY
	5
	Not enough memory to proceed.

	MAPI_E_INVALID_SESSION
	19
	An invalid session handle was used for the lhSession parameter.

	SUCCESS_SUCCESS
	0
	OK.

C code to interface with FoxPro

FOCUSFNC FW_MAI_logoff()
/*--------------------*/
{
 _retni((long) MAPILogoff(hMAPISession,
 FOXWINDOW() ,
 0L ,
 0L
)
);

 return 0;
}

At this point we can already start a session, and later on, cancel this session any time from within the FoxPro code. It is not exactly all we want to be able to do, but it's a good start. Let's now focus on messages that are going to be sent across the mail system.

Sending a message : MAPISendMail()

ULONG MAPISendMail(LHANDLE lhSession , // Session handle
 ULONG ulUIParam , // Parent window handle
 lpMapiMessage lpMessage, // Pointer to MapiMessage structure
 ULONG flFlags , // Reserved for future use. Must be 0
 ULONG ulReserved) // Reserved for future use. Must be 0

This function sends a standard mail message. It can prompt for user input with a dialog box or proceed without any user interaction.

MAPISendMail() returns

	Manifest constant
	Value
	Description

	MAPI_E_AMBIGUOUS_RECIP
	21
	A recipient matched more than one of the recipient descriptor structures.

	MAPI_E_ATTACHMENT_NOT_FOUND
	11
	The specified attachment was not found.

	MAPI_E_BAD_RECIPTYPE
	15
	Invalid recipient type.

	MAPI_E_DISK_FULL
	4
	Disk was full.

	MAPI_E_FAILURE
	2
	One or more unspecified errors occurred while sending the mail.

	MAPI_E_INSUFFICIENT_MEMORY
	5
	Not enough memory to proceed.

	MAPI_E_INVALID_SESSION
	19
	An invalid session handle was used for the lhSession parameter.

	MAPI_E_LOGIN_FAILURE
	3
	No default sign-in and the user failed to sign-in successfully.

	MAPI_E_TEXT_TOO_LARGE
	18
	The text in the message was too large to be sent.

	MAPI_E_TOO_MANY_FILES
	9
	There were too many file attachments.

	MAPI_E_TOO_MANY_RECIPIENTS
	10
	There were too many recipients specified.

	MAPI_E_TOO_MANY_SESSIONS
	8
	The user had too many sessions open at once.

	MAPI_E_UNKNOWN_RECIPIENT
	14
	The recipient did not appera in the address list.

	MAPI_E_USER_ABORT
	1
	The user cancelled the process from the dialog box.

	SUCCESS_SUCCESS
	0
	OK.

C code to interface with FoxPro

FOCUSFNC FW_MAI_send()
/*------------------*/
{
 FLAGS flFlags = MAPI_DIALOG;

 _retni((long) MAPISendMail(hMAPISession ,
 0 ,
 &mmMapiMessage,
 flFlags ,
 0L
)
);
 return 0;
}

Sending a document : MAPISendDocuments()

ULONG MAPISendDocuments(ULONG ulUIParam , // Parent window handle
 LPSTR lpszDelimChar, // Character pointer delimit names
 LPSTR lpszFilePaths, // Ptr to list of full paths
 LPSTR lpszFileNames, // Ptr to a list of original filenames
 ULONG ulReserved) // Reserved for future use. Must be 0

This function sends a standard mail message using a dialog box. It displays a Send Note dialog box which prompts the user to send a mail message with data file attachments.

MAPISendDocuments() returns

	Manifest constant
	Value
	Description

	MAPI_E_ATTACHMENT_OPEN_FAILURE
	12
	One or more files in the lpszFilePaths parameter could not be located.

	MAPI_E_DISK_FULL
	4
	Disk was full.

	MAPI_E_FAILURE
	2
	One or more unspecified errors occurred while sending the mail.

