Window Functions

Window Functions

Functions Synopsis

FOCUS.FLL gives the developer tighter control over FoxPro and non FoxPro windows through an impressive set of functions.

Visual FoxPro works with window handles that are WHANDLE values. Windows works with handles that are HWND values. These two types of window handles are not compatible. You can easily turn a WHANDLE to a HWND thanks to the WIN_WHandleToHwnd() function of FOCUS. The contrary is not possible. Don't use WHANDLEs for HWNDs nor the opposite : this would generate illegal operations.

WIN_bottom() : Window bottom border position in pixels.

Caution

Don't use HWNDs in place of WHANDLEs with this function otherwise Visual FoxPro will generate illegal operations.

Syntax

WIN_bottom(nWHandle|szTitle)  nBottom

Parameters

nWHandle
window handle (WHANDLE).

or…

szTitle
title of the window.

Returns

nBottom
window bottom border position in pixels or –1 if error.

WIN_ClearOval() : Deletes an elliptical region created with WIN_MakeOval().

Syntax

WIN_ClearOval(nHwnd)  lSuccess

Parameters

nHwnd
Window handle (can be obtained by a call to WIN_hwnd()).

Returns

lSuccess
.T. if the elliptic region was successfully deleted; .F. if the function failed.

Example

&& INIT event of the form ===
LOCAL hWnd

WITH ThisForm

 IF (! "FOCUS.FLL" $ SET("LIBRARY"))
 SET LIBRARY TO FOCUS.FLL
 ENDIF

 m.hWnd = WIN_hwnd(This.caption)

 .Width = 324
 .Height = 146

 DODEFAULT()

 WIN_MakeOval(m.hWnd)

ENDWITH

&& DESTROY event of the form ==
LOCAL hWnd
m.hWnd = WIN_hwnd(This.caption)
WIN_ClearOval(m.hWnd)
CLEAR EVENTS

The example of above creates the an elliptical form. The elliptical form is created in a similar way than the GDI_CreateEllipticRegion() function but this time we use the WIN_MakeOval() function that is much simpler to use. To beautify the presentation of the form, we have created a JPG file that fills perfectly the ellipse.

[image: image1.png]

WIN_Destroy() : Destroys the specified window.

Alias

DestroyWindow().

Remarks

The WIN_Destroy() function does not support the WM_NCDESTROY or the WM_PARENTNOTIFY message. It does not destroy children of the specified window. It does not flush the thread message queue. A thread cannot use WIN_Destroy() to destroy a window created by a different thread.

Syntax

WIN_Destroy(nHwnd)  lSuccess

Parameters

nHwnd
window handle (HWND).

Returns

lSuccess
.T. if the nHwnd window has been destroyed; .F. if not.
WIN_dialog() : Displays a dialog box that is the specified color scheme and contains the specified body text and button text.

Syntax

WIN_Dialog(nColorScheme,szBody,szButton1,szButton2,szButton3)  nButton

Parameters

nColorScheme
color scheme to use.

szBody
text to display in the dialog.

szButton1
prompt that will appear on the first button.

szButton2
prompt that will appear on the second button.

szButton3
prompt that will appear on the third button.

Returns

nButton
the button number that was pressed to quit the dialog.

Example

WIN_dialog(0,"Text in dialog","1","2","3")

This call causes the following dialog to be displayed :

[image: image2.png]Microsoft Visual FoxPro [x]

Testin g

WIN_DrawEdge() : Draws one or more edges of rectangle
Syntax

WIN_DrawEdge(nTop,nLeft,nBottom,nRight,nDC,nEdge,nFlags)  lSuccess

Parameters

nTop
y-coordinate of the upper-left corner of the rectangle.

nLeft
x-coordinate of the upper-left corner of the rectangle.

nBottom
y-coordinate of the lower-right corner of the rectangle.

nRight
x-coordinate of the lower-right corner of the rectangle.

nDC
handle to device context.

nEdge
type of inner and outer edge to draw.

	Manifest Constant
	Value

	BDR_RAISEDOUTER
	0x0001

	BDR_SUNKENOUTER
	0x0002

	BDR_RAISEDINNER
	0x0004

	BDR_SUNKENINNER
	0x0008

	BDR_OUTER
	0x0003

	BDR_INNER
	0x000c

	BDR_RAISED
	0x0005

	BDR_SUNKEN
	0x000a

	EDGE_RAISED
	(BDR_RAISEDOUTER | BDR_RAISEDINNER)

	EDGE_SUNKEN
	(BDR_SUNKENOUTER | BDR_SUNKENINNER)

	EDGE_ETCHED
	(BDR_SUNKENOUTER | BDR_RAISEDINNER)

	EDGE_BUMP
	(BDR_RAISEDOUTER | BDR_SUNKENINNER)

nFlags
type of border.

	Manifest Constant
	Value
	Description

	BF_LEFT
	0x0001
	

	BF_TOP
	0x0002
	

	BF_RIGHT
	0x0004
	

	BF_BOTTOM
	0x0008
	

	BF_TOPLEFT
	BF_TOP | BF_LEFT
	

	BF_TOPRIGHT
	BF_TOP | BF_RIGHT
	

	BF_BOTTOMLEFT
	BF_BOTTOM | BF_LEFT
	

	BF_BOTTOMRIGHT
	BF_BOTTOM | BF_RIGHT
	

	BF_RECT
	BF_LEFT | BF_TOP | BF_RIGHT | BF_BOTTOM
	

	BF_DIAGONAL
	0x0010
	

	BF_DIAGONAL_ENDTOPRIGHT
	BF_DIAGONAL |
BF_TOP |
BF_RIGHT
	

	BF_DIAGONAL_ENDTOPLEFT
	BF_DIAGONAL |
BF_TOP |
BF_LEFT
	

	BF_DIAGONAL_ENDBOTTOMLEFT
	BF_DIAGONAL | BF_BOTTOM | BF_LEFT
	

	BF_DIAGONAL_ENDBOTTOMRIGHT
	BF_DIAGONAL | BF_BOTTOM | BF_RIGHT
	

	BF_MIDDLE
	0x0800
	Fill in the middle

	BF_SOFT
	0x1000
	For softer buttons

	BF_ADJUST
	0x2000
	Calculate the space left over

	BF_FLAT
	0x4000
	For flat rather than 3D borders

	BF_MONO
	0x8000
	For monochrome borders

For diagonal lines, the BF_RECT flags specify the end point of the vector bounded by the rectangle parameter.

