Regular Expressions Functions

Regular Expressions Functions

Function Synopsis

The implementation of Regular Expressions in the framework of FOCUS.FLL is based on code that was first created by the University of California.

"Copyright 1991 The Regents of the University of California.

"All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement: "This product includes software developed by the University of California, Berkeley and its contributors."

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

How To Use Regular Expressions?

Regular expressions work in a different way than simple substring searches. You first need to compile what you're looking for, then you can perform the search in a string.

The compilation of what you're looking for must be achieved with RG_Compile(). The real search must be achieved via the RG_Execute() function.

The RG_Compile() function compiles a regular expression into a structure of type regexp (internal to FOCUS.FLL), and returns a pointer to it (kept internally). In final, the result of the function is either a logical true (.T.) or a logical false (.F.) to indicate success or failure.

If the return value of RG_Compile() was .T., then a subsequent call to RG_Execute() can be carried out.

The RG_Execute() function determines if a match can be found in the string that was passed to it. The function uses the internal structure that was filled thanks to the previous call to RG_Compile().

For example, here's how you would determine that "World" is found in "Hello World":

IF (RG_Compile("World")

 IF(RG_Execute("Hello World"))

 ? "We found it"

 ELSE

 ? "We dind't find it"

 ENDIF

ENDIF

… of course, in this example, a match is found.

How to Write Regular Expressions?

A regular expression is zero or more branches , separated by '|'. It matches anything that matches one of the branches.

A branch is zero or more pieces , concatenated. It matches a match for the first, followed by a match for the second, etc.

A piece is an atom possibly followed by '*', '+', or '?'. An atom followed by '*' matches a sequence of 0 or more matches of the atom. An atom followed by '+' matches a sequence of 1 or more matches of the atom. An atom followed by '?' matches a match of the atom, or the null string.

An atom is a regular expression in parentheses (matching a match for the regular expression), a range (see below), '.' (matching any single character), '^' (matching the null string at the beginning of the input string), '$' (matching the null string at the end of the input string), a '\' followed by a single character (matching that character), or a single character with no other significance (matching that character).

A range is a sequence of characters enclosed in '[]'. It normally matches any single character from the sequence. If the sequence begins with '^', it matches any single character not from the rest of the sequence. If two characters in the sequence are separated by '-', this is shorthand for the full list of ASCII characters between them (e.g. '[0‑9]' matches any decimal digit). To include a literal ']' in the sequence, make it the first character (following a possible '^'). To include a literal '-', make it the first or last character.

How Will Ambiguity Be Solved?

If a regular expression could match two different parts of the input string, it will match the one which begins earliest. If both begin in the same place but match different lengths, or match the same length in different ways, life gets messier, as follows.

In general, the possibilities in a list of branches are considered in left-to-right order, the possibilities for '*', '+', and '?' are considered longest-first, nested constructs are considered from the outermost in, and concatenated constructs are considered leftmost-first. The match that will be chosen is the one that uses the earliest possibility in the first choice that has to be made. If there is more than one choice, the next will be made in the same manner (earliest possibility) subject to the decision on the first choice. And so forth.

For example, '(ab|a)b*c' could match 'abc' in one of two ways. The first choice is between 'ab' and 'a'; since 'ab' is earlier, and does lead to a successful overall match, it is chosen. Since the 'b' is already spoken for, the 'b*' must match its last possibility — the empty string — since it must respect the earlier choice.

In the particular case where no '|'s are present and there is only one '*', '+', or '?', the net effect is that the longest possible match will be chosen. So 'ab*', presented with 'xabbbby', will match 'abbbb'. Note that if 'ab*' , is tried against 'xabyabbbz', it will match 'ab' just after 'x', due to the begins-earliest rule. (In effect, the decision on where to start the match is the first choice to be made, hence subsequent choices must respect it even if this leads them to less-preferred alternatives.)

Determining the Substrings that Were Matched

The members of a regexp structure (internal of FOCUS.FLL) include at least the following information:

 char *startp[10];

 char *endp[10];

Once a successful RG_Execute() has been done, each startp-endp pair describes one substring within the string , with the startp pointing to the first character of the substring and the endp pointing to the first character following the substring. The 0th substring is the substring of string that matched the whole regular expression. The others are those substrings that matched parenthesized expressions within the regular expression, with parenthesized expressions numbered in left-to-right order of their opening parentheses.

The RG_sub() function copies source to destination, making substitutions according to the most recent RG_Execute() performed. Each instance of '&' in source is replaced by the substring indicated by startp and endp . Each instance of '\n' , where n is a digit, is replaced by the substring indicated by startp n and endp n . To get a literal '&' or '\n' into destination , prefix it with '\'; to get a literal '\' preceding '&' or '\n' , prefix it with another '\'.

