Appendix B: How To: Wise for Windows Installer 369

Appendix B
How To: Wise for Windows
Installer

Wise for Windows Installer is a powerful tool for creating Windows Installer-based setup
packages. This appendix shows you how to use Wise for Windows Installer to create a
setup package for a Visual FoxPro application.

What is Wise for Windows Installer?

Wise for Windows Installer, or WfWI for short, is a Windows Installer-based setup tool from
Wise Solutions, Inc. Wise also markets other setup tools including Wise Package Studio, Wise
for Visual Studio .NET, and Wise Installation System.

As its name implies, Wise for Windows Installer builds setup packages for Windows
Installer. Because the fundamental structure of a Windows Installer setup packages is the same
no matter what tool you use to create it, the concepts you encounter when working with WfWI
are the same as those you encounter when working with other Windows Installer-based setup
tools such as the one that ships with Visual FoxPro.

Wise for Windows Installer comes in three editions: Standard, Professional, and
Enterprise. We chose to base this appendix on the Standard edition because in our opinion it is
the most comparable to the tool that ships with Visual FoxPro. The Professional and
Enterprise editions of WfWI are more powerful and offer features not found in the Standard
edition. You can find a comparison of features in Wise for Windows Installer Enterprise,
Professional, and Standard editions at http://www.wise.com/wfwi_features grid.asp.

The figures and examples in this appendix are based on the Standard edition version 5.21,
which is the current version as of this writing. You can download an evaluation copy of Wise
for Windows Installer from http://www.wise.com/downloads.asp. Evaluation copies of other
editions of WfWI and other Wise products are also available at this URL.

Creating a setup package with
Wise for Windows Installer

This appendix takes you through the process of creating a setup package for a sample Visual
FoxPro application using Wise for Windows Installer. You will learn how to:

e Create a new Wise for Windows Installer project

o Define features and add files to the project

e Add the VFP 8 runtime support files and other dependencies
e Define the type of release you want to build

e Compile, test, and deploy the release

370 Deploying Visual FoxPro Solutions

e Create upgrades and patches

The Sample Application

In this appendix we use the DeployFox Demo App to illustrate the construction of a setup
package using Wise for Windows Installer. This application, developed in VFP 8, is very
simple but representative of the type of application VFP developers often deploy. It consists of
a main EXE file, a ReadMe text file, an HTML help file, a data table with an index, and an
ActiveX control file, along with the VFP 8 runtime support files and the VFP 8§ HTML Help
runtime support files.

J We use the same sample application, called the DeployFox Demo App, as
an example throughout this book in order to provide as much consistency
between chapters as possible.

Creating a new Wise for Windows Installer project
When you first start Wise for Windows Installer, it prompts you to create a new project, as
illustrated in Figure 1.

New Installation File x|
1=
Cateqgories: Templates/T ools: IEE H-l
e | Fredefined Templates
“+{_] Custom Templates =)
~{Z] Other Templates indows
{0 Conversion Tools Application
“ Import Tools
Deszcription:
Starts a new Windows Installer package, with a user interface and neceszary tables already
defined.
— File type

" Create standard .M51 ar MSM file that containg all binary and cabinet files.
% Create WSI or WSM project file that can be compiled into an .MS1 or MSH.

)4 I Canicel |

Figure 1. Use the predefined Windows Application template when creating a new
setup project file for your VFP application.

Appendix B: How To: Wise for Windows Installer 371

Wise for Windows Installer comes with templates to assist you in creating various types
of setup projects. For a Visual FoxPro application, choose the Windows Application template
from the Predefined Templates category. Near the bottom of the dialog, under File type,
choose “Create .WSI or .WSM project file....” Click the OK button to create the new
project file.

Using the Installation Expert

The WEWI IDE provides three different views of a project. The one you primarily work with
is the Installation Expert view. When you create a new project, the Installation Expert view is
the default view. Illustrated in Figure 2, you can see the Installation Expert tab selected at the
bottom left. In many cases you can build a complete setup package using only the Installation
Expert view. The other two views—MSI Script and Setup Editor—provide lower-level access
to the setup package and allow for fine tuning if necessary.

‘J Wise for Windows Installer 5.2 - Standard Edition - Untitled -0 |L|

File Edit Pages ComponentRules Language Todls View Help

D@ < 0mFFPAFRLIW

Project Definition (=) Product

The information below i used during installation ta identif the product to the user. It iz alzo displayed in Add/Remove

+ Product Detail B i i
rodu: alls Programs in the Contral Panel and is used by subsequent patches and upgrades ta identify the product.

[5 zeneral Infarmation

|1 AddRemove Programs Name: Il::'eF'lO.'r'FDM Appendix B Demo App
[] path variables Yarsion: [fo0

1§ Resources
=3 Festures Manufacturer: IInformation Technology Associates

QefaullDirectory:l LChange |

™| Dontt update or recompress fles when saving [R5 only]

Feature Details

Target System

Product |dentification
Each ‘Windows Installer installation containg a unique product identification code. This code is used to determine
i ah existing wersion of the product is installed. E ach unigue product must have its own unigue product code.
Press the Generate button to generate a new product code for this installation

User Interface

Release Definition

Product Code: [{DSE7905C-1F0A-4E 04-4F6F-5CBE 73EBCO03} Generate |
Distribution
Application Tupe: IW’in32 [mon MET) ;I
> :
l MSI Script Setup Editor]” Compile | Test | Run | Distribute |

Figure 2. The Installation Expert view is your primary interface to the setup project.

The Installation Expert view consists of a set of page groups on the left side and a page
detail area on the right side. Each page group comprises a group of related pages. Clicking the
double-headed arrow icon expands or contracts a page group to show or hide the individual
page names in that group.

Not all setups require all the pages in each page group. In this appendix, we discuss only
the pages you most commonly need to use.

372 Deploying Visual FoxPro Solutions

Project Definition group

The first page group in the Installation Expert is the Project Definition group. This is the
normal starting place when working with a new project. Figure 2 shows the Project Definition
group expanded so you can see the various page names in this group. The Product Details
page name appears in bold because it is the currently selected page.

Product Details page

The properties and values for the Product Details page display in the page detail area on the
right, as shown in Figure 2. Among other things, this page is where you specify the name of
the product, its version number, and its manufacturer or publisher. In Figure 2 this information
is already filled in.

The Product Details page provides a space for the Default Directory, which is the default
location presented to the user in the Destination Folder dialog during installation.
Unfortunately, the value you probably want to set as the Default Directory—typically a sub-
folder named for your product under Program Files—does not exist in the drop-down list for
this field until you add the necessary folders to the project later on. Therefore, the Default
Directory is blank for now.

In a Windows Installer setup each product must have a unique product code. In Wise for
Windows Installer the product code GUID can be seen in the Product Identification area of the
Product Details page. WfWI generates a product code GUID for you each time you start a new
project. Normally you can use the product code generated by WfWI. If you need to change it,
click the Generate button for a random new one, or, if you need to use a specific product code
GUID rather than a randomly generated one, switch to the Setup Editor view and enter the
GUID there. For an explanation of Windows Installer product codes and when to change them,
please refer to Chapter 5, “Windows Installer Inside and Out.”

The last piece of information under Product Details is the Application Type. For a Visual
FoxPro application use the default setting of Win32 (non .NET).

General Information page

On the General Information page you enter the information you want the user to see when they
right-click on the setup program and choose Properties in Windows Explorer. Figure 3 shows
the General Information page for the Demo App.

The Installer Version field on the General Information page specifies the minimum
Windows Installer version required on the destination computer. The default is version 2.0,
which is the current version of Windows Installer as of this writing. Normally there is no need
to change the default setting, but sometimes you might need to. For example, if your product is
going to be installed on machines running Windows NT you should be aware that Windows
Installer version 2.0 requires Windows NT 4.0 Service Pack 6. If SP6 is not installed on your
target machines you need to specify an earlier version of Windows Installer in your setup
package. Although you cannot change the minimum Installer Version from the General
Information page, you can change it in the Product tab of the Setup Editor view.

Appendix B: How To: Wise for Windows Installer

373

'5 Wise for Windows Installer 5.2 - standard Edition - Untitled = | [m] |£|

File Edit Pages ComponentRules Language Tools Wiew Help

=L

. Product Details
General Information
115 AddRemove Programs
[] path variables

I Resources

=) Festures

Feature Details

Target System

User Interface

Release Definition

Distribution

BEEHF® LD
Project Definition () E

The information below iz stored in the setup program that's created when you compile. Uzers see this information when
they right-click the setup program file in windows Explorer and select Properties.

Title: IDeponFoH Appendix B Dema App v1.0.0
Subiject IDepIUyFUx Demo Application

Authar: |F|ick Barup

Kepwords: IDeponFoH setup installer

Installer Mersion: |2.DU

LComments: This is the demo app for DeployFox Appendix B. :I

Figure 3. Use the General Information page to specify the setup’s properties as seen
by Windows Explorer.