Returns

lSuccess
.T. indicates that the function was successful; .F. if not.

WIN_EnumChildren() : Enumerates the child windows that belong to the specified parent window.

Remark

The WIN_EnumChildren() function cannot act in one single shot. Internally, it provides Windows with an internal function pointer that will be executed for each separate window. It is when this internal function is completed that FOCUS.FLL will be able to deliver all the window handles through its WIN_GetChildren() function. In very simple terms, determining all child window of a specified parent window is done in 2 steps: first a call to WIN_EnumChildren() and then a call to WIN_GetChildren().

Alias

EnumChildren()

Syntax

WIN_EnumChildren([nHwnd])  lSuccess

Parameters

nHwnd
optional window handle (HWND). If not passed, the function uses the active window.

Returns

lSuccess
.T. if the function is successful; .F. if not.

Example

LOCAL szWindows
LOCAL OldSep
LOCAL szTitle
LOCAL nTokens
LOCAL i

&& This example starts by enumerating all the child windows of the Desktop of Windows.
&& If the EnumChildren() call is successful, it asks FOCUS.FLL to return all the
&& handles that were found (WIN_GetChildren()). This function actually returns a
&& string where each Window Handle is separated from the other by a caret
&& ("2080^344^612^2572", for example). We then use token functions to extract each
&& window handle (STR_numtok() to determine how many window handles were found, and
&& STR_ntoken() to extract each separate handle). Once the handle is excerpted from
&& the string, it is used by the GetWindowTitle() function to determine the Title
&& of each window. If the titkle is not empty (case when a window is hidden, or when
&& it has no title), it is displayed along with the associated window handle.

IF (WIN_EnumChildren(GetDesktopWindow()))

 szWindows = WIN_GetChildren()
 OldSep = STR_setsep("^")
 nTokens = STR_numtok(szWindows)

 FOR i = 1 TO nTokens
 szHandle = STR_ntoken(i,szWindows)
 szTitle = GetWindowTitle(VAL(szHandle))

 IF (! EMPTY(szTitle))
 ? szTitle,szHandle
 ENDIF
 NEXT
ENDIF

STR_setsep(OldSep)

WIN_EnumWindows() : Enumerates all top-level windows on the screen.

Remark

The WIN_EnumWindows() function cannot act in one single shot. Internally, it provides Windows with an internal function pointer that will be executed for each separate window. It is when this internal function is completed that FOCUS.FLL will be able to deliver all the window handles through its WIN_GetWindows() function. In very simple terms, determining all child window of a specified parent window is done in 2 steps: first a call to WIN_EnumWindows() and then a call to WIN_GetWindows().

Alias

EnumWindows()

Syntax

WIN_EnumWindows()  lSuccess

Parameters

None.

Returns

lSuccess
.T. if the function is successful; .F. if not.

Example

LOCAL szWindows
LOCAL OldSep
LOCAL szTitle
LOCAL nTokens
LOCAL i

&& This example starts by enumerating all the top level windows.

IF (WIN_EnumWindows())

 m.szWindows = WIN_GetWindows()
 m.OldSep = STR_setsep("^")
 m.nTokens = STR_numtok(m.szWindows)

 FOR i = 1 TO nTokens
 m.szHandle = STR_ntoken(i,m.szWindows)
 m.szTitle = GetWindowTitle(VAL(m.szHandle))

 IF (! EMPTY(m.szTitle))
 ? m.szTitle,m.szHandle
 ENDIF
 NEXT

 STR_setsep(OldSep)

ENDIF

WIN_Flash() : Flashes the specified window once.

Syntax

WIN_Flash(nHwnd|szCaption,lStatus)  lSuccess

Parameters

nHwnd
window handle (HWND)

or

szCaption
title of the window that must flash.

lStatus
specifies whether the window is to be flashed or returned to its original state. The window is flashed from one state to the other if this parameter is .T.. If it is .F., the window is returned to its original state (either active or inactive). When an application is iconic (minimized), if this parameter is .T., the taskbar window button flashes active/inactive. If it is .F., the taskbar window button flashes inactive, meaning that it does not change colors. It flashes, as if it were being redraw, but it does not provide the visual invert clue to the user.

Returns

lSuccess
the return value specifies the window's state before the call to the WIN_Flash() function. If the window was active before the call, the return value is .T.. If the window was not active before the call, the return value is .F..

WIN_GetActiveWindow() : Retrieves window handle (HWND) of the current window.

Alias

GetActiveWindow()

Syntax

WIN_GetActiveWindow()  nHwnd

Parameters

None.

Returns

nHwnd
window handle (HWND).

WIN_GetChildren() : Retrieves all child window handles obtained by a call to WIN_EnumChildren().

Remark

The WIN_EnumChildren() function cannot act in one single shot. Internally, it provides Windows with an internal function pointer that will ge executed for each separate window. It is when this internal function is completed that FOCUS.FLL will be able to deliver all the window handles through its WIN_GetChildren() function. In very simple terms, determining all child window of a specified parent window is done in 2 steps: first a call to WIN_EnumChildren() and then a call to WIN_GetChildren().

Alias

GetWindows(), GetChildren()

Syntax

WIN_GetChildren()  szChildren

Parameters

None.

Returns

szChildren
a tokenized string with all window handles or an empty string ("") if no child window is found. Each token is separated from the other by a caret (^).