Useful Examples

Example #1:
We look for a pattern that is composed of two parts: part #1 can either be "Hello" or "Good morning"; part #2 must be "World". Here's how we build the pattern, and the result of few tests:

? RG_Compile("(Hello|Good morning) World") && .T.

? RG_Execute("Good World") && .F.

? RG_Execute("Hello World") && .T.

? RG_Execute("Good morning World") && .T.

? RG_Execute("Good Morning World") && .F.

Example #2:
Same example as above, but this time the first part can be found or not: we accept that part #1 is absent BUT part #2 must be met:

? RG_Compile("(Hello|Good morning)*World") && .T.

? RG_Execute("Good World") && .T.

? RG_Execute("Hello World") && .T.

? RG_Execute("Good morning World") && .T.

? RG_Execute("Good Morning World") && .T.

? RG_Execute("World") && .T.

? RG_Execute("world") && .F.

Example #3:
We want to match a string that contains a pattern formed of 2 parts: part #1 must contain a number made of at least two digits; part #2 must contain the word "dog":

? RG_Compile("[0-9][0-9] dog") && .T.

? RG_Execute("Hello World") && .F.

? RG_Execute("We have 7 dogs") && .F.

? RG_Execute("We have 71 dogs") && .T.

? RG_Execute("We have 200 dogs") && .T.

Example #4:
Same example as above, but this time, we also want to match if we have no dog at all:

? RG_Compile("(no dog|[0-9][0-9] dog)") && .T.

? RG_Execute("We have 7 dogs") && .F.

? RG_Execute("We have 71 dogs") && .T.

? RG_Execute("We have 200 dogs") && .T.

? RG_Execute("We have no dog") && .T.

The following code does exactly the same thing, but the pattern was constructed differently:

? RG_Compile("(no|[0-9][0-9]) dog") && .T.

? RG_Execute("We have 7 dogs") && .F.

? RG_Execute("We have 71 dogs") && .T.

? RG_Execute("We have 200 dogs") && .T.

? RG_Execute("We have no dog") && .T.

? RG_Execute("We have 00 dog") && .T.

Examine the last line: a match was found for "00". Now, what can be done if we don't want the first letter to be a 0? We can simply change the range of the first digit:

? RG_Compile("(no|[1-9][0-9]) dog") && .T.

? RG_Execute("We have 00 dog") && .F.

? RG_Execute("We have 10 dog") && .T.

Example #4:
Same example as above, but this time, we want to match only if we have between 10 and 29 dogs:

? RG_Compile("(no|[1,2][0-9]) dog") && .T.

? RG_Execute("We have 9 dogs") && .F.

? RG_Execute("We have 10 dogs") && .T.

? RG_Execute("We have 13 dogs") && .T.

? RG_Execute("We have 20 dogs") && .T.

? RG_Execute("We have 29 dogs") && .T.

? RG_Execute("We have 30 dogs") && .F.

? RG_Execute("We have no dog") && .T.

RG_Compile() : Compiles a pattern that will be used in subsequent calls to RG_Execute().

Syntax

RG_Compile(szPattern)  lSuccess

Parameters

szPattern
the pattern to compile.

Returns

lSuccess
.T. if szPattern could be compiled successfully; .F. otherwise.

Example

? RG_Compile("(no|[1,2][0-9]) dog") && .T.

? RG_Execute("We have 9 dogs") && .F.

? RG_Execute("We have 10 dogs") && .T.

? RG_Execute("We have 13 dogs") && .T.

? RG_Execute("We have 20 dogs") && .T.

? RG_Execute("We have 29 dogs") && .T.

? RG_Execute("We have 30 dogs") && .F.

? RG_Execute("We have no dog") && .T.

RG_Execute() : Performs a regular expression search.

Remark

Before using RG_Execute(), you must prepare the pattern to look for with RG_Compile().

Syntax

RG_Execute(szString)  lSuccess

Parameters

szString
the string to search.

Returns

lSuccess
.T. if szString contains the pattern that was compiled previously by RG_Compile(). .F. otherwise.

Example

? RG_Compile("(no|[1,2][0-9]) dog") && .T.

? RG_Execute("We have 9 dogs") && .F.

? RG_Execute("We have 10 dogs") && .T.

? RG_Execute("We have 13 dogs") && .T.

? RG_Execute("We have 20 dogs") && .T.

? RG_Execute("We have 29 dogs") && .T.

? RG_Execute("We have 30 dogs") && .F.

? RG_Execute("We have no dog") && .T.

RG_Match() : match of the whole last regular expression.

Syntax

RG_Match()  szMatch

Parameters

None.

Returns

szMatch
the match of the whole regular expression or an empty string ("") in case of failure.

Example

? RG_Compile("(no|a lot of) dog") && .T.

? RG_Execute("I have no dog") && .T.

? RG_Match() && "no dog"

? RG_Execute("I have a lot of dogs") && .T.

? RG_Match() && "a lot of dogs"