Features page

Every Windows Installer-based setup package requires the product to be organized into one or
more features. Features, as explained in Chapter 5, are the functional parts of a product as seen
from the user’s point of view. When performing a custom installation, users see a list of
features and can choose which ones to install. One feature is usually set by the developer as
required, while the others are required or optional at the developer’s discretion.
The DeployFox Demo App is organized into three features. The first feature consists of
the main EXE file, the ReadMe file, the VFP 8 runtime support library files, and the ActiveX

control file. The second feature includes the application’s HTML Help file (CHM) and the

VFP 8 HTML Help runtime support files. The third feature comprises the application’s data
table and associated index file, along with an ODBC data source name (DSN) and the Visual

FoxPro ODBC driver.

In Wise for Windows Installer, you use the Features page to specify the features in your
product. In a new WfWI project there is one predefined feature named “Complete,” as

illustrated in Figure 4.

374 Deploying Visual FoxPro Solutions

x

':, Wise for Windows Installer 5.2 - Standard Edition - DeployFox Demo App.wsi — |EI|_|

File Edit Pages ComponentRules Language Tools Yiew Help

D2~ (D FEREFe 0@
Project Definition (%)

 Product Detailz The following tree containg all of the features defined in this project. Use the Add, Delete, and Details buttons to define the
. set of features in your project.

Genersl Information
:ﬁ AddRemove Programs
[] path varisbles

il Resources Add
=) Features Delete

Feature Details
ove Up
Have Do
User Interface

Release Definition Add Condition

=& Installation Features Details

Target System

Distribution

Figure 4. Use the Features page to define the features in your product. A new project
file has one predefined feature named Complete.

To change the name of a feature and to specify other details about it, open the Feature
Details dialog by selecting the feature and clicking the Details button on the right. In the demo
app, we want to name the first feature—the one that contains the EXE file—"“Main Program.”
We also want this feature to be required. Figure 5 shows the Feature Details dialog reflecting
these settings.

In the Feature Details dialog, the Name field contains the name of feature as Windows
Installer references it internally. If you enter a Name with spaces, WfWI replaces each space
with an underscore character. The Title field is the title of the feature as the user sees it during
installation. The default value of the Title field is the value of the Name field with spaces
instead of underscores. The entry in the Description field is what the user sees in the
description area of the Select Features dialog during a custom installation.

The Main Program feature is at the top level of the feature tree, so its Parent is <None>.
Because we want the Main Program feature to be required, we select the Required Feature
check box at the lower left of the dialog. Clicking OK saves the settings and returns to the
Features page.

Appendix B: How To: Wise for Windows Installer 375

Feature Details x|
The following information applies to the installation of the feature. Edit the fields below to
modify how the feature will be dizplayed and installed.

M ame: IMain_F'ngram
Title: IMain Program
Parent: |<N0ne> ;I
D e=zcription: The main program file and the YFP 8 runtime support files. ;I
[|

Lewvel: INmmaI ;I Cuztom Walue: |3—
Drizplay: IVisibIe and Collapzed ;I
Attributes: IFavor Lacal LI
Adwvertizsing: I MNone ;I
Drirectony: I <nones ;I
¥ Fequired Feature [T Disable advertizsing if not supported by 05

— I

Figure 5. Use the Feature Details dialog to specify the name and other information

about each feature.

To add additional features for the product, click the Add button. This opens a Feature
Details page for the new feature. Fill in the necessary information for each new feature and
click OK to add the feature to the feature tree.

d

By default, the value of the Parent field of a new feature is the name of the
feature selected when you click the Add button. To add new features at the
top level of the feature hierarchy, select “Installation Features” at the top of
the feature tree before clicking the Add button. If necessary, however, you
can change the Parent of a feature by selecting a new Parent from the drop-
down list in the Feature Details dialog.

The completed feature tree for the demo app is shown in Figure 6. You can see all three
features are at the same level of the feature hierarchy.

Features

The following tree containg all of the features defined in this project. U;
=t of features in your project.
E

P

Figure 6.

Installation Features 4
=i I M ain_Program €
=~ | Help_Files

= P | Data_Files

<
R P F 4 /J

The completed feature tree shows all three features for the demo app.

The appearance of this tree in WfWI is very similar to what the user sees during
a custom installation.

376 Deploying Visual FoxPro Solutions

At this point we are finished with the Project Definition page group. If you are working
with a new project file and have not yet saved it to disk, this is a good time to do so. We
named the project file for the demo app DEPLOYFOX DEMO APP.WSL

@ The DEPLOYFOX DEMO APP.WSI project file is included in the chapter
downloads. You need a copy of Wise for Windows Installer to review and
edit the contents of this project.

Feature Details group

The next group in sequence is the Feature Details group. This group includes the pages you
use to add files to each feature of the product, create registry entries and shortcuts, define
ODBC resources, and specify the necessary merge modules such as those for the VFP
runtime files.

Merge Modules page

Visual FoxPro programs require the VFP runtime support library files to be installed on the
user’s computer. A Windows Installer setup does not add these runtime support files to the
setup project individually. Instead, they come pre-packaged in the form of merge modules.
The Merge Modules page is where you tell Wise for Windows Installer which merge modules
to include in the setup package.

When you install Visual FoxPro 7.0 or 8.0 on your computer, the corresponding runtime
merge modules are also installed. WfWI does not automatically know where to find all the
merge modules on your computer, however, so you need to tell it where they are. The VFP 8
merge modules are typically installed in Program Files\Common Files\Merge Modules. To tell
W{WI this folder contains merge modules, go to Edit | Preferences on the WfWI main menu
and select the Merge Modules tab in the Preferences dialog as illustrated in Figure 7. Click the
Add button and navigate to the folder containing the VFP 8 merge modules. Click OK to add
this folder to the list of those whose contents WfWI includes when listing merge modules for
you to add to your project.

You can add as many additional merge module folders as necessary. If you’re not sure
where the merge modules are located on your computer, search for all files with an MSM file
name extension and note their locations. Figure 7 illustrates you can also change the default
merge module directory, which may be sufficient if all the merge modules you need are in a
common location.

Once Wise for Windows Installer knows where the VFP 8 merge modules are located,
you’re ready to add the required merge modules to the setup project. Similar to files and
folders, merge modules are added to a project on a feature-by-feature basis. To add a merge
module to a project, first select the feature the merge module belongs to from the drop-down
list at the top of the Merge Modules page. Click the Add button on the right to bring up the
Add Merge Modules Wizard, where you can select the desired merge module(s) from the list.

Appendix B: How To: Wise for Windows Installer 377

x|

General | Installation E xpert I Digital Signature: I Frompts
Merge Modules I Source Contral I MET Azzemblies

Default Merge Module Directony:
|C:\Program Files\Comman FileshMerge Modules\Wize Solutions J

[~ Do ot show merge maodules from the Default Merge Module Directony

The following directories will be searched for merge modules when you click the
Add button on the Merge Modules page. To add a directory to this list, click the
Add button. To remowe a directory from this list, click the Delete buttan.

Include Subc Add

¢ c:MProgram Files'Common Files'Merge Modules m Delets |

L 2

Ok I Cancel |

Figure 7. Use the Merge Modules tab of the Preferences dialog to tell WfWI about
other directories containing merge modules, such as those for VFP 8.

The demo app requires the VFP 8 runtime libraries merge module, associated with the
Main Program feature, and the VFP 8 HTML Help runtime files merge module, associated
with the Help Files features. It also requires the MSCOMCTL merge module, which contains
an ActiveX control used by the app.

Figure 8 shows the first step of the Add Merge Modules Wizard with the VFP8Runtime
merge module selected in the list. Note each merge module has both a name and a description.
To help you locate the desired merge modules, click the appropriate column header to sort the
list either by name or by description.

Notice the lower section of this dialog, where you can see additional information about
the selected merge module, including its actual path and file name. Many merge modules have
similar names and even similar descriptions, which sometimes makes it difficult to know
which one to select. Verifying the actual path and file name of a merge module is a good way
to confirm you selected the one you want.

After selecting the merge modules you want to add to your project, proceed through the
next two steps of the Add Merge Module Wizard to finish the process. Step 2 enables you to
specify a destination directory for the files installed by a merge module. Most merge modules
come with pre-defined destination directories so you can usually skip over this step. Step 3
lets you associate a merge module with other features besides the currently selected feature,
if necessary. Repeat the merge module selection process for each feature that installs a
merge module.

Figure 9 shows the Merge Modules page for the demo app’s Main Program feature after
the required merge modules are added. We manually added the VFP 8 runtime files merge
module to the project by selecting it from the list shown in Figure 8. The VFP8 runtime files
require the Visual C++ 7.0 runtime file and the GDI Plus DLL. Selecting the VFP8 runtime
files merge module automatically adds the merge modules for these other files to the project.

378 Deploying Visual FoxPro Solutions

Add Merge Module Wizard

Select Merge Module

Select one or more merge modules to add to your installation. Use the Directories button to view
other merge modules by adding their parent directories. Use the Download button to download the
latest versions of merge modules.