Example

LOCAL szWindows
LOCAL OldSep
LOCAL szTitle
LOCAL nTokens
LOCAL i

&& This example starts by enumerating all the child windows of the Desktop of Windows.
&& If the EnumChildren() call is successful, it asks FOCUS.FLL to return all the
&& handles that were found (WIN_GetChildren()). This function actually returns a
&& string where each Window Handle is separated from the other by a caret
&& ("2080^344^612^2572", for example). We then use token functions to extract each
&& window handle (STR_numtok() to determine how many window handles were found, and
&& STR_ntoken() to extract each separate handle). Once the handle is excerpted from
&& the string, it is used by the GetWindowTitle() function to determine the Title
&& of each window. If the titkle is not empty (case when a window is hidden, or when
&& it has no title), it is displayed along with the associated window handle.

IF (WIN_EnumChildren(GetDesktopWindow()))

 szWindows = WIN_GetChildren()
 OldSep = STR_setsep("^")
 nTokens = STR_numtok(szWindows)

 FOR i = 1 TO nTokens
 szHandle = STR_ntoken(i,szWindows)
 szTitle = GetWindowTitle(VAL(szHandle))

 IF (! EMPTY(szTitle))
 ? szTitle,szHandle
 ENDIF
 NEXT
ENDIF

STR_setsep(OldSep)

WIN_GetClassName() : Retrieves the name of the class to which the specified window belongs.

Alias

GetClassName()

Syntax

WIN_GetClassName(nHwnd)  szClass

Parameters

nHwnd
the handle to the window and, indirectly, the class to which the window belongs.

Returns

szClass
class name string.

Example

LOCAL nHwnd

nHwnd = WIN_GetHandle("Microsoft Word – Document1")

IF (nHwnd != 0)
 szClass = GetClassName(nHwnd) && "OpusApp"
ENDIF

WIN_GetClientArea() : Retrieves the dimensions of the bounding rectangle of the specified window.
Special

The dimensions are given in screen coordinates that are relative to the upper-left corner of the screen. This function is particularly helpful when it comes down to know a control's absolute coordinates. For example, it can be used in conjunction with MOU_ClipCursor().

Each time a window is moved, you need to reissue the WIN_GetClientArea() function.

Alias

GetClientArea()

Syntax

WIN_GetClientArea(nHwnd,@nTop,@nLeft,@nBottom,@nRight)  lSuccess

Parameters

nHwnd
window handle (HWND).

nTop
y-coordinate of the upper-left corner of the window. Must be passed by reference.

nLeft
x-coordinate of the upper-left corner of the window. Must be passed by reference.

nBottom
y-coordinate of the lower-right corner of the window. Must be passed by reference.

nRight
x-coordinate of the lower-right corner of the window. Must be passed by reference.

Returns

lSuccess
.T. indicates that the function was successful; .F. if not.

Example

LOCAL hwnd && HWND handle
LOCAL top && y-coordinate of the upper-left corner of the window
LOCAL left && x-coordinate of the upper-left corner of the window
LOCAL bottom && y-coordinate of the lower-right corner of the window
LOCAL right && x-coordinate of the lower-right corner of the window

top = 0
left = 0
bottom = 0
right = 0

DO FORM "testDC"

hwnd = WIN_hwnd("Test DC")

WIN_GetClientArea(hwnd,@top,@left,@bottom,@right)

? top
? left
? bottom
? right

WIN_GetExStyle() : Retrieves the extended window styles.

Syntax

WIN_GetExtStyle(nHwnd)  nExtendedStyle

Parameters

nHwnd
window handle (HWND).

Returns

nExtendedStyle
extended style. If the function fails, the return value is set to zero.

Example

LOCAL hwnd

hwnd = WIN_hwnd("Command")

? WIN_GetExStyle(hwnd)

See also

WIN_GetHInstance(), WIN_GetStyle(), WIN_GetWndProc(), WIN_GetHwndParent()

WIN_GetForegroundWindow() : Returns a handle to the foreground window (the window with which the user is currently working).
Special

The system assigns a slightly higher priority to the thread that creates the foreground window than it does to other threads

Syntax

WIN_GetForegroundWindow()  nHwnd

Parameters

None.

Returns

nHwnd
window handle (HWND).

See also

WIN_SetForegroundWindow().
WIN_GetHandle() : Retrieves a handle to the top-level window corresponding to the passed parameter.

Remark

WIN_GetHandle() differs from WIN_hwnd() in the way both functions search for the window: WIN_GetHandle() uses the FindWindow() Win32 API function while WIN_hwnd() uses the FoxPro API function (_WfindTitle()). Also WIN_GetHandle() can only retrieve top-level window handles.

Alias

WIN_GetHwnd()

Syntax

WIN_GetHandle(szTitle)  nHwnd

Parameters

szTitle
title of the window that is to be found.

Returns

nHwnd
window handle (HWND), or 0 if not found.

Example

LOCAL hwnd

hwnd = WIN_hwnd("Command")

? WIN_GetHInstance(hwnd)

See also

WIN_hwnd().
WIN_GetHInstance() : Retrieves the handle of the application instance that handles a given window.

Syntax

WIN_GetHInstance(nHwnd)  nInstance

Parameters

nHwnd
window handle (HWND).

Returns

nInstance
application instance. If the function fails, the return value is set to zero.

Example

LOCAL hwnd

hwnd = WIN_hwnd("Command")

? WIN_GetHInstance(hwnd)

See also

WIN_GetExStyle(), WIN_GetStyle(), WIN_GetWndProc(), WIN_GetHwndParent()

WIN_GetHwndParent() : Retrieves the handle of the parent window, if any.

Syntax

WIN_GetHwndParent(nHwnd)  nHWndParent

Parameters

nHwnd
window handle (HWND).

Returns

nHwndParent
handle of the parent window, if any. If the function fails, the return value is set to zero.

Example

LOCAL hwnd

hwnd = WIN_hwnd("Command")

? WIN_GetHwndParent(hwnd)

See also

WIN_GetHInstance(), WIN_GetStyle(), WIN_GetExStyle(), WIN_GetHwndParent()

WIN_getPort() : Returns the WHANDLE of the window that is currently selected for user output.

