
Chapter 5: Combos and Lists 127

Chapter 5
Combos and Lists

"Why can't somebody give us a list of things that everybody thinks and nobody says, and
another list of things that everybody says and nobody thinks."

("The Professor at the Breakfast-Table" by Oliver Wendell Holmes, Sr.)

Combos and lists are two very powerful controls that allow the user to select from a
predetermined set of values. Used properly, they provide a valuable means of ensuring
data validity. Used improperly, they can be your worst nightmare. If you use a combo box
to present the user with thousands of items, you are asking for trouble! In this chapter,
we present some handy combo and lists classes that can be used to provide a polished,
professional interface while significantly reducing your development time. All the
classes presented in this chapter can be found in the CH05 class library.

Combo and list box basics
One look at the properties and methods of combo and list boxes, and you can see they function
internally in much the same way. Although a drop-down combo allows you to add items to its
RowSource, you can't do this with a drop-down or scrolling list – or rather not with native base
class controls. With no less than ten possible RowSourceTypes and two different ways of
handling their internal lists (ListItemID and ListIndex), these classes provide the developer with
almost too much flexibility. Of the ten RowSourceTypes, 0-None, 1-Value, 2-Alias, 3-SQL
Statement, 5-Array and 6-Fields are the most useful. This chapter contains examples using
these six RowSourceTypes.

The remaining four, 4-Query (.QPR), 7-Files, 8-Structure and 9-Popup are not covered
because they are either very specific in their nature (7-Files and 8-Structure) or are included to
provide backward compatibility (4-Query and 9-Popup) and do not fit in the context of a
Visual FoxPro application.

List and ListItem collections
These two collections allow you to access the items in the control's internal list without having
to know anything about its specific RowSource or RowSourceType. Because of this, these
collections and their associated properties and methods can be used to write some very generic
code. The List collection references the items contained in the list in the same order in which
they are displayed. The ListItem collection references these same items by their ItemID's. The
ItemID is a unique number, analogous to a primary key that is assigned to items when they are
added to the list. Initially, the Index and the ItemID of a specific item in the list are identical.
But as items are sorted, removed and added, these numbers are not necessarily the same
anymore.

128 1001 Things You Always Wanted to Know About Visual FoxPro

Table 5.1 Properties and methods associated with the List collection

Property or
method

What does it do?

List Contains a character string used to access the items in the list by index. Not
available at design time. Read only at run time.

ListIndex Contains the index of the selected item in the list or 0 if nothing is selected
NewIndex Contains the index of the item most recently added to the list. It is very useful

when adding items to a sorted list. Not available at design time. Read only at
run time.

TopIndex Contains the index of the item that appears at the top of the list. Not available
at design time. Read only at run time.

AddItem Adds an item to a list with RowSourceType 0-none or 1-value
IndexToItemID Returns the ItemID for an item in the list when you know its index
RemoveItem Removes an item from a list with RowSourceType 0-none or 1-value

Table 5.2 Properties and methods associated with the ListItem collection

Property or
method

What does it do?

ListItem Contains a character string used to access the items in the list by ItemID. Not
available at design time. Read only at run time.

ListItemID Contains the ItemID of the selected item in the list or -1 if nothing is selected
NewItemID Contains the ItemID of the item most recently added to the list. It is very

useful when adding items to a sorted list. Not available at design time. Read
only at run time.

TopItemID Contains the ItemID of the item that appears at the top of the list. Not
available at design time. Read only at run time.

AddListItem Adds an item to a list with RowSourceType 0-none or 1-value
IItemIDToIndex Returns the Index for an item in the list when you know its itemID
RemoveListItem Removes an item from a list with RowSourceType 0-none or 1-value

Gotcha! AddItem
The online help states that the syntax for this command is Control.AddItem(cItem [,

nIndex] [, nColumn]) . It goes on to say that when you specify the optional nIndex and
nColumn parameters, the new item is added to that row and column in the control. If you
specify a row that already exists, the new item is inserted at that row and the remaining items
are moved down a row. Sounds good! Unfortunately, it doesn't work quite like that.

The AddItem method really adds an entire row to the list. If the list has multiple columns
and you use this syntax to add items to each column, the result is not what you would expect.
When using the AddItem method to populate a combo or list, add the new item to the first
column of each row using the syntax Control.AddItem('MyNewValue'). Assign values to
the remaining columns in that row using the syntax Control.List[Control.NewIndex,

nColumn] = 'MyOtherNewValue'. The AddListItem method, however, does work as
advertised. This gotcha! is clearly illustrated in the form ListAndListItem, included with the
sample code for this chapter.

Chapter 5: Combos and Lists 129

When do the events fire?
The answer to that, as usual, is "it depends." The events fire a little differently depending on the
style of the combo box. The order in which they fire also depends on whether the user is
navigating and selecting items with the mouse or with the keyboard. It is a gross understatement
to say understanding the event model is important when one is programming in an object-
oriented environment. This is absolutely critical when creating reusable classes, especially
complex classes like combo and list boxes.

As expected, the first events that fire when the control gets focus are When and GotFocus.
This is true for combo boxes of both styles as well as list boxes. And these events occur in this
order whether you tab into the control or click on it with the mouse. Once small peculiarity
about the drop-down combo is that the next event to fire is Combo.Text1.GotFocus! Text1 is
not accessible to the developer. Visual FoxPro responds to any attempt to access it in code with
"Unknown member: TEXT1." We assume that text1 is a protected member of Visual FoxPro's
base class combo when it's style is set to 0 – DropDown Combo.

The following list contains the events that you will most often be concerned with when
dealing with combo and list boxes. It is by no means a comprehensive list, but all the
significant events are there. For example, the MouseDown and MouseUp events fire before the
object's Click event. For the sake of simplicity and clarity, the mouse events are omitted.

130 1001 Things You Always Wanted to Know About Visual FoxPro

Table 5.3 Combo and list box event sequence

Action DropDown
Combo

DropDown List ListBox

Scroll through list using the down
arrow (without dropping the
combo's list first)

Not applicable KeyPress(24, 0)
InteractiveChange
Click
Valid
When

KeyPress(24, 0)
InteractiveChange
Click
When

Use the mouse to drop the list DropDown DropDown Not Applicable
Use ALT+DNARROW to drop the
list

KeyPress(160, 4)
DropDown

KeyPress(160, 4
)
DropDown

Not Applicable

Scroll through dropped-down list
using the down arrow

KeyPress(24, 0)
InteractiveChange

KeyPress(24, 0)
InteractiveChange

KeyPress(24, 0)
InteractiveChange
Click
When

Select an item in the list using the
mouse

InteractiveChange
Click
Valid
When

InteractiveChange
Click
Valid
When

InteractiveChange
Click
When

Select an item in the list by
pressing the <ENTER> key

KeyPress(13, 0)
Click
Valid

KeyPress(13, 0)
Click
Valid

KeyPress(13, 0)
DblClick
Valid

Exit the control by clicking
elsewhere with the mouse

Valid
LostFocus
Text1.LostFocus

LostFocus LostFocus

Exit the control using the <TAB>
key

KeyPress(9, 0)
Valid
LostFocus
Text1.LostFocus

KeyPress(9, 0)
LostFocus

KeyPress(9, 0)
LostFocus

It is interesting to note that the Valid event does not fire when the control loses focus for
either the DropDown List or the ListBox. One consequence of this behavior is that any code
called from the Valid method will not get executed when the user merely tabs through a
DropDown List or a ListBox. In our opinion, this is a good thing. It means that we can place
code that updates underlying data sources in methods called from the Valid method of these
controls and not worry about dirtying the buffers if the user hasn't changed anything.

