
Chapter 2: SourceSafe in Theory and Practice 17

Chapter 2
SourceSafe in

Theory and Practice
So far, Chapter 1, “Visual SourceSafe Installation,” helped you install Visual SourceSafe
and configure it. This chapter looks at what SourceSafe does for you—how it stores
information, how it presents your projects, and how you can check files in and out and
track changes. This chapter explains what SourceSafe is doing with operations named
checkout, check in, difference, branch, pin and merge. In this chapter, you get to run the
Visual SourceSafe client, also called the Explorer, create a sample project and source
code, and exercise the functions made available through the VSS Explorer interface.
The last portion of this chapter reviews each of the dialogs presented by SourceSafe,
pointing out important features and hazards.

The primary purpose of SourceSafe is to store, retrieve and track the history of multiple
versions of computer files. These files could be source code for a development project, Word
documents for a marketing campaign, or CAD drawings for a building renovation. The contents
are generally not important to SourceSafe (although later on, the difference between binary and
text files is discussed); SourceSafe’s job is to track the documents and their changes over time.
This chapter discusses the interface of the SourceSafe Explorer and, in the process of doing
that, all of the functionality available within the product.

Many source code control systems are available on the market, either commercially or
open-sourced. But few provide the richness of interface present in SourceSafe. Since early in
the product’s lifetime, SourceSafe has been marketed as a “Project-Oriented Version Control
System.” It is that project orientation that has been a distinguishing factor. While other vendors
have done well in adding this feature into their software, early versions typically required all
files to have a unique name, or they were stored in a flat namespace, or individual databases
might be required for each project.

SourceSafe allows you to store the source to many different projects within the same
database. It presents these projects in a tree view, with one root to the tree (designated $/) and
a group of projects off that tree. Projects can have subprojects, just as disk directories can have
subdirectories. With the hierarchical view of the source code (the “One Tree” of “One Tree
Software”), different files on different branches could have the same name.

This chapter presents the basics of source code control, first from a theoretical standpoint,
then with a practical tutorial, and finally through an exhaustive review of the SourceSafe
Explorer interface.

The branching tree structure introduces a challenge as well as a benefit. Because each
project’s source can have its unique location, the challenge is to find a way to share source
between the branches, and to control which versions of files are shared. That’s covered in the
section “The reality: Swinging through the branches.”

18 Essential SourceSafe

Finally, there’s a whole bunch of additional terms—journaling, archive, restore and
shadow directories—that fall more into the realm of administrative functions than day-to-day
operations. Those are covered in Chapter 7, “Administration.”

The theory: Learning to climb the tree
SourceSafe’s primary function is storing files and their differences. That function needs
some supporting structure in order to be very useful. SourceSafe starts with the concept of a
project, elegantly displayed in the SourceSafe Explorer as a folder. And what goes in a folder?
Well, stuff. SourceSafe leaves the decision up to you. When using SourceSafe integrated
with other tools, each project folder typically holds a set of files that create a single product,
whether a Web site or a VB application. Folders within the folder map to subdirectories of the
“root” project directory. However, when you are using SourceSafe directly from the Explorer
interface, you can organize files however you like. A root folder can hold all of the client
proposal letters. Folders within this folder can hold the additional work you did for clients
accepting your proposals. You are in charge. Folders can go within folders, in a nested fashion
(no one folder can be in two folders, although the contents can be shared, as covered later). Any
kind of files can go in the folders—text, bitmap, word processing, database tables, XML—
limited only by the capacities of the SourceSafe storage engine.

The folder metaphor can break down pretty quickly here, so let’s not try to stretch it too
far. Just as if you were to store a folder about a project in your file cabinet, a project folder
should contain all of the files and folders needed to rebuild a single project. But the folder can
be nested to any level, so you might choose to organize your top level as the individual clients
you work for, the year that you create a particular project, or any other scheme that works for
you. In the real world, if we wanted to reuse some forms from one folder in another, we’d
photocopy them. SourceSafe gives us a couple of capabilities to do that, but we’re peeking
ahead here. Let’s cover the basics first.

Imagine your company has an office manager in charge of the files. If anyone wants
to use a file, they need to talk to the office manager and check out that file with the manager.
“Checking out” is a process where you get a copy of the latest file from the office manager, and
you get the right to make changes to it. The office manager (SourceSafe) always has the master
version of the file. If anyone else is looking for that file, the office manager knows who has
the file checked out. Others are free to view the contents of the files and folders. Under some
circumstances, they might be able to check out the same files that are already checked out. If
you only wanted to look at the contents of a file, you wouldn’t need to check it out, only talk to
the office manager and look at that file. That’s the SourceSafe Get function. When you are done
with the file, it is checked in. The changes you have made are identified, and a history
of your check-in, as with the checkout, is recorded. When you are checking in a file, you are
updating the SourceSafe master copy of the file.

Let’s run the software and see what a real situation looks like.

Tutorial: Climbing the tree
There’s nothing like learning by doing. In this section, you get to operate the application
and can start to get some sense of how SourceSafe does what it does. You get to create a
project, add a file to it, check out and modify the file, and examine the history that SourceSafe
generates as it tracks your actions. Later on, this chapter exhaustively examines every nook

Chapter 2: SourceSafe in Theory and Practice 19

and cranny of the interface. For now, try out SourceSafe a bit so you can see how the elements
fit together.

Start SourceSafe by locating the SourceSafe 6.0 item on the Start menu. If it was installed
as a stand-alone product, or as part of Microsoft Office Developer, the Microsoft Visual
SourceSafe submenu should be located directly off the Programs menu. If it was installed as
part of Visual Studio 6.0, the submenu should be located under the Microsoft Visual Studio 6.0
menu item. Up comes the Explorer interface (see Figure 7, on page 27).

Highlight the top of the Project tree view by clicking on the topmost node of the tree view
in the left panel, labeled $/. Create a new project by selecting the leftmost toolbar button (its
ToolTip should say “Create Project”) or by selecting the Create Project option from the File
menu. Give the project the name of Demo and a comment that this is the sample project from
this book. Click OK, and a new folder is added to the tree view. Click once on the Demo folder
to make it the current project.

Let’s create a file to add into SourceSafe. From the Start menu, select Run and type:

NOTEPAD c:\temp\demo.txt

(Select an appropriate drive and directory if you don’t have a C:\temp directory.) Notepad
appears. You’ll be asked if you want to create the file. Click Yes. Let’s type a quick little
“program” in Notepad:

REM A Sample Program for SourceSafe
PRINT "Hello, World!"

Exit Notepad and save the file. Back in SourceSafe, select the second toolbar button, Add
Files, or the File menu option of the same name. Navigate to the C: drive and temp directory.
Select the demo.txt file and press the Add button. You’ll be prompted with a dialog (see Figure
11, on page 35) where you can add a comment explaining what this file is—a very good idea.
Add a comment that this is the demo file for the SourceSafe book, and select OK to add the file.
A second dialog appears, asking whether you want to set C:\temp as the working directory for
this project. A working directory is just the default folder where SourceSafe assumes you want
files read and written to. You can override that later, but for now, select Yes. Note that the
demo.txt file disappears from the Add File dialog, as it only shows files not yet added. Select
Close to close the Add File dialog.

The demo.txt file appears in the right-hand panel file list, with the date and time the file
was added to SourceSafe. If you examine the demo.txt file on disk, using the Windows
Explorer and the Properties option, you will see that the file has been flagged as Read-Only.
This is a reminder that you are on the honor system and should not make changes to the file
without checking it out from SourceSafe, but you can read the file and use it to build your
application, just not change it. The copy on disk is referred to as the local copy; the copy in
SourceSafe is the master copy. Don’t confuse this with local vs. remote referring to files on a
network (your local copy may be on a network share); the local copy in SourceSafe is the copy
of the file checked out for use by one user.

Next, check the file out and make changes to it. In the SourceSafe interface, right-click on
the demo.txt file and select Edit from the context menu (see Figure 9, on page 32) that appears.
A confirmation dialog appears (see Figure 26, on page 44) to confirm that you want to check

20 Essential SourceSafe

this file out and edit it. Select OK and the file appears in Notepad. Toggle back to SourceSafe
for a moment, and you can see that the file appears in the SourceSafe interface with a red check
mark on it. (If the file has a red outline around the icon, it means it is checked out exclusively.)

Toggle back to Notepad and make changes to the document. When SourceSafe checked the
document out, it took the latest version of the file, stored in the SourceSafe database, and
updated the version on your machine. It also switched the flags so that the file is now Read-
Write. Modify the first line and insert a second line to the program so that it reads:

REM A Sample Program for SourceSafe, Changed Once
PRINT "Hello, SourceSafe!"
PRINT "Hello, World!"