	MAPI_E_INSUFFICIENT_MEMORY
	5
	Not enough memory to proceed.

	MAPI_E_LOGIN_FAILURE
	3
	No default sign-in and the user failed to sign-in successfully.

	MAPI_E_USER_ABORT
	1
	The user cancelled the process from the dialog box.

	SUCCESS_SUCCESS
	0
	OK.

C code to interface with FoxPro

FOCUSFNC FW_MAI_sendoc(XBASE_PARAMETERS)
/*--------------------------------------*/
{
 ULONG ulResult;

 char _far *Source;
 char _far *Target;

 _initparc(1); _initparc(2);
 Source = _parc(1); Target = _parc(2);

 ulResult = (ULONG) MAPISendDocuments(0,";",Source,Target,0L);

 _deinitparc(1); _deinitparc(2);

 _retni((int) ulResult);
 return 0;
}

Reading a message : MAPIReadMail()

This is the ideal function to demonstrate that we'll have to create our own .FLL in order to interface with MAPI. Why is that ? Because you cannot return C structures to FoxPro. This is due to the fact that the FoxPro arsenal does not contain such data constructions. Therefore, we'll have to temporarily store the information in C and use subsequent function calls to retrieve all the message information.

ULONG MAPIReadMail(LHANDLE lhSession , // Opaque session handle
 ULONG ulUIParam , // Parent window handle
 LPSTR lpszMessageID, // Ptr to the message identifier
 ULONG flFlags , // Bitmask of flags
 ULONG ulReserved , // Reserved for future use. Must be 0
 lpMapiMessage *lppMessage) // Ptr to a message structure

MAPIReadMail() returns

	Manifest constant
	Value
	Description

	MAPI_E_ATTACHMENT_WRITE_FAILURE
	13
	An attachment could not be written to a temporary file.

	MAPI_E_DISK_FULL
	4
	Disk was full.

	MAPI_E_FAILURE
	2
	One or more unspecified errors occurred while reading the mail.

	MAPI_E_INSUFFICIENT_MEMORY
	5
	Not enough memory to proceed.

	MAPI_E_INVALID_MESSAGE
	3
	The message ID was invalid.

	MAPI_E_INVALID_SESSION
	19
	An invalid session handle was used for the lhSession parameter.

	MAPI_E_NOT_SUPPORTED
	26
	The operation was not supported by the messaging system.

	MAPI_E_TOO_MANY_FILES
	9
	There were too many file attachments.

	MAPI_E_TOO_MANY_RECIPIENTS
	10
	There were too many recipients specified.

	SUCCESS_SUCCESS
	0
	OK.

C code to interface with FoxPro

FOCUSFNC FW_MAI_read(XBASE_PARAMETERS)
/*------------------------------------*/
{
 long nResult = -1;
 FLAGS flFlags = MAPI_SUPPRESS_ATTACH; // Display dialog if required

 if (! MAILShouldMark)
 flFlags |= MAPI_PEEK;

 if (MsgAvailable)
 {
 lppMessage = (lpMapiMessage FAR *) &lpMessage; // Pointer to structure
 nResult = (long) MAPIReadMail(hMAPISession ,
 FOXWINDOW() ,
 lpszMessageID ,
 flFlags ,
 0L ,
 lppMessage
);
 if (nResult != SUCCESS_SUCCESS)
 goto Failure;

 cFWFrom[0] = cFWDate[0] = cFWSubject[0] = 0;

 if (cFWText == NULL)
 cFWText = _xgrab(4097,&mhcFWText);

 _MemFill((void FAR *) cFWText,0,4096);

 if (lpMessage->lpOriginator->lpszName != NULL)
 _fstrncat((LPSTR) cFWFrom,lpMessage->lpOriginator->lpszName,40);
 if (lpMessage->lpszDateReceived)
 _fstrncat((LPSTR) cFWDate,lpMessage->lpszDateReceived ,40);
 if (lpMessage->lpszSubject != NULL)
 _fstrncat((LPSTR) cFWSubject,lpMessage->lpszSubject ,100);
 if (lpMessage->lpszNoteText != NULL)
 _fstrncat((LPSTR) cFWText,lpMessage->lpszNoteText ,4095);

