
Chapter 8: Release and Post-Release Tips 233

Chapter 8
Release and Post-Release Tips

Release day is finally here! The process of moving an application into production is the
end of a long road traveled. Depending on the project, you might spend hours, weeks,
months, or even years of blood, sweat, and tears getting ready for this big event. Now
the light at the end of the tunnel approaches. Is it the sun at the end of the tunnel or a
freight train about to run you over? Deploying a project into production can go
smoothly, or not, depending on the planning and attention to detail.

This chapter outlines some things to verify as you and your clients move the product into
production, ideas on supporting a release, and items to consider after a release is completed.

Checklist/Instructions
Having a checklist or step-by-step instructions to implement a release is important. We have
seen the panic on other developers’ faces and have had that pit of the stomach “oh no”
moment ourselves. This is when something goes wrong with no way back to the original state
of the data, or the application, or both.

As we noted throughout this book, installation software is much more sophisticated today
than the DOS batch files used in the 1980s. Still, having complete step-by-step instructions on
how to install the software is essential to the success of an implementation, especially if one of
your customers is the one implementing. Do not write volumes on the topic because the
customer will never read it if they perceive it as overwhelming. Make the instructions concise,
but informative. The instructions should include all the steps up to running SETUP.EXE and
all the steps needed after the setup is complete and before they start using the new application
or update.

We included one sample checklist in the chapter downloads called
InstallChecklistSample.doc.

Your checklist (see Figure 1 for an example) may be different for each customer and for
each application. It is also influenced by the technologies you are deploying and by the
technologies used to create the installation package. The detail you include is influenced by
the person performing the deployment and their experience. If you are performing the install
you might only need a bullet point to remind you what is next. If your customer has an internal
Information Systems (IS) staff or you have someone from your technical support staff making
an on-site visit, you might limit the amount of detail. If the end users are installing the
application or update they might need step-by-step instructions with supporting screen shots to
make sure they get it right.

234 Deploying Visual FoxPro Solutions

Figure 1. This is a sample checklist for installing an application in production.

Test area
Creating a test area has to be the least used but most important concepts in moving an
application into production. The test area is an exact replication of the production area. All
files needed to run the application need to be included in the directories. This includes
executables, databases, tables, metadata, external source code files (like reports), language
translation tables, parameter/setup tables or INIs, ActiveX controls, COM objects, data
conversion programs, problem solving utilities, help files, shortcuts, and any other files used in
production. For existing systems getting an update, copy the base set of files from the current
production directories to provide a true experience of what to expect when you work on the

Chapter 8: Release and Post-Release Tips 235

production implementation. This is the area to run a complete dress rehearsal of the
implementation without directly working on the production files.

It is important to understand this is a separate area from the beta test area you have been
using all along for customer acceptance testing. Using the beta directories introduces the
possibility of bad data or errant test versions of the code, which might introduce invalid test
results that are hard to reproduce in the development test environment. This final test area
provides you and the customer one more chance to test the implementation steps necessary to
ensure a successful production implementation. Each test should start out with a fresh copy
of the environment so you might want to make a second copy of the files before making the
first test.

There are several items to complete final testing at this point of the process. You might
have to test various machine configurations at different customer locations. For instance, you
can install on a machine with older runtimes, one with no runtimes, older processors vs.
current ones, and various memory and video combinations. You are not looking to be
surprised that the application will not work on these configurations at this time, just
confirming the implementation goes smoothly.

Backups
Another big mistake we have made in the past is not backing up the files we are changing.
This takes an extra few minutes to create a save directory, copy the executables, and any other
files you change. These files can later be restored if something goes wrong. This precaution is
for those updates you are 110% sure (or possibly less) that the five-minute bug fix you just
made will work flawlessly. Next thing you know the customer is calling asking why all the
invoices no longer show the line items or worse, you have some how destroyed data.