It is also worth noting that for ComboBoxes, the Valid event fires whenever the user
selects an item from the list. (However, if the user selects an item in the list by clicking on it
with the mouse, the When event also fires.) Conversely for ListBoxes, the Valid event only fires
when the user selects an item by pressing the ENTER key or by double clicking on it. It is
interesting to note that selecting an item with the ENTER key also fires the dblClick event.

Another anomaly worth noting is that the Click event of the ListBox fires inconsistently
depending on which key is used to navigate the list! When the user presses the up arrow and
down arrow keys, the Click event fires. When the page up and page down keys are used, it
doesn't.

Chapter 5: Combos and Lists 131

How do I bind my combo and list boxes?
Obviously, you bind your combo and list boxes by setting the ControlSource property to the
name of a field in a table, cursor, or view or to a form property. One gotcha! to be aware of is
that you can only bind these controls to character, numeric, or null data sources. If you try to
bind a combo or list box to a Date or DateTime field, Visual FoxPro will complain and display
the following error at run time:

Error with <ComboName>-Value: Data Type Mismatch.
 Unbinding object <ComboName>

If you must bind a combo or list box to a Date or DateTime field, you will have to resort to
a little trickery. In this case you cannot use RowSourceTypes of 2-Alias or 6-Fields. You can,
for example, set the RowSourceType to 3-SQL Statement and use a SQL statement similar to
this as the RowSource:

SELECT DTOC(DateField) AS DisplayDate, yada, nada, blah FROM MyTable ;
 ORDER BY MyTable.DateField INTO CURSOR MyCursor

Leave the ControlSource blank and add this code to its Valid method to update the date
field in the underlying table:

REPLACE DateField WITH CTOD(This.Value) IN MyTable

You will also need to write some code to manually update the control's Value from its
ControlSource to mimic the behavior of a bound control when you Refresh it. This code in the
combo or list box's Refresh method does the trick:

This.Value = DTOC(MyTable.DateField)

Another gotcha! that may bite you occurs when the ControlSource of your combo box
refers to a numeric value that contains negative numbers. This appears to be a problem that
only occurs when the RowSourceType of the control is 3-SQL Statement and may actually be a
bug in Visual FoxPro. The result is that nothing at all is displayed in the text portion of the
control for any negative values. However, even though the control's DisplayValue is blank, its
Value is correct. The easy workaround is to use a RowSourceType, other than 3-SQL
Statement, when the control is bound to a data source that can contain negative values. It's not
as if there are a lack of alternatives.

So what are BoundTo and BoundColumn used for?
These properties determine how the control gets its value. The value of a combo or list box is
taken from the column of its internal list that is specified by its BoundColumn. A combo box's
DisplayValue, the value that is displayed in the text portion of the control, always comes from
column one! Its value, on the other hand, can be taken from any column of its internal list. This
means you can display meaningful text, such as the description from a lookup table, at the same

132 1001 Things You Always Wanted to Know About Visual FoxPro

time the control gets its value from the associated key. You do not even have to display this
associated key in the list to have access to it.

For example, suppose the user must assign a particular contact type to each contact when it
is entered. The appropriate contact type can be selected from a DropDown List with its
RowSourceType set to 6-Fields, its RowSource set to “ContactType.CT_Type, CT_Key ” where
CT_Type is the description and CT_Key is its associated key in the ContactType table. To set up
the control, first set the DropDown List's ColumnCount to 2 and its ColumnWidths to 150, 0.
Then set the BoundColumn to 2 to update the bound field in the Contacts table from the key
value instead of the description.

The setting of BoundTo specifies whether the value property of a combo or list box is
determined by its List or its ListIndex property. The setting of BoundTo only matters when the
control is bound to a numeric data source. If the ControlSource of the combo or list box refers
to numeric data, setting the control's BoundTo property to true tells Visual FoxPro to update the
ControlSource using the data from the bound column of the control's internal list. Leaving
BoundTo set to false here causes the ControlSource to be updated with the control's ListIndex,
that is, the row number of the currently selected item.

The easiest way to illustrate how this works is by using a little code that simulates how the
setting of the BoundTo property affects the way in which the control’s Value property is
updated:

WITH This
 IF .BoundTo
 .Value = VAL(.List[.ListIndex, .BoundColumn])
 ELSE
 .Value = .ListIndex
 ENDIF
ENDIF

How do I refer to the items in my combo and list boxes?
As discussed earlier, you can use either the List or ListItem collection to refer to the items in
your combo or list box. The big advantage to using these collections to access the items in the
control's RowSource is that it is not necessary to know anything about that RowSource. You can
use either ListIndex or ListItemID property to refer to the currently selected row. If nothing in
the list is selected, the control's ListIndex property is 0 and its ListItemID property is –1. So in
the Valid method of the combo box or the LostFocus method of the list box, you can check to
see if the user selected something like this:

WITH This
 IF .ListIndex = 0 && You can also use .ListItemID = -1 here
 MESSAGEBOX('You must select an item from the list', 16, ;
 'Please make a selection')
 IF LOWER(.BaseClass) = 'combobox'
 RETURN 0 && If this code is in the valid of a combo box
 ELSE
 NODEFAULT && If this code is in the LostFocus of a ListBox
 ENDIF
 ENDIF
ENDWITH

Chapter 5: Combos and Lists 133

There are also several ways to refer to the value of a combo or list box. The simplest of
them all is Control.Value . When nothing is selected, the control's value is empty. This is
something to be considered if the RowSource for the control permits empty values. It means
you cannot determine whether the user has made a selection merely by checking for an empty
value property.

Because the List and ListItem collections are arrays, you can address them as you would
any other array. (However, although you can address these collections as arrays, you cannot
actually manipulate them directly using the native Visual FoxPro array functions such as
ASCAN(), ADEL() or ALEN().)

To access the selected item in the control's internal list when its ListIndex is greater than
zero you can use:

Control.List[Control.ListIndex, Control.BoundColumn]

while this does exactly the same thing when its ListItemID is not –1:

Control.ListItem[Control.ListItemID, Control.BoundColumn]

You can also access the items in the other columns of the selected row of the control by
referring to Control.List[Control.ListIndex, 1], Control.List[Control.ListIndex, 2], and so on all
the way up to and including Control.List[Control.ListIndex, Control.ColumnCount].

Remember that, when using the control's List and ListItem collections in this manner, all
the items in the control's internal list are stored as character strings. If the control's RowSource
contains numeric, date, or datetime values, these items will always be represented internally as
character strings. This means that if you want to perform some "behind the scenes" updates
using the items in the currently selected row of the list, you will need to convert these items to
the appropriate data type first. Otherwise, Visual FoxPro will complain, giving you a data type
mismatch error.

List boxes with MultiSelect set to true behave a little bit differently. Its ListIndex and
ListItemID properties point to the last row in the control that was selected. To do something
with all of the control's selected items, it is necessary to loop through its internal list and check
the Selected property of each item like so:

WITH Thisform.LstMultiSelect
 FOR lnCnt = 1 TO .ListCount
 IF .Selected[lnCnt]
 *** The item is selected, take the appropriate action
 ELSE
 *** It isn't selected, do something else if necessary
 ENDIF
 ENDFOR
ENDWITH

What is the difference between DisplayValue and Value?
Combo boxes are particularly powerful controls because they enable you to display descriptive
text from a lookup table while binding the control to its associated key value. This is possible

134 1001 Things You Always Wanted to Know About Visual FoxPro

only because the combo box has these two properties. Understanding the role each of them
plays can be confusing, to say the least.