Exit Notepad and save the file. Save your changes in SourceSafe by checking in the file.
Select Check In from the right-mouse-click context menu, the toolbar or the application’s
menu, or type the keyboard shortcut Ctrl-U. In the Check In dialog that appears (see Figure 33,
on page 50), add a comment indicating the changes you have made, and the reasons for them.
Press the OK button to check the file back into SourceSafe.

That’s it! You’ve now mastered the key functions of SourceSafe: Check Out, Modify and
Check In. Let’s look at a couple more items before we call it a day.

There is nothing worse than trying to remember days, weeks or months later exactly what
changes you made to a file. This is one place where those comments you made along the way
come in handy.

Right-mouse-click on the demo.txt file and select “Show History.” (If a dialog appears
asking for labels and From and To dates, just click OK.) The History dialog (see Figure 39,
on page 54) appears, showing the changes made to the file, in a compact format. Select both
version 1 and 2 from the list by using an extended selection of Shift-Click or Ctrl-Click until
both versions are highlighted, and then press the “Diff” button. (Again, if a dialog like Figure
42, on page 56, appears, just click OK.) A Difference window appears (like Figure 43, on page
57) that shows you the difference between the two versions of the file. A key at the bottom of
the form explains the color coding. Here is where you can see what changes you made between
different versions. Close the Difference window. Click on the Report button. In the dialog that
comes up, select both the Details and Differences check boxes, and then click the Preview
button. Here is the report you could print, or copy to the clipboard, showing the changes that
you made to the code.

To clean up from this tutorial, close the Preview window, cancel the Report dialog,
and close the History form. Exit SourceSafe with the File | Exit option or by closing the
main window.

In this quick tutorial, you have seen how projects can be created in SourceSafe, how files
are added, and how a file is checked out, modified and checked back into SourceSafe. You
have seen how to determine differences between different file versions, how to run a report
comparing those files, and how to examine the history behind a file. These are the key functions
of SourceSafe.

The devil is in the details, of course. While the example in the tutorial was intentionally
simple, your applications are likely to involve dozens, if not hundreds of files, and a number of
users checking files in and out.

Chapter 2: SourceSafe in Theory and Practice 21

The reality: Swinging through the branches
Like many products shown off at a vendor’s dog-and-pony show, SourceSafe looks pretty
easy to use when we run through the simple tutorial in the previous section. The challenge
comes as we get into large, complex, inter-related projects. SourceSafe has the muscle to handle
these as well.

One common situation is the need to share files between projects. Common “library” code
or classes are created with the express purpose of being used over and over again, and one of
the advantages of working with a common framework of code is that fixes to the framework
can be made available to each of the projects.

There are many techniques for sharing code between projects, and each has its advantages,
and its liabilities. This section presents three solutions, each with its advantages and drawbacks.
The first does not take advantage of SourceSafe’s complex versioning features. While it is
simpler to administer from the SourceSafe point of view, it can lead to confusing situations.
The second technique, using SourceSafe’s sharing, branching and merging functions, is a little
more complex to set up and manage, but is a more robust solution. The third is simple to
administer, but requires more attention as each project is revisited. Which of the techniques you
choose depends on your needs, the type of development that you do, and the resources that you
have available to administer source code control maintenance.

Here’s the scenario each of these techniques solves, with varied success:
You invest in a framework for building your application, let’s say the Acme Framework.

You use Acme to build applications for clients A, B and C. Each client gets their own
customized forms and reports on top of the framework, but, due to the customizability of the
framework, none requires changes to the framework itself. You freeze and ship the code for
each client in turn. Between clients A and B you find a bug in the framework and recode a
program that fixes it. Between clients B and C a new minor version of the framework, with bug
fixes, comes out that you install over the older framework and use for client C.

Solution 1: Install the framework software as a “sibling” on the project tree to each project
for clients A, B and C. Install the software on the development machines as sibling directories
and use relative paths in your development tools to point to the framework software in the
parallel directory.

Solution 1 works well for the original development efforts, but, later on, when you return
to the projects and get the latest version of all of the software, the client A and B software
would appear to be using the new framework, installed after those applications shipped. If you
were trying to reproduce a problem reported by a client, you could not reproduce the source
code used to develop the application without manually going through the framework and
getting earlier versions of the software. Using the label functionality would simplify some of
this, but you still will feel like you are swimming upstream.

Solution 2: Install the framework as a sibling application again, but then use the Share
function (as explained later in this chapter) to share the framework files into each of the
client’s projects. Use labels and the Pinning functionality (explained later, in the “Show
History” section) so that each client’s project reflects the version of files they have. If
necessary, branch off a client’s files if they need different functionality from the framework
than other clients. (By the way, this is a good indication that the framework might need some
refactoring—ideally, a framework should support different behaviors in most cases.)

22 Essential SourceSafe

Solution 2 solves the limitations in Solution 1, in that each client’s project will reflect the
proper version of files that were actually used to build that client’s application. However, the
cost of this accuracy is the need for more care and vigilance in setting up and maintaining the
project. This solution requires that the developers understand the principles of sharing source
code in SourceSafe, and that they exercise care in working with the application. In many shops,
this might be asking too much of the developers. In this case, a single point of contact might be
designated as the source code control person, to ensure these changes are performed correctly.
Or a single person could have rights to the shared code, controlling all of the changes to avoid
cross-project problems. This could be a good use of security settings, too, as a safety net, where
only certain developers might be granted access to change shared framework code.

Solution 3: This brute-force method is the simplest. Copy all of the files required,
framework and custom code, into each client’s project. Each client has their own copy of
everything they need, and there is no interaction between the projects.

While this may seem like a crude solution to the problem, it does face the realities that in
many shops there is not the expertise to maintain either of the other solutions, and that, in many
cases, client developments are one-shot projects where each revision may require such a radical
change in frameworks (say, moving from version 1.02 to 3.0) that trying to maintain an
intricate web of shares and branches may be more effort than it is worth.

Multiple checkouts and the Dreaded Visual Merge form
In Chapter 1, “Visual SourceSafe Installation,” in the section on using the Administrator tool to
configure SourceSafe for integration, I recommended that you enable multiple checkouts. This
setting needs some explanation, some cautions and more details.

Enabling multiple checkouts allows SourceSafe users to check out a file that is already
marked as checked out, only if the file is a text file. SourceSafe determines whether a file is text
or binary by reading a portion of the file, searching for binary zeros within the body of the file.
Files can also be designated as binary by using the File Types tab of the Administrator’s Tools |
Options dialog. SourceSafe allows text files to be checked out by more than one user because
SourceSafe has the ability to merge multiple changes to a text file into a coherent merged file.
In most cases, SourceSafe will do this automatically. If you check out a file and modify line
100 at the same time that a co-worker has the file checked out and modifies line 200 and adds
new lines 201 through 205, SourceSafe will merge the two changes as the file is checked in,
without needing any interaction with you. The only time that SourceSafe will run into trouble is
if you both choose to modify the same line. In that case, SourceSafe cannot tell what the change
should be, and has to leave that decision to you. I refer to this process as “The Dreaded Visual
Merge,” as the interface and the dire warnings from dialogs, combined with the fact that you
see this form very rarely, make this an uncomfortable experience for most developers.

It’s not that bad. In this section, I will walk through an example of the merge process and
demonstrate how it can be handled. First, to set the scene: Two developers check out a file
named slcdata.prg. The first alters line 1086 and checks the file back in. The second developer
also modifies line 1086, differently, and attempts to check the file back in. Whamo! The
Dreaded Visual Merge dialog (see Figure 1) appears.

Chapter 2: SourceSafe in Theory and Practice 23

Figure 1. When you attempt to check in a file that had been multiply checked-out,
Visual SourceSafe merges the changes when it can, and presents this dialog when
there are conflicts it cannot automatically resolve.

The Merge dialog resembles the Differences form discussed later in this chapter, with an
additional pane added on the bottom. The top left pane, labeled “SourceSafe version,” shows
the file checked in by the other developer, with a change to lines 1086–1090. The top right
pane, labeled “Local version,” shows the version you have changed. The bottom pane, labeled
“Merged version,” shows the resulting file from the choices you make in this dialog. Note the
red outlined arrow on the fifth toolbar button from the left. This shows that there is a merge
conflict that has not yet been resolved. You may also see other arrows enabled, such as the
second and third buttons on the toolbar, which allow you to navigate to differences between the
two files. These differences will be resolved automatically by the SourceSafe merge engine, but
can be helpful in understanding the context of the merge conflict.