We always feel most comfortable when the user has just backed up the data. If they do not
have a current backup we ask they perform a backup before implementation. This is typically a
scheduled event so there is plenty of time to ensure it is not only completed but is verified to
be a good backup (especially if done to a tape backup). With disk prices as cheap as they are
these days we really prefer backups of this nature to be made to a second drive or another
computer on the network. This provides the best performance in case you make a mistake and
need to get the backup restored. The customers are never more anxious than when their system
is down and the phones are ringing.

Runtimes
The runtimes files are needed for FoxPro applications to run on computers that do not have a
copy of FoxPro installed. The biggest key with the runtime files is they are the same version as
the Visual FoxPro version you used to develop the application. This can be trouble if the users
have several applications developed over time. Visual FoxPro 6 for instance had new runtimes
in several of the five service packs Microsoft shipped. If you developed one application with
service pack 3 and another application with service pack 5 you can have different results or
behaviors with the two executables sharing the latest runtimes

One issue we did not address is the Windows 2000/XP logo issues which have the
runtime files and other associated dynamic link libraries loaded with the application
executable or in its own directory outside of the Windows System directory. If this is

236 Deploying Visual FoxPro Solutions

important to you, be sure to take the extra steps necessary to instruct the installation routine to
load them outside of the Windows System directory.

Configuration files & registry
Many custom and commercial frameworks have a mechanism to save user preference and
application settings to a system table or to the Windows’ Registry. New applications do not
have to deal with updating these settings, but further updates to the application will likely
require a program or a step in the installation process to add new options and default values.

If you are using one of the many installation routines we have discussed in Chapter 4:
“Setup Tool Roundup” or even the older Visual FoxPro Setup Wizard, updates to tables can be
handled with a program that is fired from the post-setup executable. Registry entries can also
be handled in a similar program as well. Most modern commercial installation routine tools
provide a Windows’ Registry key creation and value updater built into the product. This saves
you the extra step of rolling your own program and is a little bit cleaner because the failure
errors are handled right in the setup and do not have the second process executed. If you save
settings and configuration items to a table, you need a program to handle the update.

Update structures and indexes
Previous chapters in this book addressed the database updates, table structure changes, and
changed/updated indexes. If you are using a Visual FoxPro database container (DBC) you
have two basic options. The more difficult way is to track all the changes you made and write
a program to make the changes with ALTER TABLE and INDEX ON commands. You can also
write your own routine to determine the differences programmatically and generate the code.
The second option is to purchase a subscription to the Stonefield Database Toolkit, which has
the Update() method that handles this for you. The implementation of this is simple. All you
need to do is copy the new database files (DBC, DCX, DCT) and the SDT metadata and
programmatically call the Update() method.

SQL databases require a different implementation because there is no equivalent SDT for
SQL databases. Each database has its own method to generate script to make changes in
production. You need to ensure the users have the ability to run your scripts in the database, or
you need to provide your own tool that runs your scripts in the production environment.

Data conversion
Once the table structures are updated, new indexes are added, stored procedures are changed,
and various constraints have been made current, you might have to update the data in the
database to reflect these changes. You might be installing a brand new empty database. Once
the data files have the new structures in place you might optionally need to move data around
to normalize or denormalize records, add default values to new columns, add records to
support/lookup tables, correct or update foreign keys, or even completely populate a new
database from the system used before the new one was implemented. This conversion is a
different and separate step in the process. Obviously this is best handled after the structures
are in place.

Chapter 8: Release and Post-Release Tips 237

Figure 2. This is an example of a database conversion routine running.

You might implement this as a post setup executable or process (see Figure 2 for an
example), or you may run this even before implementing the new or updated application. If
there are several items you need to accomplish after the application files are copied to the
appropriate location you need to write a program that handles all the needed steps.

Test
Once the application is loaded and configured it is important for one last test before informing
the users the implementation is complete. You are not looking to do a complete system test,
just to make sure the executable starts and some primary forms and reports execute correctly,
the data converted correctly if a conversion was done, and the version number on the About
form matches the expected version implemented. One other thing we like to verify is any
ActiveX or COM components used in the application are accessed correctly. Just give it a
general once over to give you confidence the installation went as expected.