DisplayValue is the descriptive text that is displayed in the textbox portion of the control.
This is what you see when the combo box is "closed". The combo's DisplayValue always
comes from the first column of its RowSource. On the other hand, the combo's Value comes
from whichever column is specified as its BoundColumn. If the BoundColumn of the combo
box is column one, its Value and DisplayValue are the same when the user picks an item from
the list. When the control's BoundColumn is not column one, these two properties are not the
same. See Table 5.4 below for the differences between these two properties in different
situations.

Table 5.4 Combo and list box event sequence

Bound
Column

Action DisplayValue Value

1 Select an item in the list Column 1 of selected
row

Column 1 of selected row

1 Type item not in list Typed text Empty
N # 1 Select an item in the list Column 1 of selected

row
Column n of selected row

N # 1 Type item not in list Typed text Empty

What’s the difference between RowSourceTypes "alias" and
"fields"?
The basic difference is that RowSourceType "2-Alias" allows the RowSource property to
contain just an Alias name. The control fills the number of columns it has available (defined by
the ColumnCount property) by reading the data from the fields in the specified alias in the
order in which they are defined. You may, however, specify a list of fields that are to be used
even when the RowSourceType is set to "2-Alias." In this case there is no practical difference
between the Fields and the Alias settings.

When using RowSourceType "6-Fields" the RowSource property must be filled in using
the following format:

<Alias Name>.<first field>,<second field>,…….<last field>

When using either RowSourceType "2-Alias" or "6-Fields," you can still access any of the
fields in the underlying data source - even if they are not specifically included in the
RowSource. It is also worth remembering that whenever a selection is made, the record pointer
in the underlying data source is automatically moved to the appropriate record. However if no
valid selection is made, the record pointer is left at the last record in the data source - not, as
you might expect, at EOF() .

Chapter 5: Combos and Lists 135

By the way, when using RowSourceType of "3-SQL", always select
INTO a destination cursor when specifying the RowSource. Failing to
specify a target cursor will result in a browse window being displayed!

The behavior of the cursor is the same as when using a table or view directly - all
fields in the cursor are available, and selecting an item in the list moves the record
pointer in the cursor.

How do I make my combo and list boxes point to a
particular item?
When these are bound controls, they automatically display the selection specified by their
ControlSources so you don’t need to do anything at all. But what if the control isn't bound or
you want to display some default value when adding a new record? As usual, there is more than
one way to skin a fox. Perhaps the easiest way to accomplish this is:

Thisform.MyList.ListIndex = 1

This statement, either in the form's Init method or immediately after adding a new record,
selects the first item in the list. You can also initialize a combo or list box by directly setting its
value. However, when initializing combos and lists that are bound to buffered data, the act of
doing so will dirty the buffers. This means that if you have a routine that checks for changes to
the current record using GETFLDSTATE(), the function will detect the "change" in the current
record even though the user hasn't touched a single key. To avoid undesirable side effects, such
as the user being prompted to save changes when he thinks he hasn't made any, use
SETFLDSTATE() to reset any affected fields after initializing the value of your bound combo or
list box.

One thing that will not initialize the value of a combo or list box is setting the selected
property of one of its list items to true in the Init method of a form. The statement:

Thisform.MyList.Selected[1]

in the form's Init method, does not select an item in a combo or list box. This same
statement in the form's Activate method will, however, achieve the desired result so we suspect
the failure of the statement when used in the form’s Init method might actually be a bug.

Quickfill combos (Example: CH05.VCX::cboQFill)
One example of quickfill methodology (and a more detailed explanation of just what "quickfill"
is) was presented in Chapter 4 in the incremental search TextBox. This methodology is even
easier to implement for the ComboBox class. Quickfill combo boxes give your forms a
polished and professional look. They also make the task of selecting an item in the list much
easier for the end user. Just type the letter 'S' in the text portion of the combo, and 'Samuel' is
displayed. Next type the letter 'm' and the DisplayValue changes to 'Smith.' Very cool stuff!

Our quickfill combo can be used no matter what the RowSource of the ComboBox happens
to be because it operates on the control's internal list. For this reason, it should only be used for
controls that display, at most, a few dozen items. If you require this functionality, but need to

136 1001 Things You Always Wanted to Know About Visual FoxPro

display hundreds of items, we refer you to Tamar Granor's article on the subject in the
September 1998 issue of FoxPro Advisor.

The quickfill combo has one custom property called cOldExact. Because we are looking
for the first item that matches what has been typed in so far, we want to SET EXACT OFF. In the
control's GotFocus method, the original value of SET('EXACT') is saved so it can be restored
when the control loses focus. When SET('EXACT') = 'OFF', there is no need to use the
LEFT() function to compare what the user has typed so far to find the closest match in the list.
This improves the performance of the search.

Just as in the incremental search TextBox described earlier, the HandleKey method is
invoked from the control's InteractiveChange method after the keystrokes have already been
processed. In fact, there is no code at all in the ComboBox's KeyPress method. The
InteractiveChange method contains only the code necessary to determine if the key must be
handled:

IF This.SelStart > 0
 *** Handle printable character, backspace, and delete keys
 IF (LASTKEY() > 31 AND LASTKEY() < 128) OR (LASTKEY() = 7)
 This.HandleKey()
 ENDIF
ENDIF

Most of the work is accomplished in the HandleKey method. It iterates through the
combo's internal list to find a match for what the user has typed in so far:

LOCAL lcSofar, lnSelStart, lnSelLength, lnRow

WITH This
*** Handle backspace key
IF LASTKEY() = 127

.SelStart = .SelStart - 1
ENDIF

 *** Save the insertion point and extract what the user has typed so far
lnSelStart = .SelStart
lcSofar = LEFT(.DisplayValue, lnSelStart)

*** Find a match in the first column of the combo's internal list
FOR lnRow = 1 TO .ListCount

IF UPPER(.List[lnRow, 1]) = UPPER(lcSoFar)
.ListIndex = lnRow
EXIT

ENDIF
ENDFOR

*** Highlight the portion of the value after the insertion point
.SelStart = lnSelStart
lnSelLength = LEN(ALLTRIM(.DisplayValue)) - lnSelStart
IF lnSelLength > 0

.SelLength = lnSelLength
ENDIF

ENDWITH

Chapter 5: Combos and Lists 137

This is all that is required for a quickfill combo that works with any RowSourceType. Just
drop it on a form and set its RowSourceType, RowSource and ControlSource (if it is to be a
bound control). Nothing could be easier. The form Quickfill.scx, provided with the sample
code for this chapter, illustrates the use of this class with several different RowSourceTypes.