Syntax

WIN_getPort()  nWHandle

Parameters

None.

Returns

nWHandle
FoxPro window handle (WHANDLE).

Example

WIN_setPort(29431904) && This is Form1
? "WHANDLE is",WIN_getPort() && Display the value of WHANDLE in Form1

WIN_setPort(14311928) && This is Form2
? "WHANDLE is",WIN_getPort() && Display the value of WHANDLE in Form2

&& The switch will appear as two distinct elements ... first
&& words will appear on Form2, then the switch will take place,
&& then the rest will appear on Form1
? "Switching port",WIN_setPort(29431904),"at",TIME()

[image: image3.png]Microsoft Visual FoxPro -[o) x|
Bl Ed Uow Famat Dook Progam Window e Esstiie

L rormt ol | =loix|

WHANDLE is 20431804 14311928 at 09:35:02 WHANDLE is 14311828
Switching port

—oixl
WIN_setPort (29431304) |
? "VHANDLE is",WIN_getPorc()

WIN_setPort (14311928)
2 "UHANDLE is",VIN_getPort ()
2 "Suitching port”,VIN_setPort (29431904) , "at", TIHE ()

WIN_GetStyle() : Retrieves the window style.

Syntax

WIN_GetStyle(nHwnd)  nStyle

Parameters

nHwnd
window handle (HWND). Identifies the window and, indirectly, the class to which the window belongs.
Returns

nStyle
style. If the function fails, the return value is set to zero.

Example

LOCAL hwnd

m.hwnd = WIN_hwnd("Command")

? WIN_GetStyle(m.hwnd)

See also

WIN_GetHInstance(), WIN_GetExStyle(), WIN_GetWndProc(), WIN_GetHwndParent()

WIN_GetWindowDC() : Retrieves the device context (DC) for the entire window, including title bar, menus, and scroll bars.
Special

A window device context permits painting anywhere in a window, because the origin of the device context is the upper-left corner of the window instead of the client area.

After painting is complete, the WIN_ReleaseDC() function must be called to release the device context. Not releasing the window device context has serious effects on painting requested by applications.

Syntax

WIN_GetWindowDC(nHwnd)  nDC

Parameters

nHwnd
window handle (HWND).

Returns

nDC
device context.

WIN_GetWindows() : Retrieves all window handles obtained by a call to WIN_EnumWindows().

Remark

The WIN_EnumWindows() function cannot act in one single shot. Internally, it provides Windows with an internal function pointer that will be executed for each separate window. It is when this internal function is completed that FOCUS.FLL will be able to deliver all the window handles through its WIN_GetWindows() function. In very simple terms, determining all child window of a specified parent window is done in 2 steps: first a call to WIN_EnumWindows() and then a call to WIN_GetWindows().

Alias

GetWindows()

Syntax

WIN_GetWindows()  szWindows

Parameters

None.

Returns

szWindows
a tokenized string with all window handles or an empty string ("") if no top-level window is found. Each token is separated from the other by a caret (^).

Example

LOCAL szWindows
LOCAL OldSep
LOCAL szTitle
LOCAL nTokens
LOCAL i

&& This example starts by enumerating all the top level windows.

IF (WIN_EnumWindows())

 m.szWindows = WIN_GetWindows()
 m.OldSep = STR_setsep("^")
 m.nTokens = STR_numtok(m.szWindows)

 FOR i = 1 TO nTokens
 m.szHandle = STR_ntoken(i,m.szWindows)
 m.szTitle = GetWindowTitle(VAL(m.szHandle))

 IF (! EMPTY(m.szTitle))
 ? m.szTitle,m.szHandle
 ENDIF
 NEXT

 STR_setsep(OldSep)

ENDIF

WIN_GetWindowText() : Determines a window's title bar.
Special

If the specified window is a control, the text of the control is copied. However, WIN_GetWindowText() cannot retrieve the text of a control in another application.

Syntax

WIN_GetWindowText(nHwnd)  szTitle

Parameters

nHwnd
window handle (HWND).

Returns

szTitle
title of the window.

Example

n = WIN_GetHandle("Microsoft Word - FOCUS.FLL (1999).doc")

? WIN_GetWindowText(n) && "Microsoft Word - FOCUS.FLL (1999).doc"

WIN_GetWndProc() : Retrieves the address of the window procedure, or a handle representing the address of the window procedure.

Syntax

WIN_GetWndProc(nHwnd)  nWndProc

Parameters

nHwnd
window handle (HWND).

Returns

nWndProc
window procedure. If the function fails, the return value is set to zero.

Example

LOCAL hwnd

hwnd = WIN_hwnd("Command")

? WIN_GetWndProc(hwnd)

See also

WIN_GetHInstance(), WIN_GetStyle(), WIN_GetExStyle(), WIN_GetHwndParent()

WIN_handle() : Window handle (WHANDLE).

Special

WHANDLEs are not HWNDs !

Syntax

WIN_handle(cWinTitle)  nHandle

Parameters

cWinTitle
title of the window of which we want to determine the handle.

Returns

nHandle
window handle (WHANDLE).

See Also

WIN_hwnd().

WIN_height() : Window height in pixels

Syntax

WIN_height(nWHandle)  nHeight

Parameters

nWHandle
window handle (WHANDLE).

Returns

nHeight
height of window in pixels.

WIN_hwnd() : Returns the Windows HWND of a given window.

Special

Many Windows functions must operate on the Windows handle (HWND) of a window. Visual FoxPro works with different handles: WHANDLE. The WIN_hwnd() function returns a value directly useful for Windows functions and not Visual FoxPro functions. For example, if you want to obtain a device context on a specific form the WHANDLE value is of no help at all: you must operate on the HWND value. Consequently, if you intend to use the WIN_GetWindowDC() function you first need to obtain the HWND value of the window you want to work with.