Notify the customer
Finally the moment you look forward to, telling the customer the application is in production
and all the new features and fixes are available for them to use. You might have an
opportunity to tell them in person if you are on-site. If you are implementing after hours and

238 Deploying Visual FoxPro Solutions

they already went home for the night you might just leave a hand written note on their desk.
Remote implementations present a different challenge. Typically we open an instance of
Notepad and leave a quick message that we are finished with the implementation.

A follow up e-mail and phone call are also important telling them the status of the
implementation. Hopefully you inform them all went well and the application is ready for their
use. Sometimes things do not go well and you need to tell them the application is the same one
they have been using previously, or if new, that the application is not yet installed.

Provide documentation of exactly what was installed from a feature set point of view. The
documentation we like to provide is a Word document detailing all the changes made, both
new features and bug fixes (see Figure 3).

Figure 3. This is an example of documenting release history for an application.

Chapter 8: Release and Post-Release Tips 239

Technical support
Not every company has a staff dedicated to Technical Support, but all applications are
supported in one shape or form. This is accomplished by the developer who wrote the
application, or by other developers (inside or outside of your organization), super users on site,
or by the help desk support staff.

The need for support of a release varies depending on the business environment, the type
of application, the hardware configuration, contractual obligation, and your relationship with
the client. For instance, a corporate developer might be developing on-site and just need to
walk into the next room and walk cubicle to cubicle with the bug fix CD or stop in to answer a
question. On the other hand, when we were corporate developers our applications were
running in sites across the United States and Canada, and some in South America. The support
for this environment was quite different. Other developers might have to drive across the city
and do the same or might connect into the server via the Internet and inspect the situation.

We also encourage users to inform technical support of problems they are experiencing.
We cannot tell you how many times we went on-site to review something with a client and
when we poke our nose into the application error log we find a slew of records. At this point
you can ask the $64,000 question: “How long were you planning on suffering with this error?”
The users usually hide these things thinking it was entirely their fault because they did their
job incorrectly. While you could ride this excuse and not take blame for a bug, it is important
to inform them the software can only get fixed if you know something is wrong.

You also need to set up a schedule of when you are available to perform technical
support. It is not uncommon for developers to have applications running 24 hours a day, 7
days a week. You all need sleep. You also need to understand the support structure. You might
want to get a time applet like Clock Rack (Figure 4) that shows what time it is in the different
time zones where your applications are running.

Figure 4. You can use a software applet like ClockRack (free to subscribers of PC
Magazine’s online Utility Library) to show what time it is in different time zones where
you have customers running your applications.

Clock Rack is available to PC Magazine’s online Utility Library subscribers
at http://www.pcmag.com/article2/0,4149,31649,00.asp.

240 Deploying Visual FoxPro Solutions

Communication mechanisms
The fundamental mechanism of technical support during a production deployment is
communication of issues from customers. In today’s world it is easy to be connected with
telephones, beepers, cell phones, e-mail, fax machines, and Instant Messaging. Whichever
communication mechanism is being used, make sure you are available for the customer during
implementation of the production application. After all, their business may succeed or fail
with your application and this translates to the possibility of your business succeeding or
failing as well.

What are reasonable hours? The answer is: it depends. We have worked for a number of
companies both large and small. You might be one of the very fortunate few that never had to
be woken up in the middle of the night to handle a support call. It depends on the location and
time your customer is using the application. Deployments can be done any time of the day or
night, but the reality of the situation is they are done when it is most convenient to the users.
Typically this means after hours or during lunch when the application is not used. Sometimes
it means working a weekend. This is something you should negotiate long before the setup CD
is inserted into the computer and run.