 MAPIFreeBuffer((LPVOID) lpMessage);
 }

 Failure:
 _retni(nResult);

 return 0;
}

As you can see, the MAI_read() function only retrieves message information from the C structures and store it to temporary buffers. Later on, thanks to additional services we'll have to construct, we will definitely be able to pass the informations to FoxPro.

Additional services

You can only call these services when a prior call to MAI_read() returned SUCCESS_SUCCESS.

Message originator : MAI_from()
FOCUSFNC FW_MAI_from()
/*------------------*/
{
 _retc(cFWFrom[0] == 0 ? "" : cFWFrom);
 return 0;
}

Message date : MAI_date()
FOCUSFNC FW_MAI_date()
/*------------------*/
{
 _retc(cFWDate[0] == 0 ? "" : cFWDate);
 return 0;
}

Message subject : MAI_subjec()
FOCUSFNC FW_MAI_subjec()
/*--------------------*/
{
 _retc(cFWSubject[0] == 0 ? "" : cFWSubject);
 return 0;
}

Message body (text) : MAI_text()
FOCUSFNC FW_MAI_text()
/*------------------*/
{
 if (cFWText != NULL)
 _retc(*cFWText == 0 ? "" : cFWText);
 else
 _retc("");

 return 0;
}

Next message : MAPIFindNext()

This function allows an application to enumerate messages of a given type. It returns message identifiers that can be used in subsequent MAPI function calls to retrieve and delete messages. MAPIFindNext() is for processing incoming mail, not for managing received mail. MAPIFindNext() looks for messages in the folder in which new messages of the specified type are delivered.

ULONG MAPIReadMail(LHANDLE lhSession , // Opaque session handle
 ULONG ulUIParam , // Parent window handle
 LPSTR lpszMessageType , // Ptr to the message identifier
 LPSTR lpszSeedMessageID, // Ptr to a string that is the seed
 ULONG flFlags , // Bitmask of flags
 ULONG ulReserved , // Reserved for future use. Must be 0
 LPSTR lpszMessageID) // Ptr to a caller-allocated string

MAPIFindNext() returns

	Manifest constant
	Value
	Description

	MAPI_E_FAILURE
	2
	One or more unspecified errors occurred while looking for messages.

	MAPI_E_INSUFFICIENT_MEMORY
	5
	Not enough memory to proceed.

	MAPI_E_INVALID_MESSAGE
	17
	The message ID of lpszSeedMessageID was invalid.

	MAPI_E_INVALID_SESSION
	19
	An invalid session handle was used for the lhSession parameter.

	MAPI_E_NO_MESSAGES
	16
	MAPIFindNext couldn't find a matching message

	MAPI_E_USER_ABORT
	1
	The user cancelled the process.

	SUCCESS_SUCCESS
	0
	OK.

C code to interface with FoxPro

FOCUSFNC FW_MAI_next()
/*------------------*/
{
 ULONG ulResult;
 FLAGS flFlags;

 if (iFindFirst)
 {
 *lpszSeedMessageID = '\0';
 iFindFirst = FALSE;
 }
 else
 _fstrcpy(lpszSeedMessageID,lpszMessageID);

 if (MAILUnReadOnly)
 flFlags = MAPI_UNREAD_ONLY;
 else
 flFlags = 0L;

 ulResult = (*lpfnMAPIFindNext)(hMAPISession ,
 FOXWINDOW() ,
 NULL ,
 lpszSeedMessageID,
 flFlags ,
 0L ,
 lpszMessageID);

 if (ulResult != SUCCESS_SUCCESS)
 MsgAvailable = FALSE;
 else
 MsgAvailable = TRUE;

 _retni((long) ulResult);

 return 0;
}

Building a kind of "MAPI .FLL" for FoxPro

The main problem we'll have to deal with is to load the MAPI dynamic link libraries and to solve all related issues. This actually includes library loading but also function registration (pointers to functions).