You resolve the merge conflict by right-mouse-clicking on the conflict in the top left or
right pane and selecting “Apply Change” from the menu that appears. This change will be
reflected in the lower pane, in bold italic text, to show that you have resolved a conflict, and
that the change you have selected will be saved when you are done with this dialog. When all
conflicts have been resolved, you use the save button (the diskette icon on the first toolbar
button) to save your changes. That’s it! You’re done.

If you are not able to resolve all of the conflicts—perhaps you need to confer with the other
developer—save the file anyway when you have made those changes that you can make. You
will be greeted with a confirmation dialog (see Figure 2) and—here’s the key point—the file
will be saved, but not checked in. You still have the file checked out, the other developer’s

24 Essential SourceSafe

changes are safe within SourceSafe, and you have all of your changes, on disk, to use to resolve
the conflicts.

After saving the file, you’ll get a third dialog (see Figure 3) that lets you know you still
have some work to do. At this point, you have a couple of choices. If it has turned out that you
and the other developer have made the same changes, with some differences in syntax, you can
abandon your changes by performing an Undo Checkout. If you and the other developer did
different things with the same code, you’ve got a bigger problem than SourceSafe—you need to
figure out what should be done with the code. When you’ve resolved that problem, you’ll be
ready to move on.

Figure 2. If you don’t choose either the SourceSafe or local version (using the right-
mouse menu) to resolve each conflict, you will be warned.

Figure 3. …and warned. You can now use your editor of choice, and SourceSafe’s
features to display older versions of the file, to determine what changes to make.

SourceSafe (and the integrated tools) will show you that you have the file still checked out
and in need of manual changes by displaying the failed merge icon (see Figure 4). If you
determine that you need to integrate the two sets of changes, you need to make changes to the
local version of the file that you still have checked out. You can use the SourceSafe Explorer or
the integrated SourceSafe menus to View History, Show Differences or View older versions of
the file to determine how the resultant code should appear.

Chapter 2: SourceSafe in Theory and Practice 25

Figure 4. The FoxPro Project Manager shows a failed merge as a red X superimposed
on a blue merge symbol.

When you have finished manually merging all of the changes, save the file. A confirmation
dialog (see Figure 5) will appear to verify that all conflicts have been resolved. Select Yes
if you are done resolving conflicts, or No if you want to save the file as is and continue at a
later time.

Figure 5. Be honest, now. This version of the file will be saved as the most recent
version. Make sure you have manually merged the code correctly.

When you are done resolving the merge conflicts and answer Yes to the confirmation
dialog, the icon representing the file’s source code control status changes to show that the
merge has been completed successfully (see Figure 6). Check in the file to complete the
merge process.

26 Essential SourceSafe

Figure 6. The FoxPro Project Manager displays the file with an icon showing it was
merged successfully. The file is still checked out.

Is the hassle worth it?
The first time you emerge from a battle with the Dreaded Visual Merge form, you are likely
to swear “never again!” But the hassle is really not all that bad, if you are careful to read
the dialogs and understand the underlying processes. There are advantages to multiple
checkouts. By allowing multiple checkouts, no one developer can keep all of the files to him
or herself, and the SourceSafe merge logic handles 99 percent of the merging automatically.
Developers get to spend more time getting work done, and less time chasing each other to get
files checked in.

Like sharing and branching, merging could be considered a fairly advanced option. If your
team has less experienced members, it can be a good policy to have one member of the team
designated as the SourceSafe guru, someone to call upon as a coach when the Dreaded Visual
Merge form appears.

The Explorer interface
Starting Visual SourceSafe presents you with a typical three-pane Explorer interface (see
Figure 7). The menu and toolbar are on top; a tree view listing projects is on the left. Details
of the files in the current project are on the right. The bottom of the screen is occupied by the
results pane and a status bar. The following sections briefly skim what’s available from the
parts of the interface. Because many of the functions can be invoked in three or more ways, the

Chapter 2: SourceSafe in Theory and Practice 27

details of how each function works, typically via a dialog, follow those sections with more
detailed coverage.

Figure 7. The SourceSafe interface—menu, toolbar, tree view, file list and
status window.

Toolbar
The toolbar (see Figure 8) is used to perform actions quickly with a single mouse click. From
left to right, the toolbar contains commands to perform the following:

• Create Project—a new project is created under the current project.

• Add Files—brings up a dialog to add files to the current project.

• Label Version—allows you to label the current project or file.

• Delete Files/Project—brings up a confirmation dialog to confirm and optionally
permanently delete (“Destroy”) files and projects. Destroy is usually a bad idea—let
the administrator purge all deleted files when you no longer need them.

• Get Latest Version—creates a copy of the currently selected files in the
working folder.

28 Essential SourceSafe

• Check Out Files/Project—checks out and copies files to the working folder.

• Check In Files/Project—checks in a file or project.

• Undo Check Out—releases the checkout on a file, restores it to pre-
checkout condition.

• Share Files—brings up a dialog to bring files from other projects into this one. See the
“Share” section later in this chapter.

• Branch Files—breaks the sharing of a file by creating an independent copy in the
current project.

• View File—brings up the file in the registered viewer or the SourceSafe text editor.

• Edit File—checks the file out, then brings it up in the appropriate editor.

• File/Project Difference—shows the difference between the currently selected file
and either a different version or different file on disk, as specified by the user.

• Show Properties—displays the Property sheet for the selected item.

• Show History—displays the history of actions taken and labels applied against
this item.

• Find in Files—pops up a dialog for searching for strings within files.

• Set Working Folder—sets the default destination folder for getting files from the
SourceSafe database.

• Refresh File List—queries the database and updates the status of each of the folders
and files.

• Help—brings up the HTML Help engine and the SourceSafe Help file.

Figure 8. The SourceSafe Explorer toolbar.

Chapter 2: SourceSafe in Theory and Practice 29

The toolbar behaves like older Windows toolbars, with a few funny exceptions. This
toolbar is of the pre-Office 97 style, without the “Smart ToolBar” or “CoolBar” looks of the
most recent Microsoft applications. You can drag the toolbar by clicking and dragging on the
space between buttons. Once it’s undocked from the normal toolbar space, you should be able
to resize the toolbar, stack the buttons two, three or four high, and split on the spacers between
the button groups, but this resizing functionality is missing. The toolbar does have the option to
be customized, through the Customize Toolbar dialog available on the Tools menu (see Figure
54, on page 66). Finally, if you click the close button on the floating toolbar, the toolbar will
disappear, and it can be a little daunting to bring it back. There is no option to restore the
toolbar on the View menu, like in many other applications. Use the View tab of the Tools |
Options dialog (see Figure 47, on page 61) to toggle the toolbar’s visibility.

Menu
The Visual SourceSafe Explorer menu displays most of the functions available from within the
interface, although a few are hidden a little deeper, coming off some of the dialogs. Because
nearly every menu function has a corresponding dialog associated with it, the functions of the
menu are just mentioned briefly here, and described in detail in the “Dialog by dialog” section
later in this chapter. Check there for much more information.

File

• Open SourceSafe Database—opens a different database, optionally making it
the default.

• Add Files—adds files to the currently selected project.

• Create Project—creates a new project, as a subproject of the current one.

• Delete—deletes the selected file or project.

• Rename—renames a file or project.

• Properties—displays a tabbed dialog of detailed information on the selected item.

• Set Working Folder—sets the default folder for local files for the project.

• Create Shortcut—creates a desktop shortcut for the current project and database.

• Label…—adds a label to facilitate retrieving earlier versions of source code.

• Move—copies a file to a new destination, erasing it from the original location.

• MRU—a most recently used list of Visual SourceSafe databases.

• Exit—exits the VSS Explorer application.

30 Essential SourceSafe

Edit

• View File—opens the file for viewing.

• Edit File—checks the file out for editing.

• Select…—allows you to pick multiple files by matching a file pattern.

• Select All—selects all files in the file list.

• Invert Selection—reverses the selection of files.

View

• Sort (Name, Type, User, Date, Checkout Folder)—sorts the file list by column.

• Search (Wildcard Search, Status Search)—shows only files matching your criteria.

• Cancel Search—clears the search and displays all files.

• Refresh File List—re-reads the SourceSafe database.

SourceSafe

• Get Latest Version—refreshes your local copy from SourceSafe’s database.

• Check Out—reserves the file for you to make changes.

• Check In—returns your changes to the SourceSafe database.