Frequently Asked Questions (FAQ)
The easiest thing to keep track of is a list of Frequently Asked Questions (FAQs). This allows
the developer(s) or technical support staff to quickly learn about the most common issues
handled from the customers. This list of questions can be developed as soon as you start
collecting specifications, will certainly be developed during beta testing, and added to after the
application is in production. This list can be included in the user documentation, Help file
(Figure 5), in the readme.txt file, and on the support web site. Larger companies like
Microsoft, Symantec, Adobe, Corel, and the like have created a KnowledgeBase of white
papers based on issues related to the different applications they support. Who is to say that
even the one-person shop cannot leverage these concepts?

Help file
We can already hear the laughter from all corners of the world. Who the heck writes help files
for custom software? The reality is many custom projects do not have Help files because they
are written directly to the users specifications and the clients are continuously using and
testing the software and know it intimately before it is released to production. This can be
perfectly acceptable. Some customers might not pay for the development of the help system
because it can cost as much as the development of the software. Some users are corporate IS
departments and assume the responsibility of developing the User Manuals, Help files, and
training materials themselves.

However there are advantages to developing a Help file. Naturally it can be useful to the
people using the software each day. Would you develop applications without the VFP Help
file? The second advantage is it is a place to document the specifications to the end users. It
describes the business rules, the process re-engineering, and the various decisions made on
their behalf by their peers or superiors when the software was developed. It can also be used to
validate a problem that does not meet the specification.

Chapter 8: Release and Post-Release Tips 241

Figure 5. A Frequently Asked Question list provides the users with a common list of
questions other users have asked technical support to address.

Training
Training can be a one-on-one with the user, or it might be a formal class for all the users, or
even a train-the-trainer session. What ever the needs are for the users, training should be
handled initially long before the application is moved into production. Ongoing training is
sometimes required based on user turnover, a loss of a trained super user, or new customers
coming online with an application.

Web site
A number of developers have asked us our feelings on the topic of Web sites and the roll they
can play for developer shops. We think a Web site can have a significant roll in the arena of
technical support and customer service as you move an application into production. It provides
one stop shopping for the three previous topics of communication, FAQ, and Help file, as well
as place to publish white papers about the products and services you have available,
downloads of demo products, and secure updates for existing customers.

First and foremost it gives your customers and future customers a place to find out how
they can contact you. The company address, phone number, fax line, and e-mail are all
important communication methods to make available.

Users can download installations from your Web site (see Figure 6). One of the nice
advantages of allowing them to download the package is they decide when they want to take
the hit on their bandwidth. If we send it in e-mail, they take the download hit just after we send

242 Deploying Visual FoxPro Solutions

it. This can be a problem if it takes 30 minutes when they are waiting for an e-mail order from
one of their customers. This is an ideal transfer mechanism for vertical market apps as well
because it reduces the distribution costs of duplication and packaging. Web server security
also gives you a chance to have clients log in and provide the transfers over a secured socket
layer. This also works well for those patches made during the production and post-
implementation phases of deployment.

Figure 6. The Wise Solutions support site is one of the better product download sites
we have used. The Web site first has a customer login, and then displays the full
versions of the products you registered and any update versions you can download.

Considerations for small shops
Technical support can be tough for smaller shops (1 to 5 developers) when you are out of the
office. Our clients sometimes run our applications 24 hours a day, seven days a week. What
happens when we need to take a vacation or attend a conference? In the case of Geeks and

Chapter 8: Release and Post-Release Tips 243

Gurus (a four person shop as of the writing of this chapter) we all plan on attending each of
the VFP conferences held in the USA and often speak at various user groups throughout North
America. How do we support our clients when we are attending technical sessions and various
events when we are out of town? For the most part the same as we do when we are in the
office, with some special handling.

First and foremost we have contact available via our cell phones. Our cell phones have
voice mail in case we are unable to take the call immediately. We carry our notebook
computers so we can investigate the problem via source code and to dial into their systems if
necessary from our hotel room. We have even supported our clients from a remote
campground in the past so almost anything is possible. We also handle our e-mail as many
times a day as needed to provide top-notch service. The key as usual is fast response and
appropriate action to satisfy the customers’ needs. Our customers are also notified in advance
when we are leaving town or are unavailable for a period of time.