Loading the MAPI libraries

#define FOXWINDOW() (ULONG) _WhToHwnd(_WMainWindow())

HANDLE hMAPILibrary;
HANDLE hSCHEDULELibrary;

LHANDLE hMAPISession;
LHANDLE hSPLUSSession;

int MAILAvailable = FALSE; // Is MAPI installed ?
int SCHEDULEAvailable = FALSE; // Is schedule+ available ?
int InScheduleSession = FALSE; // Are we in a Schedule+ session ?

// Function prototypes
FOCUSFNC InitMAIL(void);
FOCUSFNC DeInitMAIL(void);

FOCUSFNC MAPIStarting()
/*-------------------*/
{
 InitMAIL();
 return 0;
}

FOCUSFNC MAPIEnding()
/*-----------------*/
{
 DeInitMAIL();
 return 0;
}

FOCUSFNC FW_MAI_ismapi()
/*--------------------*/
{
 _retl(MAILAvailable);
 return 0;
}

FOCUSFNC FW_SCH_issche()
/*--------------------*/
{
 _retl(SCHEDULEAvailable);
 return 0;
}

void InitMessage(lpMapiMessage pmmMessage)
/*---*/
{
 pmmMessage->ulReserved = 0L;
 pmmMessage->lpszSubject = pszSubject;
 pmmMessage->lpszNoteText = pszNoteText;
 pmmMessage->lpszMessageType = NULL;
 pmmMessage->lpszDateReceived = pszDateReceived;
 pmmMessage->flFlags = MAPI_UNREAD;
 pmmMessage->lpOriginator = &rdOriginator;
 pmmMessage->nRecipCount = 0L;
 pmmMessage->lpRecips = NULL;
 pmmMessage->nFileCount = 0L;
 pmmMessage->lpFiles = NULL;
}

FOCUSFNC InitMAIL()
/*---------------*/
{
 // Microsoft Windows does not have to handle errors !
 unsigned int OldErrorMode = SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOOPENFILEERRORBOX);
 iFindFirst = TRUE;
 MAILAvailable = FALSE;
 SCHEDULEAvailable = FALSE;

 szSeedMessageID[0] = 0;
 szMessageID[0] = 0;
 szSubject[0] = 0;
 szNoteText[0] = 0;

 InitMessage(&mmMapiMessage);

 hMAPILibrary = LoadLibrary("MAPI.DLL");
 hSCHEDULELibrary = LoadLibrary("SPLUS.DLL");

 SetErrorMode(OldErrorMode); // Setup error mode at what it was prior to enter this function

 if (hMAPILibrary < HINSTANCE_ERROR)
 return((int) hMAPILibrary);

 MAILAvailable = TRUE;

 // Loading MAPI functions. If an error occurs loading one of these functions, there is no need for us to make MAPI
 // available. Since Schedule+ heavily relies on MAPI, by making MAPI not available, we'll also make Schedule+ not
 // available !

 if (((FARPROC) lpfnMAPILogon = GetProcAddress(hMAPILibrary,"MAPILogon")) == NULL)
 RETURN_MAPI_ERROR();

 if (((FARPROC) lpfnMAPILogoff = GetProcAddress(hMAPILibrary,"MAPILogoff")) == NULL)
 RETURN_MAPI_ERROR();

 if (((FARPROC) lpfnMAPISendMail = GetProcAddress(hMAPILibrary,"MAPISendMail")) == NULL)
 RETURN_MAPI_ERROR();

 if (((FARPROC) lpfnMAPISendDocuments = GetProcAddress(hMAPILibrary,"MAPISendDocuments")) == NULL)
 RETURN_MAPI_ERROR();