WIN_GetHandle() differs from WIN_hwnd() in the way both functions search for the window: WIN_GetHandle() uses the FindWindow() Win32 API function while WIN_hwnd() uses the FoxPro API function (_WfindTitle()). Also WIN_GetHandle() can only retrieve top-level window handles.

WHANDLEs are not HWNDs!

Syntax

WIN_hwnd(szTitle)  nHwnd

Parameters

szTitle
window name (window title or form caption).

Returns

nHwnd
window handle (HWND). 0 is returned for an invalid window handle.

See also

WIN_handle()
WIN_IsWindow() : Determines whether the specified window handle identifies an existing window.

Alias

IsWindow()

Syntax

WIN_IsWindow(nHwnd)  lExist

Parameters

nHwnd
window handle (HWND).None.

Returns

lExist
if the window handle identifies an existing window, the return value is .T.; otherwise it is.F..

WIN_IsWindowEnabled() : Determines whether the specified window is enabled for mouse and keyboard input.

Alias

IsWindowEnabled()

Syntax

WIN_IsWindowEnabled(nHwnd)  lEnabled

Parameters

nHwnd
window handle (HWND).None.

Returns

lEnabled
if the window is enabled, the return value is .T.; otherwise it is.F..

WIN_IsWindowUnicode() : Determines whether the specified window is a native Unicode window.

Alias

IsWindowUnicode()

Syntax

WIN_IsWindowUnicode(nHwnd)  lUnicode

Parameters

nHwnd
window handle (HWND).None.

Returns

lUnicode
if the window is a native Unicode window, the return value is .T.; otherwise it is.F..

WIN_IsWindowVisible() : Determines whether the specified window is visible or not.

Alias

IsWindowVisible()

Syntax

WIN_IsWindowVisible(nHwnd)  lVisible

Parameters

nHwnd
window handle (HWND).None.

Returns

lVisible
if the window is visible on the screen, the return value is .T.; otherwise it is.F.. The return value may be .T. even if the window is totally overlapped by other windows.

WIN_LastVersion() : Returns the file stamp of WIN functions.

Remark

This function helps the developer identifying the last version of a set of functions. Sometimes the global version information of FOCUS.FLL (MIS_major() and MIS_minor()) does not help tracking down the changes in a project. Starting with version 6.0 of FOCUS.FLL, each source file has now an internal date and time stamp.

Syntax

WIN_LastVersion()  szLastVersion

Parameters

None.

Returns

szLastVersion
string identifying the last version of the functions set. The string is similar to "C:\Focus\5.0\WIN.C-Mon Oct 19 15:55:22 1998".

WIN_left() : Window left border position in pixels.

Syntax

WIN_left(nWHandle)  nLeft

Parameters

nWHandle
window handle (WHANDLE).

Returns

nLeft
window left border position in pixels.

WIN_Lock() : Disables or re-enables drawing in the specified window.

Special

Only one window can be locked at a time. You can decide to lock a window at the early stages of Load() event and unlock it at the as a final step in the Init() event. The dvlForm of FOCUS.VCX uses this mechanism to speed up form loading.

Syntax

WIN_Lock(nHwnd)  lSuccess

Parameters

nHwnd
window handle (HWND). Call WIN_lock(0) to unlock the window that's currently locked.

Returns

lSuccess
.T. if the window was locked properly; .F. if not.

Example

&& Taken from the dvlForm Load() and Init() events :
PROCEDURE Load()
 WITH This
 IF (.IsFocus())
 .hwnd = WIN_hwnd(This.caption)
 IF (.hwnd != 0)
 .IsLocked = WIN_Lock(.hwnd)
 ENDIF
 ENDIF
 ENDWITH
ENDPROC

PROCEDURE Init()
 WITH This
 <tons of things to do>
 IF (.IsLocked) && If the window was properly locked
 WIN_Lock(0) && Unlock it now
 ENDIF
 ENDWITH
ENDPROC

WIN_main() : Desktop window handle (WHANDLE).

Special

WHANDLEs are not HWNDs ! The WIN_main() function is identical to WIN_handle(_SCREEN.caption). You can obtain the HWND value of the handle by calling the WIN_WhandleToHwnd() function.

Syntax

WIN_main()  nHandle

Parameters

None.

Returns

nHandle
main window handle (WHANDLE) : desktop.

WIN_MakeOval() : Creates an elliptical region and attach it to a form.

Syntax

WIN_MakeOval(nHwnd)  lSuccess

Parameters

nHwnd
Window handle (can be obtained by a call to WIN_hwnd()).

Please remember that, when you do no need the elliptic region anymore, you MUST release it with a call to the WIN_ClearOval() function.

Returns

lSuccess
.T. if the elliptic region was successfully attached to the form; .F. if the function failed.

Example

&& INIT event of the form ===
LOCAL hWnd

WITH ThisForm

 IF (! "FOCUS.FLL" $ SET("LIBRARY"))
 SET LIBRARY TO FOCUS.FLL
 ENDIF

 m.hWnd = WIN_hwnd(This.caption)

 .Width = 324
 .Height = 146

 DODEFAULT()

 WIN_MakeOval(m.hWnd)

ENDWITH

&& DESTROY event of the form ==
LOCAL hWnd
m.hWnd = WIN_hwnd(This.caption)
WIN_ClearOval(m.hWnd)
CLEAR EVENTS

The example of above creates the an elliptical form. The elliptical form is created in a similar way than the GDI_CreateEllipticRegion() function but this time we use the WIN_MakeOval() function that is much simpler to use. To beautify the presentation of the form, we have created a JPG file that fills perfectly the ellipse.

[image: image4.png]

WIN_MsgBox() : Creates, displays, and operates a message box.

Syntax

WIN_MsgBox(szText,nType,szTitle,nLanguageID)  nButton

Parameters

szText
the message to be displayed.

nType
specifies a set of bit flags that determine the contents and behavior of the dialog box. This parameter can be a combination of flags from the following groups of flags :

Button Indication

	Flag
	Value
	Meaning

	MB_ABORTRETRYIGNORE
	2
	The message box contains three push buttons: Abort, Retry, and Ignore.