Post implementation
Finally you have moved the customer application into production and the users are tracking
their mission critical information. No major issues need to be resolved and no bugs are being
reported (for the moment). So one might be asking if it is time to sit back and smell the roses
or is there still more work to complete for this project. While it might be nice to kick back in
the easy chair and take a breather, there are a few key details to be covered before you can
completely relax. At Geeks and Gurus, for example, we get together to verify all went well for
the customer, to verify the internal processes set up for software development at our company
were optimized, and to discuss ideas on how to leverage the recent success to bring more
business our way.

Some developers believe all the steps outlined in a development methodology must be
followed to the letter. This is far from the truth and definitely does not apply when it comes to
this part of the deployment phase. The rest of this chapter offers some suggestions on what
you can do after the application is in production. Feel free to pick and choose what works for
your project. Some of these items have no purpose when implementing a 30 minute bug fix,
others are mandatory when completing a full-fledged development cycle.

Post-mortem review
One of the keys to doing a better job the next time is learning what you did well this time
or how you might have missed the goal, partially failed, or even completely failed to satisfy
the customer on this project. Learning from your mistakes is something you learn very early
in life.

We believe the best way to start this is to do a self evaluation, a post-mortem review. Each
staff member (as little as one, as many as all) need to participate in this evaluation no matter
how much experience they may have or how much they participated in the project. The
evaluation contribution will be heavily influenced by a number of factors including
experience, length of service, type of work they did on the project, and how familiar they are
with various processes involved with software development. There is no “one-size-fits-all” list
of questions for a project post-mortem, but here is a starting point that might generate more
ideas of what type of information can be gathered from this evaluation.

Please answer all questions that are appropriate, provide specific examples:

244 Deploying Visual FoxPro Solutions

• Overall, what did we do well?

• Overall, what did we not do well?

• Were the specifications accurate?

• How much of the original specifications changed during the construction/testing
phases?

• Did the developers do unit testing effectively?

• How many bugs were reported by the quality assurance internal testing?

• How many bugs were reported by the customers during acceptance testing?

• Did we follow the implementation check list? What problems did we come across and
how can we improve the check list?

• Which processes need improvement and how can they be improved?

• What was the customer relationship before the project started? How is it now that the
app is in production?

• What obstacles were put in place by the customer, which were added by your
teammates? What obstacles were not removed by management?

• What did we do that wasted the most time and how can we avoid this next time?

• What did you most like doing during the application creation and deployment?

• What did you really dislike?

• What was the one outstanding thing you learned during pair programming or
code reviews?

• What types of metrics did we collect on the project and how do they compare to
previous metrics from previous projects?

• Were there any heroics performed on this project that need to be recognized?

• If you were forced to vote one employee out of the company, who would it be?
(okay, now we are just checking to see if you are still paying attention)

So developers reading this might be asking the question: now that I have all this
paperwork filled out, what do I do with it? Read each and every comment made on the survey.
Digest the key pieces of information, and then select a team of people to gather and discuss
these findings. This could be one person or the entire team. Bring them into a room filled with
food and open up the discussion. Throw the key points up on a slide and get the discussion
rolling. Use this session to brainstorm. It is our experience that developers talk freely when
they know it is in the interest of the company to improve (and they are pumped with free
food). Keep the discussion focused on the positive and make sure all the points key to
improvement are noted.

Chapter 8: Release and Post-Release Tips 245

These points also need to be written down and published to the entire staff so all can
benefit from the discussion. Other items to note are proposed changes to company
development standards, development processes, administrative processes, items in the
employee handbook, customer change request forms, the company brochures/portfolios, and
the Web site.

There is nothing more demoralizing in a company than spending time on something like
the post-mortem, and then have nothing done with the results. We experienced this more times
than we care to count in recent years at very large companies and smaller ones. It doesn’t take
too many of those to get folks rolling their eyes anytime something like this is planned, and
resenting the “window dressing” that tries to make the company look like it’s progressive and
“on the ball.” It becomes a joke and more damaging than if you do nothing at all.