How do I add new items to my combo and list boxes?
(Example: CH05.VCX::cboAddNew and lstAddNew)

Figure 5.1 Add new items and edit existing items in combo and list boxes

Adding a new item to a ComboBox with style = 0-DropDown Combo is a pretty
straightforward process because the control's Valid event fires whenever a selection is made
from the list and again before it loses focus. When a user has typed something that is not in the
current list, the control’s DisplayValue property will hold the newly entered data but the Value
property will be empty. A little code in the Valid method of the control allows you to determine
whether the user selected an item in the list or typed a value not in the list. For example the
following code could be used:

IF NOT(EMPTY(This.DisplayValue)) AND EMPTY(This.Value)
 *** The user has typed in a value not in the list

However, this will not be reliable if the RowSource allows for empty values so a better
solution is to use either:

IF NOT(EMPTY(This.DisplayValue)) AND This.ListIndex = 0

OR

If NOT(EMPTY(This.DisplayValue)) AND This.ListItemID = -1

138 1001 Things You Always Wanted to Know About Visual FoxPro

You must then take action to add the new item to the control's RowSource. The code used
to do this will be instance specific, depending on how the control is populated. If the combo's
RowSourceType is "0-None" or "1-Value," use the AddItem or AddListItem method to add the
new value to the list. If the RowSourceType is "2-Alias," "3-SQL Statement" or "6-Fields," the
new item must be added to the underlying table and the combo or list box requeried to refresh
its internal list. For RowSourceType "5-Array," add the item to the array and requery the
control.

Although it is simple enough to add a new item to a DropDown Combo, this simplistic
solution may not be adequate. If the only requirement is to add a new description along with its
primary key to a lookup table, the methodology discussed above is up to the task. Much of the
time, however, a lookup table contains more than two columns. (For example, the lookup table
provided with the sample code for this chapter has a column for a user-defined code.)
Additional fields may also need to be populated when a new item is added to the combo box.

We must also consider the fact that there is no quick and easy way to add new items to a
ListBox. Considering how similar the ComboBox and ListBox classes are, we think it is
appropriate that they share a common interface for adding new items. If the end-users add new
items in the same manner, they have one thing to remember instead of two. The cboAddNew
and lstAddNew classes provide this functionality through a shortcut menu invoked by right
clicking the control. This shortcut menu also provides edit functionality. More often than not, if
an item in a combo or list is misspelled, the user will realize it when he is selecting an item
from the list. It is much more convenient to fix the mistake at this point, than having to use a
separate maintenance form.

We created cboAddNew as a subclass of cboQuickfill to achieve a more consistent user
interface. All of our custom combo box classes inherit from our quickfill combo class, so all
behave in a similar manner. This type of consistency helps make an application feel intuitive to
end users.

The "Add New" combo and list box classes have three additional properties. The
cForm2Call property contains the name of the maintenance form to instantiate when the user
wants to add or edit an item. The settings of the lAllowNew and lAllowEdit properties
determine whether new items can be added or existing items edited. They are, by default, set to
true because the object of this exercise is to allow new items to be added and current items to
be edited. However, when designing the class we did our best to build in maximum flexibility,
so these properties can be set to override this behavior at the instance level.

The code that does most of the work resides in the custom ShowMenu method and is called
from the RightClick method of both. In this example, the combo's BoundColumn contains the
primary key associated with the underlying data. It is assumed that the maintenance form will
return the primary key after it adds a new item (If you need different functionality, code it
accordingly.):

LOCAL lnRetVal, loparameters
PRIVATE pnMenuChoice
WITH This
 *** Don't display the menu if we can't add or edit
 IF .lAllowNew OR .lAllowEdit
 *** Display the shortcut menu
 pnMenuChoice = 0
 DO mnuCombo.mpr

Chapter 5: Combos and Lists 139

 IF pnMenuChoice > 0
 *** Create the parameter object and populate it
 loParameters = CREATEOBJECT('Line')
 loParameters.AddProperty('cAction', IIF(pnMenuChoice = 1, 'ADD', 'EDIT'
))
 loParameters.AddProperty('uValue', .Value)
 *** Add any optional parameters if needed
 .AddOptionalParameters(@loParameters)
 *** Now call the maintenance form
 DO FORM (.cForm2Call) WITH loParameters TO lnRetVal
 lnValue = IIF(lnRetVal = 0, This.Value, lnRetVal)
 .Requery()
 .Value = lnValue
 ENDIF
 ENDIF
ENDWITH

The specifics of the maintenance form obviously depend upon the table being updated.
However, any maintenance form called from the combo or list box's ShowMenu method will
need to accept the parameter object passed to its Init method and use the passed information to
do its job. It will also need to return to the required primary key after it has successfully added
a new entry. While the specific fields to be updated by this process will vary depending on the
table being updated, the process itself is fairly generic. All the forms used to add and edit
entries are based on the frmAddOrEdit form class provided with the sample code for this
chapter. This class clearly illustrates how the process works, and you can check out
Itineraries.scx to see how this maintenance form is called by the lstAddNew and cboAddNew
objects.

How do I filter the items displayed in a second combo or
list box based on the selection made in the first? (Example:
FilterList.SCX)
This is a lot easier than you may think. FilterList.scx, in the sample code for this chapter, not
only filters a ListBox depending on what is selected in a ComboBox, it also filters the
ComboBox depending on what is selected in the OptionGroup.

140 1001 Things You Always Wanted to Know About Visual FoxPro

Figure 5.2 Dynamically filter the contents of a combo or list box

Our preferred RowSourceType for filtered controls is "3-SQL Statement" because it makes
setting up the dependency easy. We just specify WHERE Somefield = (

Thisform.MasterControl.Value) in the WHERE clause of the dependent control's
RowSource. Then, each time the dependent control is requeried, it gets populated with the
appropriate values.

There are two little snags here. First, if we use the expression ThisForm in the dependent
control's RowSource directly in the property sheet, Visual FoxPro kicks up a fuss at run time. It
tells us that ThisForm can only be used within a method. Secondly, although we could set the
dependent control's RowSource in its Init method, this may also result in some rather
unpleasant run-time surprises. If the dependent control is instantiated before the master control,
Visual FoxPro will complain that ThisForm.MasterControl is not an object.

The trick to making this work properly is to put the code initializing the RowSources of the
dependent controls in the right place. Since the form's controls are instantiated before the form's
Init fires, a custom method called from the form's Init method is a good place to put this sort of
code. This is exactly what we have done in our sample form's SetForm method:

LOCAL lcRowSource

*** Select only the items that have a Cat_No equal to the option selected
*** in the option group

All the controls on the sample form are bound to form properties. The OptionGroup is
bound to Thisform.nType. Because this property is initialized to 1 in the property sheet, all the
controls contain a value when the form displays for the first time:

lcRowSource = 'SELECT Cat_Desc, Cat_Key, UPPER(Categories.Cat_Desc) AS '
lcRowSource = lcRowSource + 'UpperDesc FROM Categories '
lcRowSOurce = lcRowSOurce + 'WHERE Categories.Cat_No = (Thisform.nType) '
lcRowSource = lcRowSource + 'INTO CURSOR csrCategories ORDER BY UpperDesc'

Chapter 5: Combos and Lists 141

*** Now set up the combo's properties
WITH Thisform.cboCategories
 .RowSourceType = 3
 .RowSource = lcRowSource
 *** Don't forget to repopulate the control's internal list
 .Requery()
 *** Inialize it to display the first item
 .ListIndex = 1
ENDWITH

Now that we have initialized the categories combo box, we can set up the SQL statement to
use as the RowSource for the detail list box. We want to select only the items that match the
Item selected in the combo box:

lcRowSource = 'SELECT Det_Desc, Det_Key, UPPER(Details.Det_Desc) AS '
lcRowSource = lcRowSOurce + 'UpperDesc FROM Details '
lcRowSource = lcRowSource + 'WHERE Details.De_Cat_Key = (Thisform.nCategory)
'
lcRowSOurce = lcRowSOurce + 'INTO CURSOR csrDetails ORDER BY UpperDesc'