• Undo Check Out—restores your local file to the master copy in SourceSafe.

• Share—lets a file be used by more than one project.

• Branch—splits off a shared file into an independent file.

• Merge Branches—merges changes from branched files.

Tools

• Show History—lists actions against a file or project.

• Show Differences—displays differences between any two files or versions.

• Find in Files…—searches for text within files.

• Files Report…—lists files displayed in file list to printer or clipboard.

• Options—controls many settings and interface elements.

• Font—sets the font used in the tree view and file view panels.

Chapter 2: SourceSafe in Theory and Practice 31

• Customize Toolbar—lets you add or drop buttons from the toolbar.

• Change Password—allows you to change your password.

Web

• Deploy—allows you to publish your Web site directly out of SourceSafe.

• Check Hyperlinks—checks the Web project for internal or Internet consistency.

• Create Site Map—generates an HTML page mapping your Web project.

• Help—there’s nothing remarkable or non-standard here; if you’ve worked with any
other Microsoft product, you know how to operate this one. If not, a few minutes of
exploration makes this menu pretty self-explanatory.

Project tree view
The tree view interface has become familiar, thanks to the Windows Explorer interface.
SourceSafe refers to each of the folders as a project, which can be a little confusing to
developers who may view a project as a set of folders. Folders may be nested within folders,
and many commands offer “recursion”—letting the effect of the command be repeated in each
of the subfolders.

While folders can be mapped directly to a series of directories, in many cases, you may
choose to accumulate subprojects logically under the project they apply to. For example, in
development shops I have worked in, we kept design documents, contracts and diagrams in
subprojects of a software development project. Using the Set Working Folder feature, these
subprojects may be assigned to different directories, or even different disk drives, but logically
aggregated with the source code they are associated with.

File pane
The file pane shows files that exist in the currently selected project. Note, however, that unlike
the Windows Explorer, the file pane does not show subprojects. You still must use the project
pane on the left to navigate between projects.

The file pane shows the filename, user (if the file is checked out), date and time of the file
and the folder to which a file is checked out. Clicking on the column headers sorts the display
by that column. Clicking again on the column header reverses the order.

Right-mouse-clicking in the file pane (or pressing the “Properties” key on a Windows-
enhanced keyboard) brings up a context-sensitive menu (see Figure 9) with options to operate
on the currently selected file. These menu options duplicate those available on the toolbar or the
application menu.

32 Essential SourceSafe

Figure 9. The context-sensitive menu available in the File window conveniently
duplicates functionality available from the toolbar and application menu.

Results pane
The bottom window, referred to as the “results pane” in the SourceSafe documentation, reports
the result of executing some commands. It is not always that informative, and many users
choose to either minimize its size or close it altogether. Use the Tools | Options View tab (see
Figure 47, on page 61) to hide this panel from sight. Alternatively, you can temporarily hide it
from view by resizing the upper panes, dragging the mouse on the divider between the panes.

Status bar
The status bar displays the login name of the current user, the sort order used in the file
window, the number of files in the current project, and routine messages. When a long
operation is going on, the left-hand corner of the status bar displays a Cancel button where
you can stop the operation. Like the results pane, you can toggle the display of the status bar
through the Tools | Options View tab.

Drag and drop
A discussion of the SourceSafe interface would be incomplete without mentioning a feature
that’s missed by many users. Drag and drop is well implemented in SourceSafe, both within the
application and between SourceSafe and the Windows Explorer. Files and entire projects can be
shared between projects by dragging the source item to the destination. Drag with the right
mouse button to get a menu of options—Share, Share and Branch, Move or Cancel—when you
release the mouse. Dragging with the left mouse button only shares.

Files can also be added to SourceSafe by dragging them, or the folders they are in, from the
Explorer into the SourceSafe project tree view. Unfortunately, dragging from SourceSafe onto
the Explorer doesn’t seem to be supported. This would make a nice Get function but was not
implemented by the SourceSafe developers.

Chapter 2: SourceSafe in Theory and Practice 33

Reports
Many users are surprised to find there isn’t a Reports option as one of the main items off the
main menu bar. Others have asked me what kind of driver they would need to access the data
engine from a third-party reporting tool. There is no centralized reporting facility in Visual
SourceSafe, nor is there a way to access the data for reporting from a third-party tool. However,
there are still many reports available from different parts of the interface. There is also the
possibility of setting up many routine reports through batch files or scripts that use the
command-line interface into SourceSafe (see Chapter 8, “Beyond the Basics,” for more on
the command-line interface).

More details are available in the following sections, but here are the places you can look
for reports. To see all files, or a list of files meeting specific criteria, use the Sort and Search
options off the View menu to limit the files displayed. Then, print the list using the Files Report
menu option off the Tools menu. For more details on a project or individual file, you can print
each page of the Property sheet, using the Report button, and you can also print the file or
project’s history using the Report button on the History page.

In these days of WYSIWYG report engines, SourceSafe has fallen behind. For day-to-day
use, the plain text output of the reporting tools is usually adequate. But if you have a file that
needs more slick presentation, use the Clipboard output option, available on each report dialog,
to copy the results to the clipboard, and then you can paste them into a word processor to add
styles, font sizes and even color to the reports.

Dialog by dialog
In this section, each dialog is examined in turn, with some additional commentary about the
unique items available on that dialog, or the effects the choices presented in that dialog have on
the overall operation.

You are unlikely to see all of these dialogs during routine operations, and, in fact, if you
are seeing all of these dialogs, it’s hard to believe you’re getting any work done. As I show
much later in this chapter, the Warnings and Command Dialog tabs of the Tools | Options
dialog let you turn many of these dialogs off, so the default behavior is performed without all
of the pesky confirmations.

However, there are some situations where you want to see these dialogs, either to confirm
settings or because you want to override one of the default behaviors. In those cases, hold down
the Shift key in order to force the dialog to appear. Surprisingly, the Shift-key trick works not
only with SourceSafe’s menu, but also with SourceSafe’s toolbar and with the right-mouse-
click shortcut menus as well.

The dialogs that you see when you are operating SourceSafe may appear slightly different
from the dialogs illustrated here. In this book, all of the dialogs have been expanded to display
all of the options available. Dialogs can be expanded by pressing the button on the lower right
portion of the dialog labeled “Advanced >>.”

The File menu
Items on the File menu, not surprisingly, mostly have to do with files. Here, many of the
commands also located on the toolbar and the context-sensitive menu can be found.

34 Essential SourceSafe

Open Database
Use this dialog (see Figure 10), available as the first option off the File menu, to open a
different database. The dialog has several more functions, though.

The check box on the bottom of the dialog designates that the database you open will be
the default database opened the next time you start SourceSafe. This check box is selected
when the dialog appears, and this feature trips me up all the time. Because integrated source
code control depends on the currently selected database, accidentally changing default
databases with this dialog can wreak havoc with your integration. Watch this check box
carefully when you use the dialog, and remember to turn off the check box unless you mean
to change the default behavior of SourceSafe!

The Browse… button allows you to add another SourceSafe database to the dialog’s
list. (This list, by the way, is stored in the Registry, under the HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\SourceSafe\Databases key.) The Remove button only removes the
database from the list, but it does not erase files from disk. The Username text box lets you put
in the name that should be used as the default to log into the database.

Figure 10. The Open dialog also lets you set the default database opened the next
time you start SourceSafe.

Add Files
Use the Add Files toolbar button or the File | Add File menu option to add files to the currently
selected project (see Figure 11). Multiple files can be selected from the list on the left with the
Windows standard Shift-Click and Ctrl-Click shortcuts. You can limit the list of files by
selecting the “List files of type:” drop-down (those file types can be modified in the File Types
tab of the Administrator’s Tools | Options dialog, or by editing the SRCSAFE.INI file directly).
Use the Add button to add the selected files. Use the Close button to close the dialog. Use the
View button to view the selected file (see the discussion of the View dialog later in this chapter
for options). Use the Network button to locate files not available on a mapped drive.

Chapter 2: SourceSafe in Theory and Practice 35

Figure 11. The Add Files dialog allows you to add multiple files to the current project.

Create Project
Create a project using the toolbar button or the File | New Project menu option. Use care when
creating a new project, as the project is created as a subproject of the currently selected project.
Check the caption of the dialog (see Figure 12) for the path where your new project is going to
be created. (You can right-mouse-drag-and-drop it to the correct location if you do create the
project in the wrong location by mistake.) Adding a comment (visible in the Property dialog)
helps you and others determine what the project is about.

Figure 12. Read the caption to determine where the project is going to be created.