Module Mame i+ | Diescription |:I
Microsoft VYisual FoxPro 8 Runtime Libraries
O 1% YFPODECDriver Wizual FoxPro ODBC Driver Merge Module
0% WinHTTP_QFE WinHT TP QFE Installer (platform-specific]
[[1% wMI_DECOUPLED_PROVIDER ‘wihl DECOUPLED PROVIDER —
158 whIUTILS MILTILS h
— Detail
Title: Microsoft Wisual FoxPro 8 Runtime Libraries -
Fath: c:\program files\comman filesimerge modules\WipERuntime. msm
Author: Microsoft Corporation
Wersion: 8.0
Language: 0 LI
Directories | Download |

< Back I Mest > I Cancel |

Figure 8. Add a merge module to the project by selecting its check box in the list.
Additional information about the selected merge module is presented in the lower
portion of this dialog.

The demo app uses the slider control from the MSCOMCTL.OCX ActiveX control, so
we want to install that control as part of the Main Program feature. A merge module
named MSCOMCTL.MSM contains this control, which we also added to the project. The
MSCoOMCTL.MSM merge module, in turn, requires the COMCAT and OLEAUT32 merge
modules. In total, six merge modules install with the Main Program feature, as shown in
Figure 9.

J Unlike the VFP 8 runtime merge module, the VFP 7 runtime merge module
does not automatically add the other merge modules on which it depends.
When deploying a VFP 7 app you need to select these other merge modules
manually. For a list of required merge modules, please refer to Chapter 3,
“Packaging the Installation.”

In a similar manner, add the VFP8 HTML Help support library merge module to the Help
Files feature, and the Visual FoxPro ODBC Driver Merge Module to the Data Files feature.
The choice of which merge modules belong with which features is, to some extent, up to you
as the developer. For example, we could have chosen to install all the merge modules as part
of the Main Program feature. This would work for any custom installation regardless of the
features the user selects because the Main Program feature is required and therefore always
installs. Associating the merge modules with the appropriate feature streamlines the
installation, because the merge modules only install if the feature requiring them is installed.

Appendix B: How To: Wise for Windows Installer 379

)
L

File Edit Pages ComponentRules Language Todls View Help

DEECs @M 7 EEES L 3

Project Definition [0 |

Wise for Windows Installer 5.21 - Standard Edition - DeployFox Demo App.wsi

The following merge modules are included in the current feature. Click the Add button to add a new module to thiz

Feature Details 21 || feature.
ﬁ Merge Modules LCurrent Feature: IMain_Pngram [E] j
[®/ Files | |
rﬁ Registry Module Name & Description Version &I
3 I Files E COMCAT Microsoft Component Categary Manager Library 4.71.14801
ﬁ MSCOMCTL ‘windows Cammon Controls Active Contol DLL E.0.88.12
I Sharteuts .) i e Add
2 Envi —— ﬁ YFPERuntime Microzaft Visual FoxPro 8 Runtime Libraries a0
& ETEThE R %5 WL System CRT_ MicrosoftVisual C++ 7.0 Runtime 1.0 Delete |
& File Associstions %5 WFP_GDIPus_dl GDI Plus Redist module &0
Services ﬁ OLEAUTI2 Microsoft OLE 2.40 for ‘Windows NT[THM] and Windows... 24042751
2 ODBC

Target System

User Interface

Release Definition

Distribution

Figure 9. The Main Program feature installs the Visual FoxPro 8 Runtime Libraries
merge module and its dependencies. It also installs the MSCOMCTL merge module,
which in turn requires the COMCAT and OLEAUT32 merge modules.

Files page

The Files page is where you add the product’s files to the setup project. Done on a feature-by-
feature basis, the first step is to select a feature from the drop-down list at the top of the page
detail area. As you can see in Figure 10, the list box has an entry for each of the three features
we defined on the Features Page. There is also a fourth choice named All Features (Modify
/Delete only). This choice is useful when you want to see all the files for all the features at the
same time, but you cannot add new files with this choice selected. In Figure 10 the Main
Program feature is selected in preparation for adding directories and files for that feature.

The Files page is organized into four panes. The two upper panes provide access to the
folders and files on your computer (the source). The two lower panes represent the folders and
files on the user’s computer (the destination or target). You can drag the center vertical divider
left or right to resize the panes if desired.

380 Deploying Visual FoxPro Solutions

=

File Edit Pages ComponentRules Language Todls View Help

Wise for Windows Installer 5.21 - Standard Edition - DeployFox Demo App.wsi

(=]]

[DEE cs 0%, FEAES LS

I

Project Definition % | Files
- Add files to wour installation. Select the source folder or files). select the destination folder. then click. either the Add
Feature Details @ 1 Contents or Add File button ta complete the operation.
ﬁ Merge Modules | LCurrent Feature: |Main_Program j
[®/ Files Il Features (Modify/D elete anly)
 Registry m DBS::DTJ 1 ain_Program
& MFiles G- My Docuny e Fiee 7

Shartcuts
5’;’,{5 Environment “ariables

H A=, My Comp D ata_Files
- tdy Netwolk Frace

Dell Business Web Tools 2KE Sh
A Dell Picture Studio 2KE Sh
Q Dell Solution Center
Bl tntervidea winovo

 File Aszociations

Services

2 ODBC

Target System fudd Contentsl A Aicld|File | 4

User Interface Diestination Computer Mame B | Sizel Type | Modi... |
-2 My Documents

{Z1 Program Files

++{Z] Comman Files
{7 DeployFox

| {27 Appendib
423 Demaobpp

{21 Windows ‘ I I LI

Mew Falder | Delete Fo\derl Wildeards | Operation | Delete | [etails |

Release Definition

Distribution

MSI Script Setup Editor T” Campile | Test | Run | Distribote |

Figure 10. On the Files page, first select the desired feature from the drop-down list
at the top. Next, add directories and files for that feature as required.

We want the demo app’s EXE file and other related files to install in a folder named

DEPLOYFOX\APPENDIXB\DEMOAPP under the user’s Program Files folder. Before we can add
files to this folder in the setup project, we must first tell Wise for Windows Installer to create
this folder structure on the user’s machine. Specify this in the lower left pane of the Files page.
To add a new folder simply right-click the parent folder in the lower left pane, select New
Folder from the shortcut menu, and type in the name of the new folder. In Figure 10 you can
see the desired folder structure for the demo app has been created.

Directories, like files, are added to a project on a feature-by-feature basis.
Therefore, directories created for one feature may not be visible when
another feature is selected. In order to see the directories for all features
regardless of the feature currently selected, go to the WfWI Edit |
Preferences menu, choose the Installation Expert tab, and select the “View
directories for all features on Files page” check box. Also, select the “View
reqistry keys for all features on Registry page” check box to set the
corresponding option for registry entries.

Appendix B: How To: Wise for Windows Installer 381

Now, with the desired feature selected at the top and the desired folder selected in the
lower left pane, you can add files to that folder. To do so, select the source file in the upper
right pane and click the Add File button, or drag the source file from the upper right pane to
the lower right pane.

Repeat this procedure for each feature, adding the required directories and files for each
one. In the demo app, the Main Program feature installs the EXE file and the ReadMe file. The
Help Files feature installs the HTML Help (CHM) file. The DBF and CDX files install with
the Data Files feature. The demo app requires its data files be located in a sub-folder named
Data under DemoApp, so to complete the Data Files feature you must first create the Data sub-
folder, and then add the two data files to it.

At this point the list of files and folders for installation by the setup is complete. You can
now return to the Product Details page of the Product Definition group (refer to Figure 2) and
set the default installation directory for the product. The desired default installation
directory—Program Files\DeployFox\AppendixB\DemoApp—now appears in the drop-down
list when the default directory Change button is clicked, as illustrated in Figure 11.

Set Default Install Directory x|

Default Directory: | Prograr FileshD eployFox\Appendi=B\D emadpp LI Mew Folder |
F Y

Program Files' D eployF oshAppendizBhDemodpo
[Fata

Each feature may b Broqram Files\DeployFoxhdppendisB\D emadpp'
Feature Dizlog. Chiviodows
default dirsctary o By indowstAdrin Tools

WwindowshFants
I¥' Changs Featurg WwindawsyProfiles

Ok I Cancel |

Figure 11 The folders defined on the Files page appear in the drop-down list when
you click the Change button to set the default directory on the Product Details page.

A note about data files

Data files need special consideration to avoid potential problems when installing future
product updates or when the product is uninstalled, which can occur silently during certain
types of updates. When installing a product update, the Windows Installer file versioning rules
are generally sufficient to avoid overwriting live data files updated by the user since the
original installation. However, you can provide an extra measure of protection for data by
setting special Windows Installer attributes for these files. In Wise for Windows Installer, this
is done from the Components tab of the Setup Editor view. Using this view, select the
component(s) containing the data files. Right-click the component name, choose Details from
the shortcut menu, and select the check boxes for “Never overwrite if key path exists” and
“Leave installed on uninstall,” as illustrated in Figure 12.