*** Now set up the list box's properties
WITH Thisform.lstDetails
 .RowSourceType = 3
 .RowSource = lcRowSource
 *** Don't forget to repopulate the control's internal list
 .Requery()
 *** Initialize it to display the first item
 .ListIndex = 1
ENDWITH

This code, in the Valid method of the OptionGroup, updates the contents of the ComboBox
when a new selection is made. It also updates the contents of the ListBox so all three controls
stay in synch:

WITH Thisform
 .cboCategories.Requery()
 .cboCategories.ListIndex = 1
 .lstDetails.Requery()
 .lstDetails.ListIndex = 1
ENDWITH

Finally, this code in the ComboBox's Valid method updates the contents of the ListBox
each time a selection is made from the combo. This code will work just as well if placed in the
ComboBox's InteractiveChange method. The choice of method, in this case, is a matter of
personal preference:

WITH Thisform
 .lstDetails.Requery()
 .lstDetails.ListIndex = 1
ENDWITH

142 1001 Things You Always Wanted to Know About Visual FoxPro

A word about lookup tables
It is inevitable that a discussion about combo and list boxes should turn to the subject of lookup
tables. After all, combos and lists are most commonly used to allow the user to select among a
set of values kept in such a table. Generally speaking, the descriptive text from the lookup table
is displayed in a control that is bound to the foreign key value in a data file. But what is the best
way to structure a lookup table? Should there be one, all-purpose lookup table? Or should the
application use many specialized lookup tables? Once again, the answer is "It depends." You
need to pick the most appropriate solution for your particular application. Of course to make an
informed decision, it helps to know the advantages and disadvantages of each approach. So
here we go…

There are two major advantages to using a single, consolidated lookup table. The first is
that by using a single structure, you can create generic, reusable combo and list box lookup
classes that are capable of populating themselves. This minimizes the amount of code needed at
the instance level, and less code means less debugging. The second advantage to this approach
is that your application requires only one data entry form for maintaining the various lookups.
A two-page lookup maintenance form accomplishes this task quite nicely. The user can select
the lookup category from a list on the first page. The second page then displays the appropriate
items for the selected category. An edit button on page two can then be used to launch a modal
form for editing the current item. The big disadvantage to this approach is that all lookups share
a common structure. This means that if you have a lookup category requiring more information
for each item, you must either create a separate lookup table for that category or add extra
columns to your consolidated table that will seldom be used.

Using a separate table for each type of lookup in your application provides more flexibility
than the previous approach. Increased flexibility also brings increased overhead. It is more
difficult to create generic, reusable lookup classes. This solution also requires multiple lookup
table maintenance forms.

We use a combination of the two approaches. A single, all-purpose lookup table works for
simple items that are likely to be reused across applications. We use separate tables for
specialized lookups that are likely to have a unique structure. Our standard lookup table is
actually two tables: a lookup header table containing the lookup categories and an associated
lookup detail table that holds the items for each category.

Table 5.5 Structure of the Lookup Header table

Field Name Data Type Field Length Purpose
Lh_Key Integer Primary Key – uniquely identify record
Lh_Desc Character 30 Lookup Category Description
Lh_Default Integer Default Value (if any) to use from Lookup

Details Table

Chapter 5: Combos and Lists 143

Table 5.6 Data contained in the Lookup Header table

Lh_Key Lh_Desc Lh_Default
1 Contact Types 1
2 Telephone Types 5
3 Countries 10
4 Business Types 23
5 Relationships 63
6 Colors

Table 5.7 Structure of the Lookup Details table

Field Name Data Type Field Length Purpose
Ld_Lh_Key Integer Foreign key from Lookup Header Table
Ld_Key Integer Primary Key – uniquely identify record
Ld_Code Character 3 User defined code (if any) for item
Ld_Desc Character 30 Lookup detail item description

Table 5.8 Partial listing of data contained in the Lookup Details table

Ld_lh_key Ld_Key Ld_Code Ld_Desc
1 1 Client
1 2 Prospect
1 3 Competitor
1 4 Personal
2 5 Home
2 6 Business
2 7 Fax
2 8 Cellular
2 9 Pager
3 10 USA United States
3 11 UK United

Kingdom
3 12 CAN Canada
3 13 GER Germany

As you can see from the listings, it is quite easy to extract data from the detail table for any
category. Since each item in the detail table has its own unique key, there is no ambiguity even
if the same description is used in different "categories."

Generic lookup combos and lists (Example: CH05.VCX::cboLookUp
and lstLookUp)
Generic, reusable combo and list box lookup classes allow you to implement your all-purpose
lookup table with very little effort. Because of the way the lookup table is structured, it lends
itself very well to RowSourceType = "3-SQL Statement." All that's required is a couple custom
properties and a little code to initialize the control.

144 1001 Things You Always Wanted to Know About Visual FoxPro

The cCursorName property is used to specify the cursor that holds the result of the SQL
select. This is required in case there are multiple instances of the control on a single form. Each
instance requires its own cursor to hold the result of the SQL statement in its RowSource. If the
same name is used in every case, the cursor will be overwritten as each control instantiates.
You will end up with all controls referring to the version of the cursor created by the control
instantiated last.

Figure 5.3 Generic lookup combo and list box classes in action

The nHeaderKey property is used to limit the contents of the control's list to a single
category in the Lookup Header table. It contains the value of the primary key of the desired
category and is used to construct the WHERE clause for the control's RowSource.

The control's Setup method, invoked upon instantiation, populates its RowSource using the
properties specified above:

LOCAL lcRowSource

*** Make sure the developer set up the required properties
ASSERT !EMPTY(This.cCursorName) MESSAGE ;
 'cCursorName MUST contain the name of the result cursor for the SQL SELECT!'
ASSERT !EMPTY(This.nHeaderKey) MESSAGE ;
 'nHeaderKey MUST contain the PK of an item in LookupHeader.dbf!'

*** Set up the combo's RowSource
lcRowSource = 'SELECT ld_Desc, ld_Key FROM LookUpDetail WHERE '
lcRowSource = lcRowSource + 'LookUpDetail.ld_lh_key = (This.nHeaderKey) '
lcRowSource = lcRowSource + 'INTO CURSOR (This.cCursorName) '
lcRowSource = lcRowSource + 'ORDER BY ld_Desc'

*** Set up the combo's properties
WITH This
 .RowSourceType = 3

Chapter 5: Combos and Lists 145

 .RowSource = lcRowSource
 .ColumnWidths = ALLTRIM(STR(.Width)) + ',0'
 .Requery()
ENDWITH

Using the lookup combo is very easy. Just drop it on a form, set its ControlSource, and fill
in the cCursorName and nHeaderKey properties. Since it inherits from the cboAddNew class, it
is also possible to add new entries to the lookup table and edit existing items on the fly. Since
all instances of our generic lookup combo and list boxes populate their lists from the same
generic lookup table, we can even put the name of the lookup maintenance form in the class's
cForm2Call property. What could be easier? Lookups.scx, which is included with the sample
code for this chapter, illustrates just how easy it is.