 if (((FARPROC) lpfnMAPIFindNext = GetProcAddress(hMAPILibrary,"MAPIFindNext")) == NULL)
 RETURN_MAPI_ERROR();

 if (((FARPROC) lpfnMAPIReadMail = GetProcAddress(hMAPILibrary,"MAPIReadMail")) == NULL)
 RETURN_MAPI_ERROR();

 if (((FARPROC) lpfnMAPISaveMail = GetProcAddress(hMAPILibrary,"MAPISaveMail")) == NULL)
 RETURN_MAPI_ERROR();

 if (((FARPROC) lpfnMAPIDeleteMail = GetProcAddress(hMAPILibrary,"MAPIDeleteMail")) == NULL)
 RETURN_MAPI_ERROR();

 if (((FARPROC) lpfnMAPIFreeBuffer = GetProcAddress(hMAPILibrary,"MAPIFreeBuffer")) == NULL)
 RETURN_MAPI_ERROR();

 if (((FARPROC) lpfnMAPIAddress = GetProcAddress(hMAPILibrary,"MAPIAddress")) == NULL)
 RETURN_MAPI_ERROR();

 if (((FARPROC) lpfnMAPIDetails = GetProcAddress(hMAPILibrary,"MAPIDetails")) == NULL)
 RETURN_MAPI_ERROR();

 if (((FARPROC) lpfnMAPIResolveName = GetProcAddress(hMAPILibrary,"MAPIResolveName")) == NULL)
 RETURN_MAPI_ERROR();

 // Loading Schedule+ ! If we came around here, it means that everything was OK. Now, we'll have to check
 // out whether Schedule+ can load properly.

 SCHEDULEAvailable = ! (hSCHEDULELibrary < HINSTANCE_ERROR);

 if (((FARPROC) lpfnSPLUSBeginSession = GetProcAddress(hSCHEDULELibrary,"SPLUSBeginSession")) == NULL)
 RETURN_SCHEDULE_ERROR();

 if (((FARPROC) lpfnSPLUSEndSession = GetProcAddress(hSCHEDULELibrary,"SPLUSEndSession")) == NULL)
 RETURN_SCHEDULE_ERROR();

 if (((FARPROC) lpfnSPLUSSaveAppt = GetProcAddress(hSCHEDULELibrary,"SPLUSSaveAppt")) == NULL)
 RETURN_SCHEDULE_ERROR();

 if (((FARPROC) lpfnSPLUSSaveTask = GetProcAddress(hSCHEDULELibrary,"SPLUSSaveTask")) == NULL)
 RETURN_SCHEDULE_ERROR();

 if (((FARPROC) lpfnSPLUSSendMeeting = GetProcAddress(hSCHEDULELibrary,"SPLUSSendMeeting")) == NULL)
 RETURN_SCHEDULE_ERROR();

 if (((FARPROC) lpfnSPLUSReadUserInfo = GetProcAddress(hSCHEDULELibrary,"SPLUSReadUserInfo")) == NULL)
 RETURN_SCHEDULE_ERROR();

 return((int) hMAPILibrary);
}

FOCUSFNC DeInitMAIL()
/*-----------------*/
{
 // Seek first message
 iFindFirst = TRUE;

 // Free MAPI.DLL
 if (MAILAvailable)
 FreeLibrary(hMAPILibrary);

 // Free memory allocated to cFWText
 if (cFWText != NULL)
 _xfree(mhcFWText);

 // Free SPLUS.DLL
 if (SCHEDULEAvailable)
 FreeLibrary(hSCHEDULELibrary);

 // NULL pointers
 lpfnMAPILogon = NULL;
 lpfnMAPILogoff = NULL;
 lpfnMAPISendMail = NULL;
 lpfnMAPISendDocuments = NULL;
 lpfnMAPIFindNext = NULL;
 lpfnMAPIReadMail = NULL;
 lpfnMAPISaveMail = NULL;
 lpfnMAPIDeleteMail = NULL;
 lpfnMAPIFreeBuffer = NULL;
 lpfnMAPIAddress = NULL;
 lpfnMAPIDetails = NULL;
 lpfnMAPIResolveName = NULL;

 return(0);
}

Determining whether MAPI is available or not

Remember what Microsoft was recommending ?