Customer follow-up
It is always a good idea to get together for a meeting with your customer to do a follow up
survey as well. We like to have these meetings at a neutral lunch site or occasionally at the
customer’s office. You can have a formal survey sheet for them to fill out at their convenience
or can take it verbally while waiting for the lunch order to be delivered. This is a perfect
opportunity to get a feel for additional business or see if they have business associates that
could use your expertise in solving problems. Follow up e-mails to get the survey returned and
occasionally keeping up on their progress with the software needs should be a natural process
in your business dealings.

There are four reasons to follow up with the customer. The first is to make sure they
continue to be satisfied with the application and that it meets or exceeds their expectations in
the production environment. There is nothing better than using the application in the real
world to flush out the issues not covered during acceptance testing. If there is one thing that
gives us more business, it is picking up applications from new clients where the last developer
or shop failed to provide acceptable customer service. Do you want your current clients to
look at the competition for their next project or to take up the enhancements to the project just
implemented? We understand, sometimes the answer is yes depending on the customer, but
the majority of the time you want to retain your business.

The second is to determine how well you did in the customers’ eyes. No matter how cool
or killer you think the latest version of the app is, it may not meet the customers’ needs. It may
be something simple to fix in the interface that the user finds hard to work with daily. One of
our favorite examples of this was a simple grid entry. We missed the SelectOnEntry property
of a textbox in one column. It just so happened the entry was normally overwritten with new
numbers and the customer was constantly highlighting the contents with the mouse before
typing in the new value. One five minute fix saved them hours a week doing data entry. This
feedback also improves your development processes at the same time as you learn common
problems your customers reveal.

The review with the client also helps out in another important area, figuring out the
separation of the bugs from the “by design” features. How many times have your customers
called up and said the system was failing to perform a certain way, when in fact it is working
exactly as they specified just hours earlier? It is our experience the customers need to be
trained over time on what a bug is (a true failing of a feature not meeting the requirements)

246 Deploying Visual FoxPro Solutions

and what an enhancement request is. These reviews with the clients over a period of time help
in establishing this difference.

The last reason for a post implementation meeting depends on how well the
implementation and review have gone to this point. There should be no surprises at this point
because you have been communicating all along. If it has gone well, this is the perfect time to
ask for a letter of recommendation. Having positive testimonials on the company Web site and
in the company portfolio will benefit future business opportunities. Most customers we
worked with are more than accommodating.

Bug tracking
A perfect world would not have applications released with bugs, but the complexity of
software today sometimes makes it almost impossible to do so. Some customers are shy about
reporting what they think are bugs because they feel they have done something wrong to break
the program. Others are going to pull your chain every time they find something wrong.

Tracking issues assists you in a number of ways. First, it betters the software you deliver
to the customers, which in turn improves customer relations. Second, it provides you a list of
things to work on for the various clients. Third, it provides the developers with a training
mechanism for better development and testing techniques.

Fatal error bugs, the unexpected ones or the ones your customers find ways of producing,
are fairly easy to track. Using the new TRY…CATCH…FINALLY, the object’s Error method, or a
global error handler expose a chance to collect specific application state information. Typical
information we collect in our error trapping includes: the date and time the error occurs, the
error number, the program or object method, the user login id, line number, the MESSAGE()
when it crashed, code that caused the error, the results from AERROR(), the call stack, LIST
MEMORY, LIST STAT, hardware configuration, the contents of Config.FPW, the environment
settings, information about the various datasessions, information about all the active forms,
and any user comments. It is important to provide a mechanism for the users to transmit the
collected problems. Options include a report that formats the information collected. Another
option is to print the report to PDF format and attach the PDF file to an e-mail and have it sent
to your support e-mail address. The most recent idea we have is to transform the error
information tracked in the error table into XML and have the XML sent via e-mail. The
advantage of this method of transfer allows you to import the information directly into the
support database.