So what if I want to bind my combo to a value that isn't in
the list? (Example: CH05.VCX::cboSpecial and CH05.VCX::cboNotInList)
The first question that leaps to mind here is "Then why are you using a combo box?" Combo
and list boxes are used to limit data entry to a set of predefined selections. Permitting the user
to enter an item that isn't in the list defeats the purpose of using a combo box in the first place.
Having said that, we realize there may be occasions where this sort of functionality is required.
For example, let's suppose a particular field in a table is usually populated from a set of
standard selections. However, occasionally none of the standard selections are suitable and the
end user needs to enter something that is not in the list. Clearly, if the non-standard items were
regularly added to the underlying lookup table, the table would grow quickly with seldom used
entries. In this instance, the field bound to the combo box must contain the description of the
item in the lookup table and not its key value. Obviously, if we allow the field to be bound to
items that are not in the list, we must store the information in this non-normalized manner. The
only place to "look up" such ad hoc items is in the bound field itself!

146 1001 Things You Always Wanted to Know About Visual FoxPro

Figure 5.4 Special combo class that binds to items not in the list

Since such a combo can only be used when the table to which it is bound is not
normalized, we are tempted to use a combo box with RowSourceType = 1-None and its Sorted
property set to true. This code, in the combo's Init method, populates it with the types that
currently exist in our "People" table:

LOCAL lnSelect
LnSelect = SELECT()
SELECT DISTINCT cType FROM People ORDER BY cType INTO CURSOR csrTypes
IF _TALLY > 0
 SELECT csrTypes
 SCAN
 This.AddItem(csrTypes.cType)
 ENDSCAN
ENDIF
SELECT (lnSelect)

Then in the combo's Valid method, we could check to see if the user typed a value not in
the list and add it:

WITH This
 IF !(UPPER(ALLTRIM(.DisplayValue)) == UPPER(ALLTRIM(.Value)))
 .AddItem (.DisplayValue)
 ENDIF
ENDWITH

While it's true this code works, there are a few fundamental problems. First, if the source
table has a large number of records, the initial query could cause significant delay when the
form is instantiated. Second, this will not solve the original problem. If new items are always
added to the list, the list will continue to grow, making it difficult for the user to select an entry.

Chapter 5: Combos and Lists 147

This illustration also does not allow the user to distinguish which items are the "standard"
selections in the list and which are merely ad hoc entries.

Our cboSpecial class, consisting of a text box, list box, and command button inside a
container, solves the problem. The text box is the bound control. The list box is left unbound
and its RowSource and RowSourceType are populated to display the standard selections. The
class contains code to provide the text box with "quick fill" functionality and to synchronize the
display in its contained controls.

The text box portion of the class uses this code in its KeyPress method to make the list
portion visible when the user presses ALT+DNARROW or F4. It also makes sure the list becomes
invisible when the TAB or ESC keys are pressed:

*** <ALT>+<DNARROW> OR <F4> were pressed
IF nKeyCode = 160 OR nKeyCode = -3
 This.Parent.DropList()
 NODEFAULT
ENDIF

*** <TAB> or <ESC> were pressed
IF nKeyCode = 9 OR nKeyCode = 27

This.Parent.lstSearch.Visible = .F.
ENDIF

The only other code in the text box resides in its InteractiveChange method and its only
purpose is to invoke the container's Search method:

*** If a valid character was entered, let the parent's search method handle it
IF This.SelStart > 0
 IF (LASTKEY() > 31 AND LASTKEY() < 128) OR (LASTKEY() = 7)
 This.Parent.Search()
 ENDIF
ENDIF

The container's Search method then does the required work:

LOCAL lcSofar, lnSelStart, lnSelLength, lnRow

WITH This
 WITH .txtqFill
 *** Handle backspace key
 IF LASTKEY() = 127
 .SelStart = .SelStart - 1
 ENDIF
 *** Get the value typed in so far
 lnSelStart = .SelStart
 lcSofar = LEFT(.Value, lnSelStart)
 ENDWITH
 *** Find a match in column #1 of the list portion of this control
 WITH .lstSearch
 *** Reset the list index in case we have type ion something that is not
 *** in the list
 .ListIndex = 0
 FOR lnRow = 1 TO .ListCount
 IF UPPER(.List[lnRow, 1]) = UPPER(lcSoFar)

148 1001 Things You Always Wanted to Know About Visual FoxPro

 .ListIndex = lnRow
 *** Synchronize the contents of the textbox with what is selected
 *** in the list
 This.txtQfill.Value = .Value
 EXIT
 ENDIF
 ENDFOR
 ENDWITH

 WITH .txtqFill
 *** Highlight the portion of the value after the insertion point
 .SelStart = lnSelStart
 lnSelLength = LEN(ALLTRIM(.Value)) - lnSelStart
 IF lnSelLength > 0
 .SelLength = lnSelLength
 ENDIF
 ENDWITH
ENDWITH

The control's list box portion contains code in its KeyPress and InteractiveChange
methods to update the text box's value with its value when the user selects from the list. This
code is required in both methods because pressing either the ENTER key or the SPACE BAR to
select a list item will cause its KeyPress event to fire but will not fire its InteractiveChange
event. Selecting an item with the mouse fires the InteractiveChange event but does not fire the
KeyPress, even though LASTKEY() returns the value 13 whether the mouse or the ENTER key is
used. This code, from the list box's InteractiveChange method, is similar but not identical to
the code in its KeyPress method:

IF LASTKEY() # 27
 This.Parent.TxtQFill.Value = This.Value

*** a mouse click gives a LASTKEY() value of 13 (just like pressing enter)
IF LASTKEY() = 13

 This.Visible = .F.
 This.Parent.txtQfill.SetFocus()

ENDIF
ENDIF

The only other code in the list box portion of the class resides in its GotFocus method.
This code simply invokes the container's RefreshList method to ensure the selected list box item
is synchronized with the text box's value when the list box is made visible:

LOCAL lnRow
WITH This.lstSearch
 .ListIndex = 0
 FOR lnRow = 1 to .Listcount
 IF UPPER(ALLTRIM(.List[lnRow])) = ;
 UPPER(ALLTRIM(This.txtQFill.Value))
 .ListIndex = lnRow
 EXIT

 ENDIF
 ENDFOR
ENDWITH

Chapter 5: Combos and Lists 149

One of the shortcomings of the container class is that is cannot easily be used in a grid. To
fulfill this requirement, we created the cboNotInList combo class. As you can see in Figure
5.4, when the list in the grid is dropped, the first item is highlighted when the DisplayValue is
not in the list. That is why we prefer to use the cboSpecial class when it does not need to be
placed in a grid. When DisplayValue is not in the list, notice no selection of the composite class
is highlighted.

The cboNotInList combo class uses the same trick that we used when constructing the
numeric textbox in Chapter 4. Although it may be a bound control, we unbind it behind the
scenes in its Init method and save its ControlSource to the custom cControlSource property:

IF DODEFAULT()
 WITH This
 .cControlSource = .ControlSource
 .ControlSource = ''
 ENDWITH
ENDIF

The combo's RefreshDisplayValue method is called from both its Refresh and GotFocus
methods to update its DisplayValue with the value of the field to which it is bound. It is
interesting to note that it is only necessary to invoke this method from the combo's GotFocus
when the combo is in a grid:

LOCAL lcControlSource
WITH This
 IF ! EMPTY(.cControlSource)
 lcControlSource = .cControlSource
 .DisplayValue = &lcControlSource
 ENDIF
ENDWITH

Finally, the combo's UpdateControlSource method is called from its Valid to (you guessed
it) update its control source from its DisplayValue:

LOCAL lcAlias, lcControlSource
WITH This
 IF ! EMPTY(.cControlSource)
 lcAlias = JUSTSTEM(.cControlSource)
 IF UPPER(ALLTRIM(lcAlias)) = 'THISFORM'
 lcControlSource = .cControlSource
 STORE .DisplayValue TO &lcControlSource
 ELSE
 REPLACE (.cControlSource) WITH .DisplayValue IN (lcAlias)
 ENDIF
 ENDIF
ENDWITH

See NotInList.scx in the sample code for this chapter to see both these classes in action.