To determine whether MAPI is available at run time, check for the MAPI variable in the [Mail] section of WIN.INI. If this variable is present and nonzero, it indicates that a MAPI.DLL library is available. If the MAPI variable is not present or is 0, then you cannot call the MAPI functions, and you should not enable applications for mail.

I agree saying that Mail system will only run if [MAIL] section exists in the WIN.INI file and if the MAPI variable is nonzero. But the problem is that, even if the WIN.INI file contains such a section and even if the variable is nonzero, that does not automatically imply that the Mail system is really enabled ... for the same reasons we were referring to earlier. So that I suggest to use a mixture of two strategies :

1. Check for the existence of the [MAIL] section. Check for the presence of the MAPI variable (nonzero).

2. Load appropriate DLLs. If those do not load properly, then MAPI is not available !

The code described above tries to load MAPI.DLL. Here is an extract of this code :

hMAPILibrary = LoadLibrary("MAPI.DLL");

 if (hMAPILibrary < HINSTANCE_ERROR)
 return((int) hMAPILibrary);

 MAILAvailable = TRUE;

But how can we search the WIN.INI file for the [MAIL] section ? Because this is not a built-in feature of FoxPro, we once again have to turn to C to build our own service (which is only a call to a Windows SDK service).

Checking [MAIL] section

FOCUSFNC FW_FIL_wreain(XBASE_PARAMETERS)
/*--------------------------------------*/
{
 char _far *Section,*Entry;
 char szBuf[133];

 _initparc(1); _initparc(2);

 Section = _parc(1); // Handle to pointer : 1st param
 Entry = _parc(2); // Handle to pointer : 2nd param

 GetProfileString(Section,Entry,"",szBuf,sizeof(szBuf));

 _retc(szBuf);

 _deinitparc(1); _deinitparc(2);

 return 0;
}

Example :

PRIVATE cMAPI

cMAPI = FIL_wreain("Mail","MAPI")

IF (EMPTY(cMAPI))
 =StopDialog("MAPI is not available")
ELSE
 IF (VAL(cMapi) == 0)
 =StopDialog("MAPI is not available")
 ELSE
 =InfoDialog("MAPI should be there...")
 <... now let's try to load MAPI>
 ENDIF
ENDIF

Having said this, you'll have now to load the library we are about to create. Imagine our own FLL is called FOCUMAPI.FLL, then most likely you'll have to come up with the following code :

PUBLIC m.lIsMapi
PRIVATE m.cMAPI

m.lIsMapi = .F.
m.cMAPI = FIL_wreain("Mail","MAPI")

IF (EMPTY(m.cMAPI))
 =StopDialog("MAPI is not available")
ELSE
 IF (VAL(m.cMapi) == 0)
 =StopDialog("MAPI is not available")
 ELSE
 SET LIBRARY TO FOCUMAPI.FLL ADDITIVE
 IF (! MAI_ismapi())
 RELEASE LIBRARY FOCUMAPI.FLL
 ELSE
 m.lIsMapi = .T.
 ENDIF
 ENDIF
ENDIF

Then, along all your application code, simply check for the m.lIsMapi variable to allow MAPI calls or not.

<END OF DOCUMENTATION CHECK>

MAPI_IsMAPI() : Determines whether MAPI is installed.
Syntax

MAPI_IsMAPI()  lMAPI

Parameters

None.

Returns

lMAPI
.T. if MAPI is installed; .F. if not.