Delete
The Delete option, available from the toolbar or the File | Delete menu item, confirms your
intention to delete the currently selected file or project (see Figure 13). If you have been
given Destroy rights to the project, you will also see the “Destroy permanently” check box
enabled. Destroying the file permanently removes the file completely from SourceSafe
and does not allow you to retrieve the file later. As a general rule, it is better to choose not

36 Essential SourceSafe

to destroy the files here, but rather have the Administrator choose to Purge the items after
archiving a backup copy.

Figure 13. The Delete dialog confirms the deletion, and optionally offers to obliterate
the files.

Rename
Rename doesn’t have a dialog that goes with it; rather, it uses the same metaphor as the
Windows Explorer tool in allowing you to edit the selected project or file in place, replacing the
file or project name with a text box with the current name filled in and selected.

Properties
Properties brings up a rich dialog with a lot of information, as well as the ability to print the
information presented. The dialog has four tabs: General (see Figure 14), Check Out Status
(Figure 15), Links (Figure 19) and Paths (Figure 21).

The General tab displays general information on the file, including its size, type, version
and comment. Note that three options on this dialog can be changed. The Type drop-down
box allows you to designate the file as either binary or text. SourceSafe is pretty clever about
figuring this out by itself—it searches the file for a CHR(0). If it finds one, it knows the file
is binary. If not, it assumes the file is a text file. The type of the file is important when it
comes to displaying differences for the file—a visual display of differences is attempted only
for text files.

The second changeable option is the check box “Store only latest version.” If this option is
selected, file differences are not retained. This means you can’t Diff the file against previous
versions, nor can you Rollback to an earlier version. This option might save you some space,
particularly if you are storing large binary files, and if you either have the ability to restore
earlier versions from another source, or don’t have a need for the earlier versions.

The Comment edit box is also editable. This dialog edits the comment associated with the
first version of the file, and doesn’t change the comments added to later versions as the file is
checked in and out.

Changing any of these options pops up a “Save these Changes?” dialog to confirm you
want to save the changes.

Chapter 2: SourceSafe in Theory and Practice 37

Figure 14. The General tab of the Properties dialog displays the status, version and
comments associated with the file. It also provides the ability to specify the file type,
modify the original file comment and store only the most recent file version.

The Check Out Status tab of the Properties dialog shows information on the current
checkouts of a file. This includes both the user and the machine onto which the file was
checked out, as well as the date and time. The comment edit box displays the comment typed in
when the file was checked out. This comment is often overwritten when the file is checked in.

If more than one user has the file checked out, the Check Out Status tab appears quite
different (see Figure 16). The list shows all of the users who have the file checked out, and the
folder to which the file was checked out. If you have the file checked out, the buttons to check
the file in or undo the checkout are enabled when your name is highlighted. Highlighting a
name and pressing the Details button brings up a dialog very similar to the original, single-
checkout tab (see Figure 17).

Finally, the Properties dialog has a Report button. The Report button brings up a dialog
with choices of output destination (printer, file or clipboard) and allows you to preview or
cancel the operation. Preview forms are shown as part of Figure 18, Figure 20 and Figure 22.
The line numbers shown in the preview window do not actually appear in the output. (Hint: To
get rid of the line numbers in the preview window, de-select the “Show line numbers” check
box on the Differences tab of the Tools | Options dialog.) Each of the tabs of the Property sheet
has a report that matches the items displayed on that page.

38 Essential SourceSafe

Figure 15. The Check Out Status tab of the Properties dialog shows who has the file
checked out, when it was checked out, and on which machine and project.

Figure 16. The Check Out Status tab appears quite different when the file has been
checked out more than once.

Chapter 2: SourceSafe in Theory and Practice 39

Figure 17. Selecting the Details button from the Check Out Status tab displays the
information for a single checkout.

Figure 18. The Check Out Status Report can give you a hard copy of the information
available from the Check Out Status tab of the Property sheet, and can be accessed
by clicking the Report button of that tab.

The Links tab of the Property sheet show a list of all of the project paths that have this
file shared into it. This shows one of the coolest features of the Share functionality. With a
Links list, when you make a change to a shared file, you know all of the projects that you are
affecting. Many developers have run into the problem of changed shared library code only to
discover, weeks or months later, that unanticipated side effects of the change break other
applications. With the Links functionality, you can identify which applications require testing
whenever a change to shared code takes place.

40 Essential SourceSafe

Figure 19. The Links dialog shows all projects that share this file.

Figure 20. The Links report, available from the Report button on the Links tab of the
Property sheet, gives you a hard copy of the shares a file has.

The Paths tab of the Property sheet, along with its corresponding report (see Figure 21 and
Figure 22) show the branches of a source code file. Branches are independent files that started
life as one file, which was shared between two projects, and then the share (the link) was
broken, creating two separate files. Like the shares shown in the Links tab, this history lets you
trace the paths source code took during development, and lets you consider whether the two
branches’ code paths might need to be merged together again.

Chapter 2: SourceSafe in Theory and Practice 41

Figure 21. The Paths tab of the Property sheet show the branches (separate files
created from shares) created from the original file.

Figure 22. The Paths Report, from the Paths tab of the Property sheet, can provide a
printed copy of the Path history.

Set Working Folder
The working folder is the default directory where a file is written when you check it out or you
get the latest version. In order to check out or get files, SourceSafe asks for a working folder if
one is not already set up. Use the Set Working Folder menu option off the File menu, the Set
Working Folder button on the toolbar, or the Ctrl-D keyboard shortcut to bring up the dialog
(see Figure 23). If a working folder is set for a parent project, the child projects are assumed
to have a working folder under their parent folders, unless explicitly overridden. So, if the
parent Accounting project is assigned a working folder of C:\Accounts, the child project of
Menu is assumed to have a working folder of C:\Accounts\Menu, unless a different working

42 Essential SourceSafe

folder is assigned to it. If the folder or subsidiary subfolders do not exist, you will be prompted
to allow SourceSafe to create them when you check out or get the latest files.

Figure 23. The working folder is your local work area for the project.

Create Shortcut
Create Shortcut is a new option for Visual SourceSafe 6.0, appearing only on the File menu. It
creates a desktop shortcut to the current Visual SourceSafe Explorer executable and includes
the –P and –S command-line switches to specify the project and SrcSafe.INI file, respectively.
The command-line switches are discussed in Chapter 8, “Beyond the Basics.”

Label
Labeling is a very important feature of source code control. With labeling, a milestone or
checkpoint can be applied to all files in a project, and all subsidiary projects. This label can be
used later to retrieve all of the files at that milestone. This is an essential feature that allows you
to continue development on a project, but be able to retrieve an earlier version if needed for
customer support or to reproduce a problem identified in a later QA process. Use labels for
each major and minor release of your source code, and anytime you want to be able to return to
a snapshot of your code.

Apply a label by first selecting the item you want labeled. While it is possible to label an
individual file, you are more likely going to want to select the highest project within the project
tree to which the label applies. Select Label… from the File menu, or the Label Version toolbar
button. A dialog (see Figure 24) appears that allows you to specify the label string that appears
in the project and item’s history listings, as well as a longer comment that is available from the
Details button of the History viewer (see the History dialog, discussed later in this chapter).

Labels are always applied recursively to all files and projects under the selected project.

Chapter 2: SourceSafe in Theory and Practice 43

Figure 24. Use the Label dialog to mark all files with a milestone you can use to
retrieve the files later.

Move
The Move dialog allows you to move a file or project from one project folder to another. If you
examine the item’s Properties, you will see that SourceSafe is simply performing a share and
then deleting the original file. The Move dialog (see Figure 25) allows you to pick the
destination folder.

Figure 25. The Move dialog moves the selected file or project by performing a share
and then deleting the original item.

44 Essential SourceSafe

The Edit menu
The Edit menu is the place where you would expect to see the Windows standard Copy-Cut-
Paste menu items. But because Visual SourceSafe isn’t truly an editor, such functions are
inappropriate. Instead, those items most closely related to editing can be found here. View
and Edit options allow you to look at or modify the selected file. Select, Select All and Invert
Selection options allow you to select one or more files from the file window, in order to
perform some command on the files.

View File and Edit File
The View File and Edit File dialogs are the same, differing only by which of the two option
buttons at the top of the dialog (see Figure 26) is selected.

Figure 26. The View and Edit options share the same dialog. Use caution when
viewing a file with its registered application—some run, rather than edit, the file.