	MB_OK
	0
	The message box contains one push button: OK. This is the default.

	MB_OKCANCEL
	1
	The message box contains two push buttons: OK and Cancel.

	MB_RETRYCANCEL
	5
	The message box contains two push buttons: Retry and Cancel.

	MB_YESNO
	4
	The message box contains two push buttons: Yes and No.

	MB_YESNOCANCEL
	3
	The message box contains three push buttons: Yes, No, and Cancel.

Icon Indication

	Flag
	Value
	Meaning

	MB_ICONEXCLAMATION,
MB_ICONWARNING
	48
	An exclamation-point icon appears in the message box.

	MB_ICONINFORMATION, MB_ICONASTERISK
	64
	A question-mark icon appears in the message box.

	MB_ICONQUESTION
	32
	An icon consisting of a lowercase letter i in a circle appears in the message box.

	MB_ICONSTOP,
MB_ICONERROR,
MB_ICONHAND
	16
	A stop-sign icon appears in the message box.

Default Button

	Flag
	Value
	Meaning

	MB_DEFBUTTON1
	0
	The first button is the default button. MB_DEFBUTTON1 is the default unless MB_DEFBUTTON2, MB_DEFBUTTON3, or MB_DEFBUTTON4 is specified.

	MB_DEFBUTTON2
	256
	The second button is the default button.

	MB_DEFBUTTON3
	512
	The third button is the default button.

	MB_DEFBUTTON4
	768
	The fourth button is the default button.

Dialog Box Modality

	Flag
	Value
	Meaning

	MB_APPLMODAL
	0
	The user must respond to the message box before continuing work in the current window. However, the user can move to the windows of other applications and work in those windows. Depending on the hierarchy of windows in the application, the user may be able to move to other windows within the application. All child windows of the parent of the message box are automatically disabled, but popup windows are not. MB_APPLMODAL is the default if neither MB_SYSTEMMODAL nor MB_TASKMODAL is specified.

	MB_SYSTEMMODAL
	4096
	All applications are suspended until the user responds to the message box. Unless the application specifies MB_ICONHAND, the message box does not become modal until after it is created; consequently, the owner window and other windows continue to receive messages resulting from its activation. Use system-modal message boxes to notify the user of serious, potentially damaging errors that require immediate attention (for example, running out of memory).

	MB_TASKMODAL
	8192
	Same as MB_APPLMODAL except that all the top-level windows belonging to the current task are disabled if the hWnd parameter is NULL. Use this flag when the calling application or library does not have a window handle available but still needs to prevent input to other windows in the current application without suspending other applications.

In addition, you can specify the following flags:

	Flag
	Value
	Meaning

	MB_DEFAULT_DESKTOP_ONLY
	131072
	The desktop currently receiving input must be a default desktop; otherwise, the function fails. A default desktop is one an application runs on after the user has logged on.

	MB_HELP
	16384
	Adds a Help button to the message box. Choosing the Help button or pressing F1 generates a Help event.

	MB_RIGHT
	524288
	The text is right-justified.

	MB_RTLREADING
	1048576
	Displays message and caption text using right-to-left reading order on Hebrew and Arabic systems.

	MB_SERVICE_NOTIFICATION
	2097152
	Windows NT only: The caller is a service notifying the user of an event. The function displays a message box on the current active desktop, even if there is no user logged on to the computer. If this flag is set, the hWnd parameter must be NULL. This is so the message box can appear on a desktop other than the desktop corresponding to the hWnd.

	MB_SETFOREGROUND
	65536
	The message box becomes the foreground window. Internally, Windows calls the SetForegroundWindow() function for the message box.

	MB_TOPMOST
	262144
	The message box is created with the WS_EX_TOPMOST window style.

szTitle
title of the window.

nLanguageID
language ID:

	Hexa
	Decimal
	Language

	0x0401
	1025
	Arabic

	0x0402
	1026
	Bulgarian

	0x0403
	1027
	Catalan

	0x0404
	1028
	Traditional Chinese

	0x0804
	2052
	Simplified Chinese

	0x0405
	1029
	Czech

	0x0406
	1030
	Danish

	0x0407
	1031
	German

	0x0807
	2055
	Swiss German

	0x0408
	1032
	Greek

	0x0409
	1033
	U.S. English

	0x0809
	2057
	U.K. English

	0x040A
	1034
	Castilian Spanish

	0x080A
	2058
	Mexican Spanish

	0x040B
	1035
	Finnish

	0x040C
	1036
	French

	0x080C
	2060
	Belgian French

	0x0C0C
	3084
	Canadian French

	0x100C
	4108
	Swiss French

	0x040D
	1037
	Hebrew

	0x040E
	1038
	Hungarian

	0x040F
	1039
	Icelandic

	0x0410
	1040
	Italian

	0x0810
	2064
	Swiss Italian

	0x0411
	1041
	Japanese

	0x0412
	1042
	Korean

	0x0413
	1043
	Dutch

	0x0813
	2067
	Belgian Dutch

	0x0414
	1044
	Norwegian ¥ BokmÕl

	0x0814
	2068
	Norwegian ¥ Nynorsk

	0x0415
	1045
	Polish

	0x0416
	1046
	Brazilian Portuguese

	0x0816
	2070
	Portuguese

	0x0417
	1047
	Rhaeto-Romanic

	0x0418
	1048
	Romanian

	0x0419
	1049
	Russian

	0x041A
	1050
	Croato-Serbian (Latin)

	0x081A
	2074
	Serbo-Croatian (Cyrillic)

	0x041B
	1051
	Slovak

	0x041C
	1052
	Albanian

	0x041D
	1053
	Swedish

	0x041E
	1054
	Thai

	0x041F
	1055
	Turkish

	0x0420
	1056
	Urdu

	0x0421
	1057
	Bahasa

Note that each localized release of Windows 95/98 and Windows NT/Windows 2000 typically contains resources only for a limited set of languages. Thus, for example, the U.S. version offers LANG_ENGLISH, the French version offers LANG_FRENCH, the German version offers LANG_GERMAN, and the Japanese version offers LANG_JAPANESE. Each version offers LANG_NEUTRAL. This limits the set of values that can be used with the nLanguageId parameter. Before specifying a language identifier, you should enumerate the locales that are installed on a system (LOC_EnumSystemLocales() and LOC_GetSystemLocales() of FOCUS.FLL).