382 Deploying Visual FoxPro Solutions

Component Details ﬂ
Component; |customers.CD><
Directory: IF'mgram FiIes'\DepIDyFox\.&ppendixB\Demu&;I MNew |
GUID: I{32EBEB4U-EIUCF-45D3-EDBE-?E?FC385EUBD} Generate |

Condition: | Buid |

Run Location: |F|un Locally

f.en Path Typpe: IFile K.en Path

Ll L] Ll

File Kep Path: | customers.CDX

[T Always increment shared .DLL court

v Leave installed on uninstall

[™ Check condition during reinstall [Transitive)
W Mever ovenarite if key path exists

Compiler Optiohs
™ Selfregister key path file before compilz

[Rescan advertizsing information during compile

Impart .REG File: Browse |

[~ Extract advertising information from registiy file

ar. I Caticel |

Figure 12. To protect data files from being overwritten or uninstalled, mark the
component containing them as “Never overwrite if key path exists” and “Leave
installed on uninstall.”

J In a Windows Installer setup package, components are the building blocks
of features. Wise for Windows Installer automatically creates a component

structure for you from the information you supply for each feature. Because
it’s created automatically you do not ordinarily need to be concerned with
the component-level structure of a setup package, but WfWI gives you
the ability to work at this level if necessary. For more information about
features and components please refer to Chapter 5, “Windows Installer
Inside and Out.”

Registry page

The Registry page makes it easy to add registry entries to the target machine at installation
time. As illustrated in Figure 13, the Registry page is arranged into four panes much like the
Files page. The upper half of the Registry page represents your machine (the source) and the
lower half represents the user’s machine (the destination).

Appendix B: How To: Wise for Windows Installer 383

feature. Be sure to select the desired feature from the drop-down list at
the top of the Registry page before adding registry keys and values to
your setup project.

@ Remember that registry keys, like files, are always associated with a

B3

w Wise for Windows Installer 5.21 - Standard Edition - DeployFox Demo App.wsi - |E| ILI
File Edit Pages ComponentRules Language Tools Wiew Help

(D@ ¢ |0 FEF@ LW

Project Definition 53]
Select the registy keys and values that will be added during the installation. Click the Add button to create a new key.
. Feature Details @ " | The top list boxes display the registry on your computer and the bottom bwo display the keps to install.

ﬁ Merge Modules LCurrent Feature: IMain_F'rogram j
™ Files
&A Registry My Camputer Mame 4 I Diata I
b N Files D HKEY_CLASSES_ROOT

-] HKEY_CURRENT_USER
2] shortouts - HKEY_LOCAL_MACHINE
;,'z.:ﬁ Environment atiables -] HKEY_USERS

7 File Associations

Services
2 ODBC

Target System sadeys |) Add Walues | J
User Interface Drestination Computer Mame 2 | Diata |

-7 HKEY_CLASSES_ROOT
{7 HKEY_CURREMT_UUSER
(7] HKEW_LOCAL_MACHINE
(] HKEY_USER_SELECTABLE

Release Definition

Distribution

Add - Delete Key | Delete!aluel [retailz |

[MS| Seript Setup Editar]']] Compile | Test | Run | Distribute |

Figure 13. Use the Registry page to define registry keys and values to create on the
destination computer during installation of your product.

Registry entries can be added to the setup project in several ways. If the keys and values
you want to add already exist in the registry on your own computer, you can select them in the
source computer tree (upper left pane of the Registry page) and click the Add Keys button to
add them to the corresponding registry location in the destination computer tree (lower left
pane). You can accomplish the same thing by dragging a key from the source computer pane
to the appropriate location in the destination computer pane.

If the keys and values you want to add do not already exist in the registry on your own
computer, you can add them to your setup project by importing a REG file or by entering them
manually. To add registry keys and values manually, start by selecting the desired root key in
the lower left pane of the Registry page. Right-click on this key and choose Add Key from the
shortcut menu. This opens the Registry Details dialog illustrated in Figure 14. Use this dialog
to enter the information necessary to define the key you want to add.

384 Deploying Visual FoxPro Solutions

Registry Details il
General | Permissions | R
Dperation: ICreate;’update key and value LI
Root: IHKEY_USEF!_SELECT:&BLE LI
Kew ISthwale\DepID_I,JFD:-:\.-’-‘n.ppendi:-:B “Demodpph1.0
Walue Mame: IAppF’ath
Dataalue: [INSTALLDIR] =]
[|
Data Type: IString ;I
Cancel |

Figure 14. Add registry keys manually with the Registry Details dialog.

Figure 14 shows how to add a key to capture the value of the folder where the user installs
the product. The root key HKEY USER SELECTABLE shown in Figure 14 is a pseudo-key
that resolves to HKEY CURRENT_ USER or HKEY LOCAL_ MACHINE at installation
time, depending on whether the users chooses a per-user or a per-machine installation. The
data value [INSTALLDIR] is a Windows Installer property whose value is the destination
folder selected by the user at installation time.

After filling in the necessary information in the Registry Details dialog, click OK to add
the new registry key and value(s) to the setup project. When finished, the new registry entries
show up in the destination computer portion (lower half) of the Registry page, as shown in
Figure 15.

{1 HKEY_CURREMT_USER :| Mame o | Data |
{0 HKEY_LOCAL_MACHINE a8 &ppPath [INSTALLDIR]
{3 HKEY_USER_SELECTABLE

-7 Software

ED DeployFax
E-(7 Appendi-B
B Demadpp

..... e]
T3 HEEY [IEFRS ll

Agdd v| Delete ey | Deleteyaluel Details |

Figure 15. Registry keys to add at installation time appear in the destination computer
portion of the Registry page.

Appendix B: How To: Wise for Windows Installer 385

Shortcuts page

Use the Shortcuts page to define new shortcuts to be created on the user’s machine. For the
demo app, we want to create a shortcut to the main executable program, DEMOAPP.EXE, and
place it on the user’s desktop.

Like files and registry entries, shortcuts need to be associated with a feature in the setup
package. To begin the process of creating a shortcut, first select the desired feature from the
drop-down list at the top of the Shortcuts page. Click the Add button on the right. This
launches the shortcut wizard, which, for a shortcut that points to a file, has three steps:

e Shortcut Type—the target of the shortcut can be a file in the installation or a
command line entry

o Shortcut File—if the target is a file in the installation, select the file from the list of
files associated with the selected feature (this step is omitted if the target of the
shortcut is a command line entry)

e Shortcut Destination—choose the destination from the tree representing folders on
the destination computer.

To create the desktop shortcut to DEMOAPP.EXE, first select the Main_Program feature
from the drop-down list. Click the Add button and select File in this installation as the
shortcut type, as illustrated in Figure 16. To create a conventional shortcut, clear the
Advertised check box.

New Shortcut

Shortcut Type

Thiz wizard will create a new shortcut for pour installation. Shorteuts can be created for files within
thiz ingtallation ar far files on the destination computer such as notepad. Choose the shartout type
below.

% Filz in the installation

Advertised Shortcuts can only exist in the Start kenu or on the desktop. These shortouts will
be installed when an application iz advertized and will perform installation-on-demand when
activated.

I Advertised

" Command Line

Eriter the command line and icon name for the shortout on the destination machine below,

Command Line I

Shorteut Hame: |

< Back I Mext > I Cancel |

Figure 16: To create a shortcut to a file, choose “File in this installation” in the first
step of the shortcut wizard.

In step two of the shortcut wizard, select the shortcut’s target file. Because the target is a
file in the installation and because the Main_Program feature is selected, the file tree in step

386 Deploying Visual FoxPro Solutions

two displays the files associated with the Main Program feature, as shown in Figure 17.
Select the DEMOAPP.EXE file as the target of this shortcut.

MNew Shortcut

Shortcut File Selection

Select one of the files in your installation from the list below. Only thoze files that you have zelected
to b inztalled will be lizted

Drestination Computer demoapp.exe
F-Z3 My Documerts readme. st

£ Program Files
{3 Common Files

| B3 DeployFox

| ED AppendizE
23 Demodpp

-2 Windows:

< Back I Mexst > I Cancel |

Figure 17: Select the shortcut’s target file from the list of files associated with the
selected feature.

Step three of the shortcut wizard is where you select the destination folder for the
shortcut. Typical choices are the Start menu in the Program folder or the Desktop folder,
although other choices are available as illustrated in Figure 18.

Select a destination directory for the new shortcut from the list below,

[Drestination Computer e
D My Documents
(23 Program Files
B0 Windows

{1 Admin Tools
{7 Fonts
-] Profiles
D Al Users

{1 Local Settings
{1 MetHoad ll

Mew Folder |

< Back I Finish I Cancel |

Figure 18. To place a shortcut on the user’s desktop, choose Desktop under
Windows\Profiles in step three of the shortcut wizard.

Appendix B: How To: Wise for Windows Installer 387

When you click the Finish button after step three of the shortcut wizard, Wise for
Windows Installer automatically opens the Shortcut Details dialog for the new shortcut. This
dialog, shown in Figure 19, is the same dialog you get by selecting an existing shortcut and
clicking the Details button.