SourceSafe is very clever about the options it presents. SourceSafe determines, based
on the file extension, which application it should use to view or edit the file. Files with an
extension of “txt,” for example, are brought up in Notepad, while files of “doc” type are opened
in Microsoft Word. However, this feature has its hazards. Some applications, like the Registry
editor REGEDIT, are registered to “edit” a file type that they actually execute. If you try to
view a file with an extension of “reg,” the REGEDIT program actually reads the file and inserts
the contents into the Registry! This is obviously not the desired effect and can have disastrous
consequences. For that reason, I strongly recommend clicking on the Advanced button in the
Edit dialog to confirm which program will edit your file anytime there is the slightest doubt in
your mind.

Microsoft has actually prevented the REGEDIT problem (and similar problems with VB
and VC++) by adding the following lines to the default SS.INI file:

; The following lines force SourceSafe not to execute certain file types.
.reg (Win) = notepad.exe
.vbp (Win) = notepad.exe
.vcp (Win) = notepad.exe
.mak (Win) = notepad.exe
.bat (Win) = notepad.exe

Chapter 2: SourceSafe in Theory and Practice 45

FoxPro developers are likely going to want to add the “prg” extension to that list, to avoid
accidentally running programs from SourceSafe when they only mean to look at them.

When the Advanced button has been selected on the View/Edit dialog, options appear to
allow you to select which editor to use. If an application has registered that it can edit the file,
that application appears as the second option. If you have already selected an editor for this
file type during this editing session, that selection would appear as the third option. You can
type your preference directly into the text box for the third option, entering, for example,
Notepad.exe. There is another way to have a default editor appear, and that is by specifying
an editor on the General tab of the Tools | Options dialog (see Figure 45, on page 59). If you
have specified an editor there, that choice appears as the default in the third option.

Select
The Select dialog allows you to multiple-select files in the current project without the hassle
of having to use one of the extended selection methods (Click and Shift-Click for a range, or
Click and Ctrl-Click for multiple, individual items). Use the DOS wildcard characters of ? for
a single character and * for zero or more characters to specify a filename skeleton, and press the
Select button to highlight those matching files (see Figure 27). Multiple file skeletons can be
specified at the same time by separating them with semicolons. When dealing with a large list
of files, this can be a time-saver, and also help to avoid errors.

Figure 27. The Select dialog lets you select or deselect all files that match a file
template that you supply. This is a lot easier to manage than trying to Ctrl-Click and
scroll a file list.

The Select dialog can be used several times, and selections can be added together. So, for
example, to specify all of the GIFs and JPGs in a folder, except for those that begin with M,
you can first specify the skeleton *.GIF;*.JPG and press Select. Then, change the skeleton to
M*.* and press Deselect.

Select All
The Select All option selects all files in the current project.

Invert Selection
The Invert Selection option reverses the files selected and deselected.

46 Essential SourceSafe

The View menu
The View menu changes the appearance of the files presented. The Sort commands sort the list
of files in the file list. The Search commands limit the display to only files that meet specified
search criteria. The Refresh command requeries the database for changes that may have been
made since the last update.

Sort (Name, Type, User, Date, Checkout Folder)
The Sort commands reorder the display of the files by the column specified. Clicking on the
column header of the file list can also perform these menu commands. The menu option only
sorts in descending order, while clicking on the column headers toggles between descending
and ascending order. The current sort order is displayed in the status bar.

Search
The Search commands are unique in that they display only files meeting the specified search
criteria, and hide the other files. Many SourceSafe neophytes are confused when many of their
files fail to appear in the file list. If you suspect that some of your files have disappeared,
remember to check the status bar, which displays “Searched” if a search is in effect, and use
the menu option Cancel Search to restore the display of all files.

Wildcard Search
The Wildcard Search (see Figure 28) lets you search for files matching a file skeleton, similarly
to the Select dialog. Use the DOS standard wildcards of ? and *, and separate multiple file
specifications with a semicolon. The Search Area options let you specify whether the search is
confined to the currently displayed project, whether it can include subprojects of the current
project, or whether it should start from the tree root and include all projects. The latter two
options display files from more than one project at a time in the file list, as shown in Figure 29.
The status bar displays “Recursive” if you have selected to view files in a project and
subprojects, and “Global” if you are searching all projects.

Figure 28. The Search for Wildcard dialog does not let you find one-eyed jacks. It
does, however, locate files matching the wildcard template you supply.

Chapter 2: SourceSafe in Theory and Practice 47

Figure 29. A wildcard search for *.GIF and *.JPG from all projects shows the path to
multiple projects in the file list, and “Recursive” in the status bar.

Status Search
The Status Search option (see Figure 30) lets you look for files that are checked out. This is a
great tool for making sure that everything is checked in before a major beta or production build,
or as a routine maintenance item to make sure that files aren’t being kept checked out for
excessive periods of time. You can also choose to search for files checked out by one person, a
handy check before you send someone on vacation, or overseas on assignment. The Search
Area options work exactly the same as for the Wildcard Search.

48 Essential SourceSafe

Figure 30. The Status Search dialog lets you display only those files meeting the
criteria you specify.

Cancel Search
The Cancel Search menu item clears the current search criteria, restoring all files to the display.

Refresh File List
The Refresh File List menu item searches the database again for files meeting the current
search criteria, or all files if no criteria is selected, and displays the appropriate file list. You’ll
want to refresh if the underlying files are likely to have changed from the actions of others on
the network.

The SourceSafe menu
The SourceSafe menu contains those functions that make up the core of the SourceSafe
functionality—the ability to get, check in, check out, share, branch and merge files.

Get Latest Version
The Get dialog (see Figure 31) lets you specify where you want the copy of the file to
be placed. You also have the option of flipping the Read-only flag on the file so that it is
writable. Use this option with care, as the Read-only flag is a nice reminder that the file is
not checked out.

You also have options on the dialog to set the timestamp on the file. Typically, you want to
leave this set to “Current.” In most development environments, having the timestamp updated
to the current time means that the file will be recompiled the next time you recompile or make
the project. If this file were left at the time the file was last modified or updated, it is possible
that it would be ignored by the compiler as not having been changed, and you would not gain
the benefit of the most recent code in your project. So, change the “Set file time” option with
care, and ensure that you understand the implications for your development environment.

The final option, how to handle writable files, is also one you should change with care. The
default, “Ask,” alerts you whenever SourceSafe attempts to overwrite a writable file. The other
options may have side effects you won’t like: “Replace” just replaces the file anyway,

Chapter 2: SourceSafe in Theory and Practice 49

potentially erasing changes you have made (when you should have checked out the file), “Skip”
leaves a potentially older or out-of-date file on your disk, and “Merge” could allow changes in
your local edition to remain in the local version, but still does not add them into SourceSafe’s
database. In many cases, none of these other options are ones you want to consider. Change
from the “Ask” default only after serious consideration.

Figure 31. The Get dialog offers several key options, like making the file writable or
changing the file’s timestamp.

Check Out
The Check Out dialog (see Figure 32) allows you to confirm or override where you want the
file to be checked out to, and also gives you options similar to the Get dialog discussed in the
preceding section. However, there’s one other option that may seem strange at first: the option
to check the file out without getting a local copy.

There are several situations where not getting a local copy makes sense. The most common
situation is one where you have had to make changes to code you did not check out. Perhaps
the SourceSafe files were unavailable due to network problems, or you had your machine
disconnected from the network. In any case, you’ve made changes, and now you want to
integrate them back into the SourceSafe database. Perform a Diff (explained later) to ensure
that the only differences between your copy of the file and the one in SourceSafe are those
changes you made, and then check out the file, checking the box to not get a local copy. You
can then check your changes in, so that the SourceSafe database is up-to-date. Whew!

The Comment edit box allows you to make a comment on why you are checking out the
file. This is a good idea, to let your fellow developers know why you have a file checked out. It
also appears as the default comment when you go to check the file in. That’s both a handy
reminder and a potential time-saver.

If you want to check out a particular file exclusively, the “Allow multiple checkouts” check
box allows you to override the global setting allowing multiple checkouts (set in the Tools |
Options dialog of the Administrator tool). If you de-select this check box, no other user can
check this file out while you have it checked out. Use caution with this check box, however;
clicking once seems to disable the check box, and you may need to click twice in order to clear
the checkmark.

50 Essential SourceSafe

Figure 32. The Check Out dialog offers the option to check out the file without getting
a local copy, a nice feature if you have had to make file changes without checking out
the file, and now need to check back in your changed version.