150 1001 Things You Always Wanted to Know About Visual FoxPro

How do I disable individual items in a combo or list?
Our first reaction is "Why are you displaying items in a combo box that the user is not allowed
to select?" It certainly seems to be at odds with the basic reasoning for using a combo box in
the first place: to allow the user to choose from a pre-defined list of allowable entries. If the
user is not allowed to select an item, what the heck is it doing in the combo or list box to begin
with? Again we realize there may be valid scenarios that require such functionality. For
example, the CPT codes used in medical applications to define various transactions and the
ICD-9 code used to define standard diagnoses may change over time. One cannot merely delete
codes that are no longer used because historical detail may be linked to these obsolete codes.
When displaying this historical data, it would be useful to display the inactive code as disabled.
This way, a combo box bound to the ICD-9 code would not "lose" its display value because the
code could not be found in the control's list. Nor would the user be permitted to select it for a
current entry since it would be disabled.

Figure 5.5 Disabled items in a combo box

To disable an item in a combo or list box, just add a back slash to the beginning of the
string that defines the content of the first column in the control's RowSource. However, this
only works for RowSourceTypes "0-None", "1-Value", and "5-Array". The form
DisabledItems.scx, provided with the sample code for this chapter, provides an example for a
combo with RowSourceType "5-Array". This code in the combo box's Init method populates
the array and disables items only if the date in the underlying table indicates this item is
inactive. This type of logic can be also used to disable specific items based on the value of a
logical field that determines if the item is still active:

SELECT IIF(!EMPTY(PmtMethods.pm_dStop), '\'+pm_Desc, pm_Desc) AS pm_Desc, ;
 pm_Key FROM PmtMethods ORDER BY pm_Desc INTO ARRAY This.aContents
This.Requery()

Chapter 5: Combos and Lists 151

We could just as easily set the combo box up with a RowSourceType of "0-None", set its
Sorted property to true and populated it like this instead:

LOCAL lcItem

SELECT PmtMethods
SCAN

lcItem = IIF(EMPTY(dStop), dStop, '\' + dStop)
 This.AddItem(lcItem)
ENDSCAN

How do I create a list box with check boxes like the one
displayed by Visual FoxPro when I select "View
Toolbars" from the menu? (Example: CH05.VCX::lstChkBox)
Did you ever notice that list boxes have a Picture property? You can find this property listed
under the layout tab of the property sheet. Technically speaking, the picture property really
belongs to the list box's items rather than to the list box as an object. Essentially, you can
manipulate the Picture property of the current ListItem and set it to a checked box if it is
selected and to a plain box if it is not.

Figure 5.6 Multiselect list box using check boxes

List boxes of this type exhibit other nonstandard behavior that requires special
programming. For example, clicking on a selected item in this list box de-selects it. Pressing
the space bar also acts like a toggle for selecting and de-selecting items. This is much more

152 1001 Things You Always Wanted to Know About Visual FoxPro

convenient than the standard CTRL+CLICK and CTRL+SPACE BAR combinations normally used
for selecting multiple items in a list box.

This list box class requires a custom array property to track the selected items. We can't
just use the native Selected property because it is not always set in the expected way. For
example, pressing the space bar selects the current item. But the item's Selected property isn't
set to true until after the KeyPress method completes. Suppose we want to manipulate this
property in the list box's KeyPress method. This.Selected[This.ListIndex] would return
false even if we had just pressed the space bar to select the current item! You can see the
dilemma. And it becomes even more complicated when trying to use the key to toggle the
item's Selected property. The simple and straightforward solution is to maintain our own list of
current selections over which we have total control. This is implemented using a custom array
property (aSelected), initialized in the control's Reset method, which is called from its Init:

WITH This
 *** clear all selections
 *** If other behavior is required by default, put it here and call this
 *** method from any place that the list box's contents must be reset
 .ListIndex = 0
 DIMENSION .aSelected[.ListCount]
 .aSelected = .F.
ENDWITH

The SetListItem method is called from the list box's Click and KeyPress methods. Since the
Click event fires so frequently (every time the user scrolls through the list using the cursor
keys) we must make sure we only call the SetListItem method when the user actually clicks on
an item. We do this by checking for LASTKEY() = 13 . Likewise, it is only invoked from the
KeyPress method when the user presses either the ENTER key or the SPACE BAR. This method
sets the specified row in the custom array that tracks the list box selections and sets the item's
Picture property to the appropriate picture for its current state:

WITH This
 IF .ListIndex > 0
 *** The item is currently selected so de-select it
 IF .aSelected[.ListIndex]
 .Picture[.ListIndex] = 'Box.bmp'
 .aSelected[.ListIndex] = .F.
 ELSE

 *** The item is not selected yet, so select it
 .Picture[.ListIndex] = 'CheckBx.bmp'
 .aSelected[.ListIndex] = .T.
 ENDIF
 ENDIF
ENDWITH

Visual FoxPro's standard behavior is to de-select all list box items when it gets focus. It
seems that this default behavior also resets all of the pictures in the list. Because we do not
want our multi-select list box to exhibit this type of amnesia, we call our its custom RefreshList
method from its GotFocus method:

Chapter 5: Combos and Lists 153

LOCAL lnItem
WITH This
 FOR lnItem = 1 TO .ListCount
 .Picture[lnItem] = IIF(.aSelected[lnItem], 'CheckBx.bmp', 'Box.bmp')
 ENDFOR
ENDWITH

A mover list class (Example: CH05.VCX::cntMover)
Mover lists, like the "check box" list box class discussed above, are more user-friendly than the
multi-select list box. Although they appear to be complex controls, it is relatively simple to
create a generic, reusable, mover list class. Our mover list class consists of a container with one
list box to hold the set of items from which the user may choose and another that will be
populated with the selected items. It also contains four command buttons to move items
between the two lists. The mover bars on the destination list are enabled to provide maximum
flexibility. If the order of the selected items is critical to the mover list's functionality, this
provides a mechanism for the user to order his selections. The container's ResetList method,
which initially populates the lists, is the only method that is instance specific. The form
MoverList.scx, provided with the sample code for this chapter, uses this method to populate the
mover's source list from our "PmtMethods" table:

WITH This
 .lstSource.Clear()
 .lstDestination.Clear()
 SELECT Countries
 SCAN
 .lstSource.AddItem(c_Desc)
 ENDSCAN
ENDWITH

Our mover list class is by no means the last word in movers, but it will give you something to
build upon.

Figure 5.7 Simple mover list

154 1001 Things You Always Wanted to Know About Visual FoxPro

The command buttons are not the only way to move items between the two lists. Double
clicking on an item removes it from the current list and adds it to the other. Selected items may
also be dragged from one list and dropped into the other. In fact, it doesn't matter how the items
are moved between the lists. All movement is accomplished by invoking the container's
MoveItem method and passing it a reference to the source list for the move. There is a call to
this method from the DblClick and DragDrop methods of each of the list boxes as well as in
the OnClick method of the two command buttons, cmdMove and cmdRemove:

LPARAMETERS toSource
LOCAL lnItem, toDestination

Since this method is passed an object reference to the source list, we can use this reference
to determine which is the destination list:

WITH This
 IF toSource = .lstSource
 toDestination = .lstDestination
 ELSE
 toDestination = .lstSource
 ENDIF
ENDWITH

*** Lock the screen so to avoid the distracting visual side-effects
*** that result from moving the item(s)
THISFORM.LockScreen = .T.