Returns

nButton
the return value of WIN_MsgBox() is identical to the standard MESSAGEBOX() function of Visual FoxPro.

Example

#define DANISH 1030

? WIN_MsgBox("The WIN_MsgBox() function creates, displays, and operates " + ;

 "a message box. The message box contains an application-" + ;

 "defined message and title...",69,"This is my Title",DANISH)

&& This produces the following display

[image: image5.png]The WIN_MsgBox function creates, displays, and operates a message box. The
message box contains an applicatin-defined message and tile.

==

WIN_raised() : Draws a raised edge of rectangle.

Special

WIN_raised() performs an internal call to the DrawEdge() Win32 API service. It does that by obtaining a device context to the appropriate window (WIN_GetWindowDC()). To obtain a device context, you first need to obtain the HWND window handle thanks to WIN_hwnd(). Please remember that to each call to WIN_GetWindowDC() must correspond a call to WIN_ReleaseDC().

The sunken effect will disappear each time that Visual FoxPro repaints the window or the form which forces you to call the WIN_raised() function (and possibly also the WIN_hwnd(), WIN_GetWindowDC() and WIN_ReleaseDC() functions) each time the form is repainted (Paint() event).

Syntax

WIN_raised(nTop,nLeft,nBottom,nRight,nDC)  lSuccess

Parameters

nTop
y-coordinate of the upper-left corner of the rectangle.

nLeft
x-coordinate of the upper-left corner of the rectangle.

nBottom
y-coordinate of the lower-right corner of the rectangle.

nRight
x-coordinate of the lower-right corner of the rectangle.

nDC
device context.

Returns

lSuccess
.T. indicates that the function was successful; .F. if not.

Example

LOCAL hwnd && HWND handle
LOCAL nDC && Device Context

DO FORM "testDC"

hwnd = WIN_hwnd("Test DC")
nDC = WIN_GetWindowDC(hwnd)

WIN_raised(10,100,50,140,nDC)

WIN_ReleaseDC(hwnd,nDC)

WIN_raised() affects the whole window area, title included.

[image: image6.png]

See also

WIN_sunken()
WIN_ReleaseDC() : Releases a device context (DC), freeing it for use by other applications.
Special

A window device context permits painting anywhere in a window, because the origin of the device context is the upper-left corner of the window instead of the client area.

To each call to WIN_GetWindowDC() must correspond a WIN_ReleaseDC()to release the device context. Not releasing the window device context has serious effects on painting requested by applications.

Syntax

WIN_ReleaseDC(nHwnd,nDC)  lSuccess

Parameters

nHwnd
window handle (HWND).

nDC
device context.

Returns

lSuccess
.T. indicates that the function was successful; .F. if not.

WIN_right() : Window right border position in pixels.

Syntax

WIN_right(nWHandle)  nRight

Parameters

nWHandle
window handle (WHANDLE).

Returns

nRight
window right border position in pixels.

WIN_Select() : Brings the specified window to the active position on the screen.
Special

The output of Visual FoxPro is directed to the selected window.

Syntax

WIN_Select(szTitle)  lSuccess

Parameters

szTitle
the title of the window that must be selected.

Returns

lSuccess
.T. if the function is successful; .F. if not (no window has been found with that title).

Example

WIN_Select("Form1") && Select "Form1"
? TIME() && Display time
WIN_Select("Form2") && Select "Form2"
? TIME() && Display time
This example produces the following output with two forms that have been defined in VFP:

[image: image7.png]osoft Visual FoxPro

=10l x|
File Edt Yiew Format Tools Program Window Help Fastirite

ECTTE— | ~inix]
~ioixl
2 TIME()

2 TIME()
N —

WIN_SetActiveWindow() : Redirects Windows output to the window asociated with this handle (HWND).

Alias

SetActiveWindow()

See also

WIN_GetHInstance(), WIN_GetStyle(), WIN_GetExStyle(), WIN_GetHwndParent()

Remark

The WIN_SetActiveWindow() function activates a window, but not if the application is in the background. The window will be brought into the foreground (top of Z order) if its application is in the foreground when the system activates the window.

If the window identified by the nHwnd parameter was created by the calling thread, the active window status of the calling thread is set to nHwnd. Otherwise, the active window status of the calling thread is set to NULL.

By using the AttachThreadInput() Win32 API function (not available in FOCUS.FLL), a thread can attach its input processing to another thread. This allows a thread to call WIN_SetActiveWindow() to activate a window attached to another thread's message queue.

Syntax

WIN_SetActiveWindow(nHwnd)  nHwnd

Parameters

nHwnd
window handle (HWND).

Returns

nHwnd
if the function succeeds, the return value is the handle to the window that was previously active. If the function fails, the return value is 0.

See also

WIN_SetFocusS(), WIN_SetFocus(), WIN_BringWindowToTop(), WIN_SetForegroundWindow()

WIN_SetFocus() : Sets the keyboard focus to the specified window.
Special

All subsequent keyboard input is directed to this window. The window, if any, that previously had the keyboard focus loses it.

Syntax

WIN_SetFocus(nHwnd)  nHwnd

Parameters

nHwnd
handle of window to receive focus.

Returns

nHwnd
If the function succeeds, the return value is the handle of the window that previously had the keyboard focus. If there is no such window or if the nHwnd parameter is invalid, the return value is 0.