Check In
The Check In dialog (see Figure 33) allows you to update SourceSafe’s master copy of a file
with the changes you have made. Use the “Keep checked out” check box if you have more
changes to make and you only want to update the copy in the SourceSafe database. Use the
“Remove local copy” check box if you want to save diskspace, don’t require a local copy, or
want to make sure you can never edit an old copy of a file. Use the Comment edit box to detail
what changes you made to the code. The comments can be very helpful in describing the
overall flow of a development effort. Comments can be extracted from an entire project using
the History options, described later in this chapter. So, add comments with care, so that they are
useful later on when retrieved in a report.

Figure 33. Use the comment area to describe your changes, useful information that
you can extract from the database later. Use the Diff option to remind yourself of the
changes you made.

Chapter 2: SourceSafe in Theory and Practice 51

Undo Check Out
You would choose to undo a checkout (see Figure 34) when the file was checked out by
mistake, or when the changes you have made to the file don’t work and aren’t worth saving.
Undo normally replaces the file on your local working folder with the most recent file in the
SourceSafe database. One other option, Leave, would leave your changes in your working
folder, but clear your checkout, leaving you in a somewhat unpredictable state. You might use
this option if someone else needed to exclusively check out the file, but you wanted to keep
working on your changes. Bear in mind, however, that you will have to clean up the situation
later. The last option, Delete, lets you remove the file from your working directory if you no
longer require it.

Figure 34. Undo Check Out lets you restore a file you checked out inadvertently.

Share
The Share menu option lets you place a file in multiple branches of the SourceSafe tree.
It’s important to understand that a shared file does not “belong” to any one project more
than any other. A shared file is simply pointed to from multiple locations, from different
project hierarchies.

To share a file among projects, first select the project into which you want to share the
file—not the project that owns the file currently, but rather the project to which you want to
add the file. Select the Share menu option from the SourceSafe menu (or the shortcut menu, if
highlighting a project) and the Share dialog (see Figure 35) appears. Navigate the project tree
on the right to locate the source project, and select the file from the list on the left. Use the
View button to bring up the View dialog (explained earlier). Press the Share button to share the
file into the current project. Select the “Branch after share” check box if you want the current
project to have an independent copy of the file selected—see the next section, “Branch,” for
more on branching.

52 Essential SourceSafe

Figure 35. The Share dialog lets you link files from other projects into the
current project.

Branch
Branching breaks the link on shared files (see Figure 36). Use branching when you want to
perform changes on a file in one project and not have the changes affect the other projects
into which the file is shared.

Figure 36. Branching breaks the link between shared files, creating a stand-alone file
in the current project.

Chapter 2: SourceSafe in Theory and Practice 53

Merge Branches
Merging branches allows you to bring back together two separate lines of source code
development. Merging does not actually reunite two independent files into one shared file
again, but rather merges the changes to one file into the other, leaving the two files
independent. Calling up the Merge dialog (see Figure 37) allows you to pick the file from
which the changes are read for merging. Note that the caption shows the destination file into
which the merged changes are written. Once you have created the merged file, you can share it
back into the other project, optionally pinning it to this version, so that both projects benefit
from the merged file.

Figure 37. Merging branches allows changes to be reapplied across files that have
been branched.

The Tools menu
The Tools menu provides the utilities for working with SourceSafe files—the ability to trace
version history and look at differences between files.

Show History
The Show History option, available from the menu, the toolbar, and the shortcut menu, lets you
see what has been done to a file or a project over time. It also presents a tool, the History form,
that lets you perform several complex operations against the file or project.

The first dialog that appears (see Figure 38) lets you limit the display of history to include
labels, only labels, a range of dates (the “From:” and “To:” prompts) or only see actions
performed by one user. After you make your choices and select OK, the main History form (see
Figure 39) displays the history you’ve selected.

54 Essential SourceSafe

Figure 38. Before seeing the history of a file or project, the History Options dialog
allows you to limit the information displayed to include or exclude labels, select a range
of dates, or see actions by only one user.

Figure 39. The History form is a powerful dialog, with a number of options available
from the buttons on the right side of the form.

History form
This History form shows the changes performed on a file over time, and provides tools to
manipulate the file.

Most of the buttons on the right of the form perform functions that you’ve seen before, but
at least two are unique to this form. The Pin button and the Rollback button provide functions
worth reviewing in detail.

Chapter 2: SourceSafe in Theory and Practice 55

The Pin button holds the version of a shared file at the level highlighted when the Pin
button is pressed. When a Get operation is performed against the source code for this project,
the pinned version of the source is provided. A pinned file cannot be checked out until it has
been unpinned, avoiding changes to previous versions. Pinning allows you to share a source
code file across several projects, but control the release of new features by pinning them in the
shared projects until it is appropriate to release them. When pinned, a version shows a pushpin
in the left margin and the Pin button becomes the Unpin button (see Figure 40).

Figure 40. Pinning a version of a file displays the pushpin in the left margin, changes
the Pin button caption to Unpin, and locks the file’s contents at the pinned version.

The Rollback button is a brute-force way of reverting to earlier versions of code, and while
it has its uses, there are better ways to accomplish the same feat. Rollback, as indicated by the
dire warning message that comes up when selecting it (see Figure 41), destroys history on the
files. When you choose to roll back to an earlier version, SourceSafe wipes out the history and
changes that occurred after that version and restores that version as the current one. This defeats
some of the reason for keeping history on the files, as you cannot follow exactly what it is that
was done. Instead, consider a “soft rollback”: Check out the current version of the file, and then
use the History form to Get an earlier version, overwriting the current one. Finally, check in the
now-overwritten version. You get exactly the same result—you have the older version of the
file as the current version—but you do not lose the history of the changes you went through to
get there. It is quite possible that later in the development process, you will decide that those
intermediate versions had some value, and you can use the History dialog to retrieve them.

56 Essential SourceSafe

Figure 41. The Rollback confirmation dialog does its best to warn you that this is not a
good idea. Try the suggestion included in the text instead.

The other buttons on the History form call up other dialogs covered here. The Details
button shows the file properties, with Next and Previous buttons to scroll through the history.
The Get and Check Out buttons bring up the dialogs of the same name. Diff calls up the
differencing engine, which is covered a little further along in this chapter. The Report button
calls up a standard SourceSafe report dialog, with options to display details of each action and
differences between the files at each version. This can be an excellent, detailed audit tool for
reviewing all of the changes to a program.

If a project is highlighted in the SourceSafe Explorer window when History is selected
from the application or context-sensitive menu, a few options that are only appropriate to
projects are displayed. A Recursive check box is added to the first dialog (see Figure 38) to
allow the inclusion of subproject files as well. Pin and Rollback buttons are not included in the
main History form.

Show Differences
As mentioned earlier in the book, the purpose of SourceSafe is to be able to determine
differences between files. Storing those differences and applying them to re-create different
versions of the source code is what source code control is all about. The Difference Options
dialog (see Figure 42), available from the main menu, toolbar and shortcut menu, exposes that
differencing engine with a powerful dialog with many options.

Figure 42. The Difference Options dialog provides numerous ways to view the
difference between any two files, or versions of files, either in SourceSafe or on disk.

Chapter 2: SourceSafe in Theory and Practice 57

The two items to be compared are specified at the top of the dialog. A specific file version
can be specified in the format $/Project/Subproject/File;Version, such as:

$/Accounting/AR/Mainmenu.prg;2

The Difference dialog is not just limited to versions; it can be used to display the difference
between any two text files, or between any text file and a SourceSafe version. The drop-down
buttons to the right of the text boxes allow you to specify “SourceSafe Projects” or “Windows
folder” and bring up an appropriate browser for each.

The formatting options determine the output of the differencing engine. In most cases, you
would want the full-screen Visual difference (shown in Figure 43). However, if you wanted to
take the differences and run them into a text processor or database engine, you could choose the
text-based SourceSafe or standard UNIX difference formats for an easily parsable output.

Figure 43. The Differences window shows what’s changed. A key is included on the
bottom status bar. A toolbar on top makes it easy to navigate between changes.

Most of the other options are pretty self-explanatory. Ignoring white space prevents
highlighting differences simply due to spaces, carriage returns or tabs. OS Differences would
be the end-of-line differences between carriage return-line feed pairs (DOS/Windows),
carriage returns (Apple Macintosh) and line feeds (UNIX). Context displays would be the
ability to display lines surrounding a difference, to put the difference in context.

When you have the settings to your liking, press the OK button to bring up the
Differences form.

Differences form
The Differences form shows the difference between the two selected files/versions. Directly
below the toolbar are indented labels showing the names of the files or versions being
compared. In the status bar at the bottom of the window is a key showing the meaning of the
different colors within the display.