We now loop through the source list to add each selected item to the destination list and
remove it from the source list afterward. As items are removed from the source list, their
ListCount properties are decreased by one. So we use a DO WHILE loop instead of a FOR loop to
have more control over when the index into the source list is incremented. We increment it only
when the current item in the list is not selected to move on to the next:

lnItem = 1
WITH toSource
 DO WHILE lnItem <= .ListCount
 IF .Selected[lnItem]
 toDestination.AddItem(.List[lnItem])
 .RemoveItem(lnItem)
 ELSE
 lnItem = lnItem + 1
 ENDIF
 ENDDO
ENDWITH

*** Don't forget to unlock the screen!
THISFORM.LockScreen = .F.

Implementing drag and drop functionality requires a little more code. To accomplish this,
we have added the nMouseX, nMouseY and nDragThreshold properties to the container. The
MouseDown method of the contained list boxes sets the nMouseX and nMouseY properties to
the current coordinates when the left mouse button is depressed. This is done to prevent

Chapter 5: Combos and Lists 155

dragging an item when the user has just clicked to select it. The drag operation does not begin
unless the mouse has moved at least the number of pixels specified by the nDragTheshold
property. The container's StartDrag method, called from the list boxes' MouseMove method,
checks to see if the mouse has been moved sufficiently to start the Drag operation. The calling
list passes an object reference to itself and the current coordinates of the mouse to this method:

LPARAMETERS toList, tnX, tnY

WITH This
 *** Only begin the drag operation if the mouse has moved
 *** at least the minumun number pixels
 IF ABS(tnX - .nMouseX) > .nDragThreshold OR ;
 ABS(tnY - .nMouseY) > .nDragThreshold
 toList.Drag()
 ENDIF
ENDWITH

Finally, the list's DragIcon property from which the drag operation originated, needs to be
changed to the appropriate icon. When the cursor is on a portion of the screen that does not
permit the item to be dropped, we want to display the familiar circle with a slash inside it that
universally means "NO!" We do this by calling the container's ChangeIcon method from the
list's DragOver method. This method, as the name implies, merely changes the drag icon to the
appropriate icon:

LPARAMETERS toSource, tnState

IF tnState = 0
 *** allowed to drop
 toSource.DragIcon = THIS.cDropIcon
ELSE
 IF tnState = 1
 *** not allowed to drop
 toSource.DragIcon = THIS.cNoDropIcon
 ENDIF
ENDIF

Not only is the mover list a lot easier to use than the multi-select list box, it also gives the
application a more professional look and feel – without a lot of extra effort.

What if I need to display hundreds of items in my combo
box?
In this case, a combo box is too slow because it must always populate its internal list with all
items from the underlying data source. If we were able to combine the efficiency of a grid
(which can load data as needed) with the incremental search capability of our quickfill combo
box, we would have the prefect solution. Fortunately, using composition, we can do exactly that
and we created a class for this "ComboGrid" control that uses a textbox, a command button and
a grid as its main components.

The construction is similar to that described for our "cboSpecial" class - used to permit
binding a control to a value not contained in the internal list. The main difference is that instead

156 1001 Things You Always Wanted to Know About Visual FoxPro

of the list box used in the earlier control, we now use a grid for the drop-down functionality.
Some special handling is required at the container level to ensure that everything operates
smoothly but the techniques are the same.

This control was originally written and posted as a "FreeHelp" contribution to the
CompuServe Visual FoxPro forum, and later was used as the basis for an article in FoxTalk
magazine. For a full discussion of the design and implementation of this control see "Now you
see it, now you don’t" an article in the July 1999 edition of FoxTalk. Figures 5.8 and 5.9 show
the two incarnations of the combo grid:

Figure 5.8 The dormant ComboGrid

Figure 5.9 The active ComboGrid

Release Notes for the ComboGrid Class (Class: CboGrid.vcx, Example Form:
FrmCGrd.scx)
Created By: Marcia G. Akins and Andy Kramek, and placed in the Public Domain in February
1999.

Chapter 5: Combos and Lists 157

This class is designed to use a grid in place of a standard VFP Combobox for a large data
volume or to enter data into more than one lookup table field, used to populate the dropdown.
The class consists of a Textbox, a Command Button and a Grid inside a Container. The grid is
normally invisible and the class looks and behaves just like a standard VFP combo box.

The class is controlled by 7 properties, as follows:

Table 5.9 ComboGrid Custom Properties

Property Function
CAlias Name of the Table to use as the RecordSource for the Grid
CColSource Comma separated list of field names for columns in the Grid
CControlSource Data Source for the Textbox (if required to be bound)
CkeyField Field to use to set the Value of the TextBox
CtagName Tag to use in cAlias
LAddNewEntry Determines whether new entries are added to the Grid Table as well as

to the textbox controlsource
NColCount Number of columns to display in the grid

A single Instance level method is available so data can be read from the grid after a
selection is made, for example, to populate other fields on the form:

Table 5.10 ComboGrid custom methods

Method Function
RefreshControls Instance Level Method called by Grid AfterRowColChange() and by

KeyPress in the QuickFill TextBox

There are four ways of using this control depending on the setting of the cControlSource
and lAddNewEntry properties as follows:

• cControlSource:= “” and lAddNewEntry = .F. The text box is NOT bound and
although the incremental search will operate, and new data may be entered into the
text box, new records will not be added to the grid’s underlying table.

• cControlSource:= “” and lAddNewEntry = .T. The text box is NOT bound and new
data may be entered into the text box, new records will be added to the grid’s
underlying table. Additional columns may have data entered by right clicking in the
appropriate cell.

• cControlSource:= <Specified> and lAddNewEntry = .F. The text box is bound and
will read its initial value from the specified table and will write changes to that field
back to the table. New records will not be added to the grid’s underlying table.

• cControlSource:= <Specified> and lAddNewEntry = .T. The text box is bound and
will read its initial value from the specified table and will write changes to that field
back to the table. Additional columns may have data entered by right clicking in the
appropriate cell.

158 1001 Things You Always Wanted to Know About Visual FoxPro

Acknowledgements
Thanks are due to Tamar Granor for the QuickFill methodology that she published in the
September 1998 issue of FoxPro Advisor and to Paul Maskens who provided the inspiration for
the self-sizing container and grid.

Following a suggestion by Dick Beebe, the ComboGrid was enhanced to incorporate a
right-click menu in the drop-down grid. Depending on the settings, you can either sort by the
selected column or edit the currently selected row. If neither is appropriate the menu does not
appear.

To enable editing, the Container’s lAddNewEntry property must be set. To enable sorting
the grid’s data source, you must have an index tag named exactly the same as the field used as
the controlsource for the column. If this is not your normal practice, you should probably
consider it anyway.

Author’s disclaimer
As always we have tried to make the ComboGrid foolproof, but we have placed this control
class in the Public Domain "as is," with no warranty implied or given. We cannot accept
liability for any loss or damage resulting from its use (proper or improper). All source code is
included in the CboGrid sub-directory of this chapter’s sample code, so feel free to modify,
change or enhance it to meet your specific needs.