The Shortcut Details page allows you to modify the settings for the shortcut and provides
access to a few properties not found in the shortcut wizard. Among the additional properties of
interest here are the Description and the Working Directory. The Description is optional and
can be anything you want it to be. The Working Directory is more important, because the
demo app expects to find its data (the DBF and CDX files) in a sub-directory called Data
underneath the directory where the product is installed. In order for the program to work
properly when launched from the shortcut, we need to make the Working Directory the
directory where the product is installed.

Shortcut Details il
Mame: |demoapp.exe
Target File: Idemoapp_exe
Dest. Directary: IWindows\ProfiIes\Desktop ;l News Folder |
Arguments: |
Description: IDeponFox Appendix B Demo App
Working Directary: IProgram Files\D eployF ox\AppendiBA\D emodpp ;I
Show "Window: I Marmal ;I
lcon Mumber: ID
[~ Advertized FEeature; IMain_F'rogram ;I

D MHew [zan |

Figure 19. The Shortcut Details page provides access to the shortcut’s properties.

Cancel |

Clicking OK on the Shortcut Details dialog closes the dialog and adds the new shortcut
to the list on the Shortcut page. Using the above sequence of steps you can add as many
shortcuts as you like to the project. Don’t forget to select the appropriate feature before adding
each new shortcut.

ODBC page
If you want your setup to enable ODBC access to your application’s VFP data, you probably
want to install a DSN on the user’s machine. An easy way to do this is to import a DSN you
already created on your own machine. For the demo app, we created a system DSN on our
development machine named DeployFoxSample. This DSN points to the demo app’s
CUSTOMERS.DBF table. In most real apps you would probably create a DSN for a database
container (DBC) instead of for an individual DBF file, but the demo app does not use a DBC.
To add the DeployFoxSample DSN to the setup project, first select the ODBC page, and
then select the feature to install the DSN with from the drop-down list. Because the DSN is
relevant only if the data table is installed, we choose to install the DSN as part of the Data
Files feature. Select the Data Files feature, and then click the Add button and choose Data
Source from the drop-down menu. This opens the ODBC Data Source Details dialog.

388 Deploying Visual FoxPro Solutions

In the ODBC Data Source Detail dialog you can create a new DSN or import an existing
one. To import an existing DSN, click the Import button. This brings up the Select Data
Source dialog that displays a list of DSNs registered on your computer, shown in Figure 20.

Data Source Mame; Impart |

[a]{7= A S elect Data Source x|

~ Registrial [visual FoxPro Database
. . |Visual FoxPro Tables

{* Reqi MOIS

" Regi |M5 Access Database
Excel Files

Source At |dBASE Files

DeluxeCD

ECDChusgic ‘I

DeployF oxS ample

v
ﬂ 0K I Cancel | 4 |

Ok I Cancel |

Figure 20. You can easily import a DSN by selecting it from the list of data sources
registered on your machine.

For the demo app select the DeployFoxSample DSN from the list. Closing the Select Data
Source dialog populates the fields in the ODBC Data Source Detail dialog with the
information from the DSN you’re importing. The only thing to do manually is select per-
machine or a per-user registration for the DSN. Figure 21 illustrates the completed DSN.
Clicking OK at this point adds the DSN to the project. Repeat this procedure for each DSN
you wish to add.

To edit an existing data source entry, select it from the list of those shown on the ODBC
page and click the Details button on the right. Wise for Windows Installer opens the ODBC
Data Source Details dialog shown in Figure 22. The Source Attributes area in the lower
portion of this dialog is an edit box where you can change the attributes associated with this
data source.

Appendix B:

How To: Wise for Windows Installer

389

ODBC Data Source Details

x|

Data Source Mame: IDepIn}lFoxSample

Driver. |Microsofl izual FouPro Driver

— Reqistration
¢ Register Per Machine
" Reqister Per Uzer

Source Attributes:

SourceD B=c:\DeployF ox\DemotpphD ata
Dezcription=DeployFox Sample DSN
SourceType=DEBF

BackaroundFetch=ves

Excluzive=Ho

Mull=r'es

Deleted=""ez

<

ok |

Canicel |

Figure 21. The ODBC Data Source Details dialog shows the information from the

DeployFoxSample DSN we imported.

¢

To make your data source portable, change the SourceDB attribute from a
literal value (like C:\DeployFox\DemoApp\Data, as shown in Figure 21) to
a variable whose value resolves to the location of the data on the user’s
machine at installation time. In the DeployFox demo app, the data is

installed in a sub-folder named Data under the folder where the application
itself is installed. The Windows Installer property INSTALLDIR resolves to
the folder where the application is installed, so changing the value of the

SourceDB attribute to [INSTALLDIR]Data makes the DSN point to the

correct sub-folder no matter where the user installs the app.

Visual FoxPro ODBC driver

If you install a DSN that uses the Visual FoxPro ODBC driver, you should also install the VFP
ODBC driver itself. There is a merge module called VFPODBC.MsM for this purpose, but as

of VFP 8, it is no longer installed with VFP. If you do not have this merge module on your
computer from an earlier version of VFP, you can download it from the Microsoft MSDN

Web site at http://msdn.microsoft.com/vfoxpro/downloads/updates/default.aspx. Look for

the Visual FoxPro ODBC Driver download in the Visual FoxPro 6.0 section.
This concludes the discussion of the Feature Details group. At this point most of the work

necessary to complete the setup project is done. There are a couple of other pages in the
Feature Details group we did not talk about, and there are two other groups—the Target
System group and User Interface group—we do not go into here because for many setup

390 Deploying Visual FoxPro Solutions

projects you won’t need them. Knowing what you now know about Wise for Windows
Installer, you should have no difficulty exploring these other two groups on your own.

We should point out, however, it’s necessary to include the User Information Dialog if
you want to give your users the choice of installing for all users or only for the current user.
This dialog is selected by default, and can be found on the Dialogs page of the User Interface
group. On that same page is an option for a License Dialog, which by default is not selected.

Release Definition group

Once you define the features of your application and specify the files, merge modules, registry
entries, shortcuts, and other resources your setup should install, you are ready to define and
build the release package. The pages in the Release Definition group enable you to define the
type of release you want to build, which features it should include, what media it’s intended
for, whether or not to create a SETUP.EXE, and other related choices.

Releases page

Wise for Windows Installer allows you to define more than one release in the same project.
For example, you might want to build one release for network distribution and another for CD-
ROM or Web distribution. Perhaps you created both a standard and a professional version of
your product, with the professional version installing more features than the standard version.
Each of these is a potentially different release.

The demo app, however, needs only one type of release. It is designed for distribution on
a CD-ROM or for download over the Web, so we want to build it as a single EXE file. To
define this release, first select the Releases page in the Release Definition group. In a new
project the Releases page contains one pre-defined release named Default, as illustrated in
Figure 22.

Although you can keep the name Default, we recommend changing it to something more
meaningful. On the rest of the pages in the Release Definition Group you refer to releases by
name. When there are several releases, meaningful names help you keep them straight.

The name and other attributes of a release can be changed in the Release Details dialog,
shown in Figure 23. To bring up the Release Details dialog, select the release from the list and
click the Details button on the right. In the Release Details dialog, enter the Release Name,
MSI File Name, and Description for the release. In most cases you can accept the defaults for
Installation Theme, Compression Type, and Release Type. Be sure the “Build this release
during compile” is selected, and click OK to save these values.

Release Settings page
One of the main purposes of the Release Settings page is to enable you to select the features
that install with each release. The Release Settings page also provides access to certain
Windows Installer properties and summary information, which you do not ordinarily need to
change. You can also edit the properties and summary information on the Summary and
Properties pages under the Product tab of the Setup Editor view.

The Release Settings page of the demo app project is shown in Figure 24. Note the drop-
down list at the top, with “Single Image” selected as the current release. As you can see, all
three features install with this release.

Appendix B: How To: Wise for Windows Installer 391

"., Wise for Windows Installer 5.21 - Standard Edition - DeployFox Demo App.wsi - |E| ILI
File Edit Pages ComponentRules Language Tooks View Help

DEH 0% FEE@ 1 @
Project Definition ¥
- “f'ou can generate multiple installation packages from a single installation. Below, add a new release for each package pou
Feature Details @ want ko generate fram this M5 file. [You cannat create multiple releases from an M5 file.)
Target System @ Build | Release Mame | M5l File M ame ‘ Desoription | Installation Th... | Compression ... ‘ [etailz
Drefault Mone Mormal [M5Z1P)
User Interface) o

Release Definition Delste

" Releases
\’:Z' Releaze Settings Lompile
£, Build Options
b Media

Q Languages

Figure 22. Each project must define at least one release. A new project automatically
contains a release named Default, which you can modify to suit your needs.

Release Details il

MHame the release and its rezulting .M51, and choose whether it iz built by default.