See also

WIN_SetFocusS(), WIN_SetFocus(), WIN_BringWindowToTop(), WIN_SetForegroundWindow()

WIN_SetFocusS() : Shows a window and bring it on top.
Syntax

WIN_SetFocusS(szTitle)  nHwnd

Parameters

szTitle
caption of the form to set focus to.

Returns

nHwnd
window handle (HWND).

Example

DO FORM "frmTopLevel" && This form should be a top-level form
 && If the caption of this form is "TestFocus"
WIN_SetFocusS("TestFocus") && This gives the focus to the form

See also

WIN_SetFocus(), WIN_SetActiveWindow(), WIN_BringWindowToTop(), WIN_SetForegroundWindow()

WIN_SetForegroundWindow() : Puts the thread that created the specified window into the foreground and activates the window.

Remark

The WIN_SetForegroundWindow() function puts the thread that created the specified window into the foreground and activates the window. Keyboard input is directed to the window, and various visual cues are changed for the user. The system assigns a slightly higher priority to the thread that created the foreground window than it does to other threads.

The foreground window is the window at the top of the Z order. It is the window that the user is working with. In a preemptive multitasking environment, you should generally let the user control which window is the foreground window.

Windows 98, Windows 2000: The system restricts which processes can set the foreground window. A process can set the foreground window only if one of the following conditions is true:

· The process is the foreground process.

· The process was started by the foreground process.

· The process received the last input event.

· There is no foreground process.

· The foreground process is being debugged.

· The foreground lock time-out has expired.

· Windows 2000: No menus are active.

With this change, an application cannot force a window to the foreground while the user is working with another window. Instead, WIN_SetForegroundWindow() will activate the window and call the FlashWindowEx() Win32 API function to notify the user.

Alias

SetForegroundWindow()
Syntax

WIN_SetForegroundWindow(nHwnd)  lSuccess

Parameters

nHwnd
window handle (HWND).

Returns

lSuccess
.T. if the window was brought to the foreground. If the window was not brought to the foreground, the return value is .F..

See also

WIN_SetFocus(), WIN_SetFocusS(), WIN_SetActiveWindow(), WIN_BringWindowToTop(), WIN_GetForegroundWindow()

WIN_setPort() : Changes the user output window to be the specified window.

Caution

WIN_setPort() will cause an API exception if you specify an invalid WHANDLE.

Syntax

WIN_setPort(nWHandle)  nWHandleOld

Parameters

nWHandle
FoxPro window handle (WHANDLE).

Returns

nWHandleOld
FoxPro window handle of the previous user output window (WHANDLE).

Example

WIN_setPort(29431904) && This is Form1
? "WHANDLE is",WIN_getPort() && Display the value of WHANDLE in Form1

WIN_setPort(14311928) && This is Form2
? "WHANDLE is",WIN_getPort() && Display the value of WHANDLE in Form2

&& The switch will appear as two distinct elements ... first
&& words will appear on Form2, then the switch will take place,
&& then the rest will appear on Form1
? "Switching port",WIN_setPort(29431904),"at",TIME()

[image: image8.png]Microsoft Visual FoxPro -[o) x|
Bl Ed Uow Famat Dook Progam Window e Esstiie

L rormt ol | =loix|

WHANDLE is 20431804 14311928 at 09:35:02 WHANDLE is 14311828
Switching port

—oixl
WIN_setPort (29431304) |
? "VHANDLE is",WIN_getPorc()

WIN_setPort (14311928)
2 "UHANDLE is",VIN_getPort ()
2 "Suitching port”,VIN_setPort (29431904) , "at", TIHE ()

WIN_sunken() : Draws a sunken edge of rectangle.

Special

WIN_sunken() performs an internal call to the DrawEdge() Win32 API service. It does that by obtaining a device context to the appropriate window (WIN_GetWindowDC()). To obtain a device context, you first need to obtain the HWND window handle thanks to WIN_hwnd(). Please remember that to each call to WIN_GetWindowDC() must correspond a call to WIN_ReleaseDC().

The sunken effect will disappear each time that Visual FoxPro repaints the window or the form which forces you to call the WIN_sunken() function (and possibly also the WIN_hwnd(), WIN_GetWindowDC() and WIN_ReleaseDC() functions) each time the form is repainted (Paint() event).

Syntax

WIN_sunken(nTop,nLeft,nBottom,nRight,nDC)  lSuccess

Parameters

nTop
y-coordinate of the upper-left corner of the rectangle.

nLeft
x-coordinate of the upper-left corner of the rectangle.

nBottom
y-coordinate of the lower-right corner of the rectangle.

nRight
x-coordinate of the lower-right corner of the rectangle.

nDC
device context.

Returns

lSuccess
.T. indicates that the function was successful; .F. if not.

Example

LOCAL hwnd && HWND handle
LOCAL nDC && Device Context

DO FORM "testDC"

hwnd = WIN_hwnd("Test DC")
nDC = WIN_GetWindowDC(hwnd)

WIN_sunken(10,100,50,140,nDC)

WIN_ReleaseDC(hwnd,nDC)

WIN_sunken() affects the whole window area, title included.

[image: image9.png]

See also

WIN_raised()
WIN_top() : Window top border position in pixels.

Syntax

WIN_top(nWHandle|szTitle)  nTop

Parameters

nWHandle
window handle (WHANDLE).

or…

szTitle
title of the window.

Returns

nTop
window top border position in pixels.

WIN_width() : Window width in pixels.

Syntax

WIN_width(nWHandle)  nWidth

Parameters

nWHandle
window handle (WHANDLE).

or…

szTitle
title of the window.

Returns

nWidth
window width in pixels.

WIN_WHandleToHwnd() : Returns the Windows HWND of the specified WHANDLE.

Syntax

WIN_WandleToHwnd(nWHandle)  nHwnd

Parameters

nWHandle
window handle (WHANDLE).

Returns

nHwnd
window handle(HWND).

_969731861

_969731863