So what do you do for the non-fatal errors? This is the kind of bug the user reports that
allegedly does not meet the requirements or when the application fails to operate as they
expect. It is important the user specifies a number of key elements. The elements we like to
have reported are the exact steps to reproduce the error, what was observed, what was
expected, additional comments, version of the application, the date the error occurred, and
who is reporting the error. Additional information that can be helpful in these cases is the
machine configuration. The same mechanism to transport fatal errors can be used to transport
user reported issues.

Back at the bat cave you need to have a mechanism to track reported bugs. There are a
number of ways to handle this including pencil and paper, a Word document, or more likely a
software package dedicated to tracking bugs. Doing a web search reveals more than a dozen
different bug tracking solutions. The BugTrackingSoftware topic on the Fox Wiki links to

Chapter 8: Release and Post-Release Tips 247

more than a half dozen available products. Visual Studio 97 (with which VFP 5 was included)
includes a solution called Anomaly Tracking System (ATS) written in Visual FoxPro (Figure
8). Visual Studio 6 includes a web version called ATSWeb. One nice thing about being
database developers is you can augment the ATS products or build a solution that meets your
needs if a satisfactory solution cannot be found. Some products like IssueView (Figure 9)
from a company called IssueView.com has both a desktop component (based on a SQL Server
or MS Access database) and an Internet component, which uses Active Server Pages with full,
built-in e-mail notification.

There are other Web-based options that can be used including the new Customer Service
Center from F1 Technologies (makers of Visual FoxExpress), BugCentral.com (based on VFP
and WebConnect, see Figure 7), and Steven Black’s Wiki (another VFP and WebConnect
implementation). The advantage of using a Web-based bug tracking application is your
customers can directly enter in reports, geographically diverse development teams can access a
common set of reported bugs, and customers can access reports to see the status of reports they
made as well as reports from other users.

Figure 7. BugCentral.com is one example of a Web-based bug tracking application.

248 Deploying Visual FoxPro Solutions

Microsoft products automatically send statistics back to Microsoft via the Internet
whenever a GPF or other serious error occurs via the Dr. Watson Error Reporting. Are we the
only developers in the world that get some pleasure each time this happens and hoping some
Microsoft Web server is getting bombarded with the same reports? There are many ways to
get the reports programmatically via e-mail, a Web service, and faxing.

Figure 8. Some bug tracking packages like Microsoft’s older Anomaly Tracking
System have just a desktop component.

Once a method to track bugs is implemented you need to evaluate the reported errors and
alleged bug reports rapidly. It is important to determine which are real and the priority
assigned to the issue. This sets the order the bugs are to be corrected. The reported issues
determined to not be real bugs might be a change in requirements or something that needs to
be addressed in training. Some reports are questions to be addressed in the Frequently Asked
Questions (FAQ) list.

We have evaluated a number of solutions over the years and always found something in
the products lacking. This does not mean you will, but it is uncommon to find developers who
are completely satisfied with a canned solution. This usually leads developers to create their
own solution.

Chapter 8: Release and Post-Release Tips 249

Figure 9. Several bug tracking packages like IssueView have both a desktop and
Internet component.

Developer review
It is important to meet with the development staff to make sure they are working towards the
goals of the company, the goals of the customers, and their personal career goals. All too often
developers wonder what the management thinks of their performance. We have always
believed a performance review should never reveal any surprises. It should be nothing more
than an open discussion of the state of the projects, to establish new goals, and to find out what
the next aspirations are for the developer.

Take this time to have peers recognize the good contributions a developer made to the
project. Also have them provide constructive criticism. You might learn from the feedback
something that helps you determine the share of the bonus pool (discussed later), determine
internal training opportunities, and see what new techniques have been learned.

Post release party
Large projects, small projects, super successful projects, and client saving projects are
definitely worthy of a party when teams exceed customers’ expectations. This is a good place
to hand out bonuses and other reward mechanisms. You do not have to wait until the project is
complete. Sometimes it is good to do a mid-stream gathering just to break up the stress that
can build up during long development stretches. We find inviting customers to a get together
is a great way to build partnerships.