Felease Mame: ISingIe Image
5| File Mame: IDeponFox Dema App.masi
D escription: |Deplo_l,ch-x Demo App

Installation Theme: INone

Compreszion Type: I Mormal [M5ZIP)

Ll Lef e

Feleaze Type: IDefauIt

[¥ Build this release during cormpile

Cancel |

Figure 23. Use the Release Details dialog to specify the release name, MSI file
name, and description for each release.

392 Deploying Visual FoxPro Solutions

Release Settings

Override property and summary itemg for this releaze and mark the features to include in the release. |
only valid for W51 project files. ;

LCurrent Releaze: |Single_Image

Froperties

Surmmnar;
eatures
Main_Program

=) Help_Files
= Data_Files

P J,‘/..) _-,/

Figure 24. The Release Setting page lets you specify which features to install with
each release.

Build Options page

You make two important decisions on the Build Options page. The first is whether to build the
release as a single self-contained SETUP.EXE, a SETUP.EXE with a separate MSI file, or just an
MSTI file. The advantage of creating a SETUP.EXE is the end user can simply run it to install the
product. The additional advantage of a single self-contained SETUP.EXE file is you only need to
distribute one file to your users. Because we want to be able to deploy the demo app over the
Web as well as on CD-ROM, we chose the single EXE build type as shown in Figure 25.

Build Options

The optionz below let vou customize the build options per release. Choose compression options, pre-y
choaosze the file format of the output files. Also zet options for languages.

Current Release: |Single_Image j

[~ Use short file names for files uncompressed outside of the install

A EXE can be uzed ta inztall the software and optiohally inztall Windows Installer
runtime support. A& single-file EXE can alzo be pazsword-protected.

.EXE Dptions: ISingIe-fiIe E=E [only valid for files inside .MS1)

Pagzzword: I

=l
Pre-install Options: IDD rot pre-install Windows Inzstaller or MET runtime support ;I

windows |nstaller Runtime Yersion: x: ILatest 'l NIJ2DDDMP:ILGIESI 'l

\MET Framework Runtime ‘Werzion: ILatest

I~ DelaywWindaws [nstaller runtime reboot until after praduct installation
[~ Prampt to remove previous version before instaling

I Include all languages in inztallation EXE

[Always prompt for installation language

L

P e S Y

Figure 25. Use the Build Options page to determine the type of build (.EXE
Options) and whether to install Windows Installer on Windows 9x/NT machines
(Pre-install Options).

The second decision you make on the Build Options page is whether to install Windows
Installer on Windows 9x/NT machines. Windows Installer is an integral part of Windows 2000

Appendix B: How To: Wise for Windows Installer 393

and Windows XP. Windows Installer is also available as an add-on for older versions of
Windows, but you can’t be sure it’s installed on all computers running those older operating
systems. If your product will be installed on computers running Windows 95/98 or Windows
NT, you may want to make your setup package install Windows Installer before installing
your product. This is easy to do, and the only downside is your setup package is somewhat
larger than it would be otherwise.

It’s important to note the choice to pre-install Windows Installer as part of your setup is
only available if you choose to create a SETUP.EXE. The option to pre-install Windows Installer
is not available for the MSI-only build type. Figure 25 shows the various choices and options
available on the Build Options page.

Media page

The Media page gives you control over how the product is packaged for the distribution
media. Each project requires at least one media definition. In a new project, there is a pre-
defined media entry named Basic. For small deployments the default values in the Basic media
entry are probably sufficient and you won’t need to make any changes. For larger products,
such as those requiring more than one CD, you might want to exercise some control over the
output media, such as setting different file compression options and controlling which features
are written to which CD.

The Media page also enables you to specify the folder(s) on your machine where the
WIEWI compiler output is written prior to being copied to the distribution media. If you do not
specify a destination folder for the compiler, the output files—the MSI file, the EXE file, and
any external files being distributed—are written to the same folder as the project file. In our
experience it is better to direct the compiler output to a folder of its own.

To demonstrate the use of the Media page, we changed the pre-defined name Basic to
Single Image and specified the output files be written to a sub-folder called Release Files
under the project folder. Make these changes in the Media Details dialog shown in Figure 26.
Open the Media Details dialog by selecting a media row and clicking the Details button.

In the Media Details dialog you can edit the Media Name field directly. The Compression
Option and Custom Media Settings areas of this dialog are disabled if you chose to create a
single-file .EXE under Build Options. You can add a new destination directory by clicking the
Add button to the right of the Media Destinations portion of the dialog. In Figure 26, you can
see we added the directory C:\DEPLOYFOX\WISE SETUPS\RELEASE FILES. The
Features/Components section of this dialog shows that all features of the product are included
in this media definition.

Languages page

On the Languages page you can change the language used in the dialogs presented during
installation. Choices included with the Standard edition include French, German, Italian,
Portuguese, and Spanish. You can even create a multiple-language release. If you are building
an English-only release, however, you do not need to change anything on the Languages page.

394 Deploying Visual FoxPro Solutions

Media Details : x|

Media Mame: |Single Image

LCompression Option: I Compresz files inside .MS51

Cab Options: I Guickest [new files and modules get cab file] LI
— Cugtom Media Settings [Project Files only]

| Share media destinations /size information with previous media entr

I ax Media Size: 1] IKB ;I Size of 0 iz unlimited
[Cluster Size; 2048 Bytes ha
Media Destinations
Dest Dir | Wolume Label Add
c:\DeployFoxiwize SetupshReleasze Files
[elete |
[Details |
Iove Up |
4 LI Iave Down |
Include Features/Components

MName | Tvpe | Add
Al Features/Components

Delete

dil;

Cancel

Figure 26. Use the Media Details dialog to provide the Media Name and to specify
the destination directory for the media output file(s).

Building the deployment package

Once the release is defined and the project is complete, you need to compile it into the setup
package you deploy to your users. You probably also want to test the setup on your
development machine and perhaps even install it on one or more test machines before
deploying it to your customers.

Compiling the project

Compiling a project is as simple as clicking the Compile button located in the button group
along the lower right of the WfWI window, shown in Figure 27.

]] Compile | Test | Run | Distribute

Figure 27. Click the Compile button to build the release package.

Compiling the project creates the output file(s) specified by the release(s) you defined in
the project. In the case of the demo app, the output from the compiler is a single-EXE setup
file named DEPLOYFOX DEMO APP.EXE, which, on our development machines, is written to
C:\DEPLOYFOX\WISE SETUPS\RELEASE FILES per the media destination directory we
established in Figure 26. To facilitate the creation of future upgrades or patches, WfWI also
creates an MSI file even if you’re building a single-EXE setup file. The MSI file is written to

Appendix B: How To: Wise for Windows Installer 395

the same folder as the EXE file. The MSI file for the demo app is named DEPLOYFOX DEMO
APP.MSL

If you build a single-EXE setup you do not need to distribute the MSI file; you only need
to distribute the EXE file. If you build a release other than a single-EXE setup file, you need to
distribute the MSI file and any other files created in the compiler output directory.

Testing the setup

Wise for Windows Installer provides a mechanism for you to test your newly compiled setup
package without actually installing the product on your machine. To test your setup, simply
click the Test button shown in Figure 27. Testing a setup runs Windows Installer and steps
through the entire setup process as the end user sees it, but because no files or other resources
are actually installed, your development machine is unaffected. This is especially useful in
cases where running the actual setup on your development machine could have undesirable
consequences, such as overwriting files, creating registry entries, changing DSN properties,
and so on. Using the Test button allows you to verify the setup works the way you want it to
without disturbing anything your own computer. It also gives you a chance to review the
installation dialogs the way the user sees them, to quickly review any changes you may have
made, and to document the install process for the user.

Running the setup

Of course, you can run the actual installation of the product on your development machine if
you want to. To do this from within Wise for Windows Installer, simply click the Run button
shown in Figure 27. Unlike the Test button, clicking the Run button actually installs the
application on your machine: it creates folders, writes files, adds registry entries, creates
shortcuts and ODBC resources, etc. Of course, you can also run the installation on your
machine by running the setup EXE file from Explorer or the Run command window.

Distributing the setup

Once the release of the product is successfully compiled and tested, deploying the product is
simply a matter of distributing the appropriate setup package. Common methods of
distribution include Web-based download, distribution on a CD-ROM or DVD, and network
deployment. As you worked your way through the Release Definition group, you already had
to give some thought to how you intended to distribute your product, so this shouldn’t be a
new decision by the time you reach this step.

Wise for Windows Installer provides a Package Distribution tool to assist you in
deploying your setup package. Launch the Package Distribution tool by clicking the Distribute
button shown in Figure 27. The first step of the Package Distribution tool asks you to choose
the type of distribution you want to perform. The various choices are shown in Figure 28.

396 Deploying Visual FoxPro Solutions

- Package Distribution

Welcome

Welcome to the Package Distribution tool. Use this toal ta copy pour |n%al\atlnn package to &
wariety of locations in different formats.

Choose the type of distibution wou want to perform:

| Digtribute to share point directon
= Metwark

= FTP Server

 Administrative [nstallation

i+ Remaovable Media

Distribution Method Detai

Copies a compiled setup program [EXE or .M51] to remowvable media. Use this option to create
installation disks.

< Back I MNext » I Cancel |
Figure 28.The Package Distribution tool helps you deploy your setup package.

In the case of the demo app, we built a single-EXE setup package. This type of setup is
suitable for distribution over the Web or on a CD-ROM. The Package Distribution tool
provides FTP-based distribution assistance if you want to copy your setup package to a Web
server. It also provides assistance for copying the setup package to a CD-ROM, DVD, Zip
disk, or other removable media. This is what we want to do for the demo app, so the
Removable Media choice is selected in Figure 28.

The next step of the Package Distribution tool depends on the type of distribution you
chose in the first step. If FTP distribution to a server was chosen, the next step prompts you
for the server URL, login name, password, and directory on the server. If Removable Media
was chosen, the next step prompts you for a drive letter, disk label, and setup file name.
Regardless of the type of distribution, WfWI automatically compiles the project after the first
step if necessary.

The second step of the Package Distribution tool for a Removable Media type of
distribution is shown in Figure 29. If you are copying your setup package to a CD-ROM,
choose the drive letter of your CD-ROM drive as the Destination Disk.

Optionally, you can provide a Disk Label and a Setup File Name. The Setup Filename
is the final name of your setup file on the distribution media. You do not need to enter a
file name extension. If you leave the Setup Filename field blank, WfWI uses the name of
the currently open project file. Note the Erase Disk Before File Copy check box is selected
by default.

Appendix B: How To: Wise for Windows Installer 397

- Package Distribution

Removable Media

Select the destination remowvable media that the installation will be copied to. *Y'ou map also select
the disk label and name of the installation on the removable media disks. The removable media
disk must be formatted to be used.

Destination Disk: |8 ~ I
Digk Labek:
Setup Fillename:

¥ Erase Disk Before File Copy

< Back I Finish I Cancel |

Figure 29. The final step is to specify the destination disk where your setup package
is to be copied.

Upgrades and patches

In virtually all real world situations, at some point you need to deploy an update to a product
you already deployed previously. In the world of Windows Installer, there are two ways to
distribute an updated version of an existing product. One way is to create a new setup package
in the form of an upgrade. The other way is to create a patch.

As explained in Chapter 5, “Windows Installer Inside and Out,” there are three types of
upgrades: small updates, minor upgrades, and major upgrades. A small update and a minor
upgrade replace files from the earlier version with updated files from the newer version. A
major upgrade uninstalls the previous version of the product and installs the updated version.
Wise for Windows Installer enables you to create any of these three types of update packages.

Also as explained in Chapter 5, a patch is not a different kind of update, but rather a
different kind of update package. The main advantage of a patch is that it is usually much
smaller than the corresponding full upgrade package would be. WfWI also enables you to
create a patch package.

Windows Installer has rules governing the changes required to an MSI file in order to
configure it as a small update, a minor upgrade, or a major upgrade. WfWI comes with a tool
called UpgradeSync to make these changes for you. Use of the UpgradeSync tool is optional,
but if you don’t use it, you’re on your own to make the required changes. Refer to “Using
UpgradeSync” in the Wise for Windows Installer Help file for more information.

Creating an upgrade

Upgrades can be created only for products where the earlier version was also installed using
Windows Installer. Creating an upgrade is much easier if you have access to the MSI file from
the earlier version of the product. If you do not have access to the MSI file from the earlier

398 Deploying Visual FoxPro Solutions

version of the product, you at least need to know some of the information it contains, such as
the Upgrade Code and the Version number.

To create an upgrade in Wise for Windows Installer, first create a setup project for the
new version of the product just as if you were going to run it as a fresh install. An easy way to
do this is to open the WfWI project file for the earlier version and save it with a new name.
For example, to create a project file for version 2.0.0 of the DeployFox Demo App, we can
open the project file for the original version (1.0.0) of the product, which is named
DEPLOYFOX DEMO APP.WSI, and save it as DEPLOYFOX DEMO APP 200.WSI.

Naturally, there are changes to make in the new project file before compiling a release.
Among the most important changes for a major upgrade is to update the Version number and
to generate a new Product Code GUID. You can use the UpgradeSync tool to make these
changes for you, or you can make these changes manually on the Product Details page by
typing in a new Version number and clicking the Generate button to insert a new Product
Code field. Figure 30 shows the updated Product Details page for version 2.0.0 of the demo
app. If WfWI asks you whether to also generate a new Upgrade Code GUID, reply NO. A
common Upgrade Code is what enables Windows Installer to identify an existing version of
the same product on the user’s computer at installation time.

Product Details

The information below iz used during installation to identify the product to the user. [tis also displaped in Add/Remove
Programs in the Control Panel and is used by subsequent patches and upagrades to identify the product.

Marme: IDepIo_l,lFoH Appendis B Demo App

Wersion: |2 oo

Manutacturer: |Informatian Technology bssocistes

Default Directory IF‘rogram Files'D eployFox\AppendizB\Demadpp Change |

[T Don't update or recompress files when saving [M5] anly]

Product |dentification

Each'windows Installer installation contains a unique product identification code. This code is used to determine
if an existing version of the product is installed. Each unigue product must have its own unique product code.
Press the Generate button to generate a new product code for thiz installation,

Product Code: I{ﬁ\31 BE817-0844-40C4-351A-01820F542432} Generate |

Figure 30. To create an upgrade, update the Version number and generate a new
Product Code GUID.

After changing the Version number and Product Code on the Product Details page, step
though each of the remaining pages in the Installation Expert and make whatever other
changes are necessary for the updated version. At a minimum, the updated app typically
includes a new version of the EXE file and maybe an updated ReadMe or Help file. Some
updates of course may involve much more extensive changes.

Appendix B: How To: Wise for Windows Installer 399

When preparing an upgrade you should also go to the Release Details page
and specify a unique MSI file name, such as DEPLOYFOX DEMO ApP 200.MSI,
and a unique description for the new version. Making the MSI file name
unique is particularly important if the compiler output for the update is

going to be written to the same location as the compiler output from the
original release. Unless you use a unique name the original files will be
overwritten the first time you compile the new version. Even if you don’t want
the original files for deployment any more, you’re still going to want them as
the basis for future upgrades or patches, so it'’s a good idea to keep them
intact. See Chapter 9, “Support and Ch-Ch-Changes,” for more information
on this topic.

The key to making the new setup package function as an upgrade is to add one or more
entries to the Upgrades page specifying the earlier version(s) of the product the new version is
designed to replace. The Upgrades page is found in the Installation Expert’s Distribution
group. This page is initially empty. To add a new entry, click the Add button to the right of the
page detail area.

The first step in creating an upgrade entry is to select the MSI file of the earlier release of
the product. WfWI prompts you to do this as soon as you click the Add button on the
Upgrades page. In the case of the demo app, the MSI file for the earlier version of the product
is the file DEPLOYFOX DEMO APP.MSI created when we compiled the original version of the
product. On our development machine, this file is in the C:\DEPLOYFOX\WISE
SETUPS\RELEASE FILES folder. As soon as this MSI file is selected, WfWI opens the Upgrade
Details dialog and populates it with information from the selected file, as shown in Figure 31.

The Upgrade Code and Minimum Version values shown in Figure 31 are from the
original version’s MSI file. The Maximum Version value of 2.0.0 is the version number of the
current project. Note the Include minimum version in range check box is selected, while the
Include maximum version in range is not selected. This tells Windows Installer the current
upgrade replaces all earlier versions starting with and including version 1.0.0, up to but not
including version 2.0.0. Effectively, this means the current upgrade replaces all 1.x.x versions
of the same product.

The Upgrade Action portion of the Upgrade Details dialog allows you to define features
contained in the earlier version of the product that this upgrade is removing. By default, a
major upgrade removes all features of the earlier version and installs the new ones. If you want
to preserve any features from the earlier version, you must limit the removal of features to
those specified in the Features to remove field. The spelling of feature names in this comma-
separated list must exactly match the spelling of the feature names in the original setup. This is
another good reason to keep the old installation files.

The Upgrade Action portion of this dialog also defines a Windows Installer property with
a value set at installation time to the Product Code of any earlier version of the product found
installed on the target computer. Custom actions can then be made conditional on the value of
this property. Use of this property is optional, and custom actions are not required.

400 Deploying Visual FoxPro Solutions

Upgrade Details x|

Fill in the infarmation for & previous praduct to upgrade. Then detemiine which
features of the product to remove during install

r— Previous Version Infarmation
Upgrade Code: I{EB 4484 7F-0260 -4958-8390-40 CE2ABFRF 24}

Miriirnurn Wersion: |‘I 0.0

v Include mikimumn version in range

b g=imum Yersior: |2.D.D

[Include magimum version in range

Languages: |'I 033

[~ Exclude languages in list

— Upagrade Action

Eeatures to remove: I

Action Property: IUPGFIADE_‘I ;I HNew

W Continue installation after a remove failure
v Migrate feature states
™ Do nat uninstall previous version

Cancel |

Figure 31. Wise for Windows Installer fills in the Upgrade Details page with
information it reads from the original MS/ file.