250 Deploying Visual FoxPro Solutions

These parties can be held a local eatery, as a barbeque in a backyard or local park, or right
in the office. Just take the time to schedule a break to reward people for their hard work. Take
a moment to verbally express the fact you appreciate the hard work the staff (and clients) are
doing to accomplish the goals established.

Bonus pool
There are simple concepts of keeping people happy. Make sure they have adequate salary,
decent benefits, current technology, good projects, a friendly atmosphere, and a fridge stocked
with their favorite beverages. One way to make people walk out the door and get a job at the
competition is to overlook their value to the organization. When people exceed the
expectations you have for them, you in turn need to exceed their expectations in the complete
compensation package. One way to do this is to give a bonus to the people who made it all
happen by exceeding expectations.

Plan in advance what the bonus pool can be for service over the call of duty. Do not
reward people equally unless they contribute equally. Reward for their contribution. If one
employee does the nine-to-five and others work a boatload of overtime, make sure the people
working longer are not working inefficiently. If others are working effectively and still put in
the hours to make the deadline, make sure they are appreciated. Also, make sure those with
families understand you appreciate the sacrifices that the families have made as well.

You can also be creative. Cash is not the only mechanism to reward the staff. For
instance, if you have a developer who is a space geek you could send them to SpaceCamp for
a weekend (hint, hint to the author’s partners). Sending the staff (and family) on a weekends
away at a nice resort is a great way for people to recharge their batteries before returning to
work. One of my favorite ways to reward people is to grant them more vacation time. Top gun
salaried developers typically work late into the evenings and on weekends; why not give them
back their time without any additional taxes to pay? (Consult your accountant to see if this is
okay in your particular situation.)

Single developer shops need to make sure they take care of the proprietor as well. This is
so often overlooked when you have to run a business day-to-day. Make sure you take a cut of
your spoils and keep the boss happy.

Do not underestimate the value of the employees. A long time ago, way back in the
1980’s I worked at Burroughs, at the time the third largest computer manufacturer in the
world. This was my first big paying job out of college. I jumped right from a small consulting
company I worked for during my last year in college to the big time systems management
group as an Associate Systems Analyst. I was still wearing the rose colored glasses when it
came to viewing the corporate world.

Along came a multi-billion dollar merger. Money was flying as two 5 billion dollar
companies merged into one. Our group was tasked to merge the corporate systems. A project
plan was assembled in November with a completion target date of June. This was an
aggressive schedule to start and we were immediately put on mandatory overtime (without
overtime pay). On February 1 we were informed we needed to have our system up and running
in production on April 1st (2 months earlier than originally “planned”). This meant it needed to
be in the test environment for acceptance testing March 1. Management promised we would be
rewarded for all our efforts and that they knew what it was going to take to accomplish this.

Chapter 8: Release and Post-Release Tips 251

We had meetings at 5:00 every afternoon to see what the developers would be doing that
evening. Then the managers headed for the golf course.

I worked over 100 hours of overtime in February alone and we implemented the system
on time, with very few issues. Months later I had to walk into the Directors office to find out
what happened to the bonuses we were promised. He just bought a fancy new luxury car and a
huge house valued at 5 times what mine was worth. It was apparent where the bonus pool was
distributed. He finally gave in to our “concerns” and threw a dinner party at a local restaurant.
That evening he handed out checks to the developers for $125.00 (minus taxes, I saw less than
$100). This was less than 21 cents an hour for my overtime effort over the length of the
project. Guess where my loyalties went after this? Do not make this same mistake.

Conclusion
Just as planning is critical to a successful deployment, paying attention to the details during the
implementation and after the implementation is important. Hopefully we provided a number of
ideas for your consideration in this regard.

Updates and corrections to this chapter can be found on Hentzenwerke Publishing’s Web site,
www.hentzenwerke.com. Click ‘Catalog’ and navigate to the page for this book.

252 Deploying Visual FoxPro Solutions