Finally, the Upgrade Actions portion of this dialog provides three check boxes you can
use to further control the behavior of the upgrade at installation time. If selected, the Continue
installation after a remove failure check box tells Windows Installer to go ahead with the
installation of the upgrade even if the uninstallation of the earlier version fails in part or in
whole. Select the Migrate feature states check box if you want the upgrade to install only
those features installed with the original version of the product. Select the Do not uninstall
previous version check box if you do not want the upgrade to uninstall a previous version of
the product; this allows two versions of the product to co-exist on the same machine, assuming
you used unique folder and file names where necessary to make this possible.

After completing the Upgrade Details page, click OK to add the entry to the Upgrades
page. Now compile, test, and distribute the setup package as before.

Creating a patch
A Windows Installer patch file (MSP file) for any given product is essentially the difference
between two Windows Installer setup packages (MSI files) for the same product. Like an
upgrade, applying a patch to an existing version of a product on the user’s machine requires
the existing version to have been installed using Windows Installer. Unlike a major upgrade, a
patch requires an earlier version of the product to exist on the target machine. A major upgrade
functions like a fresh install if no earlier version of the product is installed.

A patch can update one or several earlier versions of a product. Creating a patch requires
you have access to the MSI file for each of the earlier versions the patch is designed to update.
Depending on how the earlier releases were built and whether there are previous patches, you

Appendix B: How To: Wise for Windows Installer 401

may also need access to other files. Refer to “What You Need to Create a Patch” in the Wise
for Windows Installer Help file for more information.

In the previous section, we built a major upgrade package to update version 1.0.0 of the
demo app to version 2.0.0. In this section we build a patch package to accomplish the same
thing. The first step is to create the installation package for version 2.0.0, just as we did in the
previous section. If you have not already done so, create the setup project for the updated
version, compile it to generate the MSI file, and then close the project.

Now you are ready to begin the actual patch creation process. Select Tools | Patch
Creation from the main menu to launch the Patch Creation wizard. In the Patch Creation
wizard, choose “Create a new patch file.” The next step asks you to identify the MSI file(s) for
the previous version(s) of the product. In the case of the demo app, there is only one earlier
version. Its MSI file is the original DEPLOYFOX DEMO APP.MSI file, located in
C:\DEPLOYFOX\WISE SETUPS\RELEASE FILES on our development machine. Figure 32 shows
the Patch Creation wizard dialog for this step.

Previous Yersion Details . il

Specify the .M5| that installs the previous version of the application. Then select the
walidation rules ta follow if thiz product iz found on the destination computer.

Previous MS| path: SetupshRelease Files\DeployFox Dema App. mzi Browse... |

IV lgnore missing files while making patch

% alidation
¥ Match Product Code

¥ Match Upgrade Code
™ Match Language

“erzion Ta Check: ICheck Majar, Minar, and Update Yersions ;I
“erzion Relationship: IBase Yersion must be = Installed Version LI
— C++ Symbol File Directories [Optional]
:I Browse... |
[

Cancel |

Figure 32. Creating a patch requires you to specify the MSI file for the original version
of the product.

The Window Installer patch creation process needs to work with uncompressed base files.
If the original setup contains compressed files, which is often the case in order to make the
setup package as small as possible, those files need to be uncompressed for use in creating a
patch. If the Patch Creation wizard detects the original MSI file contains compressed files, it
offers to perform an administrative installation of the product on your machine. An
administrative installation creates an uncompressed copy of the files in the setup package
without actually installing the product. To create a patch, you must allow the Patch Creation
wizard to perform the administrative installation of the product if it prompts you to do so. The
uncompressed files are written to a temporary location on your computer.

The next step is to specify the MSI file for the new version of the product. In the case of
the demo app, we select the MSI file for version 2.0.0 we built earlier, as shown in Figure 33.

402 Deploying Visual FoxPro Solutions

G- Patch Creation

Specify Upgrade Yersion

Select the M5! file that will install the latest version of pour software. The patch package created
will update PCs with version[s] prior b this version of the installation.

Upgrade M51 path: I\D eployFoxiWwise Setups\DeployFox Demo App 200.msi Browse... |

Advanced Setting

Click the Advanced button for advanced settings such az selecting the patch GUID, previous
patch GUIDs to replace, and symbol file directories.

Advanced... |

< Back Cancel |

Figure 33. Creating a patch also requires you to specify the MSI file for the updated
version of the product.

Because the MSI for version 2.0.0 of the demo app also contains compressed files, the
Patch Creation wizard prompts you to perform an administrative installation of this version,
too. As before, this is required to complete the patch creation process. The uncompressed files
for version 2.0.0 are written to a different temporary location than the uncompressed files for
version 1.0.0, resulting in both sets of uncompressed files being present on your machine. This
is necessary because the patch creation process needs access to both sets of uncompressed files
in order to create the patch file.

l While a patch package is smaller than a full upgrade package, the process of

creating a patch package can consume significant amounts of disk space on
the developer’s machine. The administrative installation creates
uncompressed copies of all the files in the setup package. This includes not
only your application’s own files but also the VFP 8 runtime files, ActiveX
files, and any other files installed by your product. Even in the case of a
simple product like the demo app, this amounts to over 15MB. Because
there are two versions involved in this particular patch creation process,
more than 30MB of disk space is required to support creation of this patch
file. If the patch updates more than one earlier version of the product,
uncompressed images of each of those other versions would also be
required, consuming even more disk space.

The last step before compiling the patch is to specify a name and location for the patch
file and to specify values for other settings that determine how the patch file is created. This is
done in the Compile Patch dialog, illustrated in Figure 34.

Appendix B: How To: Wise for Windows Installer 403

g- Patch Creation

Compile Patch

Select the destination path of the patch package. A .PCP file will also be created that containg
these default settings

Output MSP file: ups“Releass Files\DeployFox Demo App 200 Patch.msp. Browse...

—Advanced Setting;
[Do not create file patches; use entire files in patch package
™ Allow Product Code to differ betwesn the upgrade and prior versions
[Allow Yersion Number to differ between the upgrade and prior versions
¥ Create alog file

i Multi-patch Media Setting:
“rou can browse to a previous patch file to get the starting sequence and disk numbers.

File 5eguence Start: |24 Digk [Start: |1U Browse. .

Wolurme Label: I

Dizk Prompt: I

< Back I Mewt > I Cancel |

Figure 34. You can specify the name for the patch (MSP) file as well as choose other
settings to determine how the patch file is compiled.

In Figure 34 we specified DEPLOYFOX DEMO APP 200 PATCH.MSP as the output patch file
name, and indicated it should be written to the same Release Files folder as the other release
files built for this app. The other settings all have their default values, which are appropriate
for this and most other patches.

Clicking the Next button at this point starts the patch compilation process. This process
can be somewhat time-consuming. Upon completion, and assuming no errors, the MSP file is
written to the location you specified (see Figure 34). To deploy the patch, distribute the MSP
file to your users. To install a patch from an MSP file, right click on the file in Explorer and
choose Apply from the shortcut menu.

In addition to the MSP file, a patch creation project (PCP) file is also created. This file is a
necessary intermediate file used in the patch creation process. You do not need to do anything
with this file.

If the Create a log file check box was selected in the Compile Patch dialog, a log file is
created with the same file name as the MSP file, but with a LOG file name extension. You can
open the log file in any text editor and read the summary of the patch creation process.

In the demo app, the only difference between version 1.0.0 and version 2.0.0 app is the
version number changed in the EXE file. The EXE file by itself is 603KB. The full upgrade
package for version 2.0.0 of the demo app is 7.77MB, but the patch file for the same upgrade
is about 98% smaller at 119KB. In a real application it’s likely there would be more of a
difference between the two versions, therefore resulting in a large patch file, but this example
should give you some idea of the size advantage of a patch as compared to a full upgrade
package.

Conclusion
Wise for Windows Installer is a powerful tool for building Windows Installer setup packages.
As you have seen in this appendix, it is capable not only of building setup packages for the

404 Deploying Visual FoxPro Solutions

initial deployment of a product, but also of building upgrades and patches, which are an
important part of a product’s life cycle. The Installation Expert hides some of the complexity
of Windows Installer and makes it easy to create setup packages. On the other hand, Wise for
Windows Installer also lets you dig into the details of a Windows Installer setup package when
necessary using the Setup Editor and the MSI Script view, which we did not go into here.
WIEWI can also open Windows Installer MSI files directly, allowing you to explore these files
in a manner similar to what you can do with Orca as described in Chapter 5, “Windows
Installer Inside and Out.” In summary, Wise for Windows Installer is a full-featured product
for creating and working with Windows Installer setups.

Updates and corrections for this appendix can be found on Hentzenwerke Publishing’s Web
site, www.hentzenwerke.com. Click ‘Catalog’ and navigate to the page for this book.