58 Essential SourceSafe

The toolbar lets you navigate a large document easily. The binoculars icon brings up a Find
dialog. The next two buttons allow you to find the next or previous in the document. The next
group of toolbar buttons allow setting a bookmark, navigating to the next or previous, and
clearing all bookmarks. The final set of buttons, the large up and down arrows, let you jump to
the previous or next difference in the file.

Find in Files…
The Find in Files dialog (see Figure 44) lets you search through all files containing a specified
string. You have the typical options to match case, use “regular expressions” (DOS wildcards,
not UNIX regular expressions), recursively search through subprojects, and list all shared files
once or separately. The latter two options are available if you have highlighted a project to
search, and do not appear if you highlighted a single file to search.

Figure 44. The Find in Files dialog lets you locate a string of characters in any of the
files in your project.

Files Report
Choosing the Files Report option from the menu will give you the option of printing a listing of
those files shown in the File List. A typical SourceSafe dialog gives you choices of printing
recursively through subprojects, or listing only filenames and not the details associated with
them. The usual destinations of Printer, File and Clipboard are supported.

SourceSafe Explorer’s Tools | Options dialog
It is very difficult to describe exactly what happens when a user interacts with SourceSafe
because the product is extremely customizable. It is nearly always true that if you don’t like the
way SourceSafe does something, you can customize it to behave more to your liking. Many of
these options are available in the Tools | Options dialog. The settings chosen in this dialog are
unique to each user, and are stored in the user’s SS.INI file. (For more information on
configuring the INI files, see Chapter 8, “Beyond the Basics.”) The Tools | Options dialog has
eight tabs that cover a remarkable number of options.

The General tab (see Figure 45) provides the general options for working with the
interface. Each of these can change the behavior of the product to adhere better to your needs.
“Always keep files checked out” is ideal for a single developer. After the developer checks out
files initially, they remain checked out, and the “Keep checked out” check box of the Check In
dialog is checked when the dialog appears. This can speed operations for the developer who
doesn’t need to share files with others. The “Act on projects recursively” option similarly

Chapter 2: SourceSafe in Theory and Practice 59

enables the Recursive check box in those dialogs that have one. “Reuse last comment” can be a
real time-saver when you are performing a set of similar repetitive operations.

“Check in unchanged files” gives you several options. The default, “Undo Check Out,” is
the most efficient in low-bandwidth situations, as it does not try to rewrite the entire source
code file if it cannot detect any differences. However, if you have set the file comparison to a
quicker and less reliable means (see the discussion of the Local Files tab later in this chapter),
you might prefer to set this option to “Check In” or “Ask.” In most LAN situations, this should
probably be left at its default.

The “Use visual merge” option asks how often you want to confirm the changes
SourceSafe merges quite well by itself. If you are having trouble with Visual SourceSafe’s
automatic merge functionality, change this option to “Yes.” The “Double-click on a file” drop-
down box lets you specify whether double-clicking on a file in the file list should edit the file,
bring the file up in the viewer or, the default behavior, Ask. If you always want the file for
editing, or never want the file for editing, consider changing this option to save yourself a
mouse click. The “Editor for viewing files” option lets you specify your preferred editor as
described in the discussion of the Edit Files dialog earlier in this chapter. The temporary files
setting lets you point to a local drive, if writing files to the network location of the SourceSafe
database is slowing down operations.

Figure 45. The General tab of SourceSafe Explorer’s Tools | Options dialog.

The Local Files tab of the Tools | Options dialog (see Figure 46) offers several options
you can use to configure SourceSafe more to your own liking. And, again, the SourceSafe
default is usually well chosen, and you should only try changing it if you feel you need that
particular change.

60 Essential SourceSafe

Figure 46. The Local Files tab of SourceSafe Explorer’s Tools | Options dialog.

The first two options remove local copies. Use these when you are very limited in space
or when you prefer keeping the master copy off your machine. These choices would be
appropriate if you were using shadow directories to do the application build. The option for
using the read-only flag has two purposes. First, the read-only flag can remind you that you are
on the honor system and shouldn’t be changing files that you haven’t checked out. The second
reason is that the overwrite logic of SourceSafe assumes that it is safe to overwrite a read-only
file when doing a Get or Check Out. If the file is read-write, SourceSafe takes action based on
the settings you have specified. You could find yourself answering many more dialogs than you
would prefer if you change this setting.

The next option, “Copy keyword-expanded files into working folder,” causes there to
be a second file write if a file you have checked in has keywords. SourceSafe reserves a
number of words, set off with dollar signs, such as Author, History, Date and so forth, that
SourceSafe automatically expands upon check-in. While this makes for some nice automated
documentation, it does require another file write over the network. Change this in low-
bandwidth situations if it makes sense for you. The last check box lets you specify that the
end-of-line character(s) are appended onto the last line of text files if they are missing. Some
utilities depend on text lines being terminated with EOL characters and operate incorrectly
without them.

The file comparison drop-down box lets you specify how SourceSafe determines that
files differ when checking in a file. The most exact is the Contents comparison, which
compares each value within the files. This is also the most resource-intensive and tends to
be the slowest. The default method, Checksum, calculates a number for both the original file
and the file being checked in. It is extremely rare, though theoretically possible, that the two
files will generate the same checksum and therefore changes might be discarded. The final

Chapter 2: SourceSafe in Theory and Practice 61

option, Time, depends on the next drop-down box for its behavior. Depending on how local
files are time-stamped, a difference between the local file timestamp and the SourceSafe
timestamp dictates whether SourceSafe decides these files are different. While very efficient
over low-bandwidth connections, the risk of a computer with a wacky time setting upsetting
this scheme is too great for my preference.

The final setting determines how files should be time-stamped when they are written
locally. At first, it might appear confusing that SourceSafe chooses to set the date and time to
the current setting when you get a file. However, if you use a project-building tool like Make or
the FoxPro Project Manager, these products decide which files to recompile based on the
timestamp of the source code vs. that of the object code. If the source code were to have an
earlier timestamp than the object code, no compilation should be needed, and thus, new code
you got from the SourceSafe database would not be compiled into your application. While you
can change this setting (the other options are to set the timestamp to the modification date or the
update date), you would have to compensate for this difference in dates by forcing compilation
of all files or use some other technique.

The View tab of the Tools | Options dialog (see Figure 47) determines how the SourceSafe
interface is presented to you. The first three check boxes let you turn on or off the results pane,
toolbar and status bar. If you have ever dragged the toolbar off the application frame and closed
it, you will be relieved to know that this is the place (and the only place—it ought to be on the
View menu, too) where you can get the toolbar to be displayed.

Figure 47. The View tab of SourceSafe Explorer’s Tools | Options dialog.

The second set of options force MS-DOS format filenames (necessary only if you are
creating an MS-DOS cross-platform product) and allow you to automatically shift the
current project with the focus. Finally, there’s an option to refresh the file list (F5 or View |

62 Essential SourceSafe

Refresh File List do it interactively) automatically and at the interval you specify. Raise this
setting on low-bandwidth or heavily used connections, and lower it if you need to see updates
more frequently.

The Difference tab on the Tools | Options dialog (see Figure 48) lets you set the
characteristics of the Differences window (see Figure 43) by specifying the colors, fonts and
appearance of each of the difference elements. Also, the check box for “Show line numbers”
determines whether line numbers appear in the report preview windows.

Figure 48. The Difference tab of SourceSafe Explorer’s Tools | Options dialog.

The Command Dialogs tab (see Figure 49) determines which commands get a dialog
popping up with them. You’ve probably noticed that many of the dialogs have a “Show this
dialog only when the Shift key is pressed” check box—this is the place where all of those
settings can be made at once.

Chapter 2: SourceSafe in Theory and Practice 63

Figure 49. The Command Dialogs tab of SourceSafe Explorer’s Tools | Options dialog.

The Warnings tab of the Tools | Options dialog (see Figure 50) lets you decide which
operations should provide a warning dialog, confirming the operation you want to perform. In
all cases, these warnings are letting you know that code is going to be lost, overridden or erased
by the operation you’ve chosen. Unless you are very consistent (or very lucky), you might want
to choose to keep these warnings active.

The File Types tab of the Tools | Options dialog (see Figure 51) serves several purposes.
The “Binary files” text box lists file skeletons that SourceSafe should always treat as binary.
This can save a bit of processing time, as SourceSafe does not have to scan the file, as it usually
does, to determine whether the file is text or binary. The “Create SCC file” text box specifies
file extensions for which SourceSafe should create a matching MSSCCPRJ.SCC (my guess is
that’s a MicroSoft Source Code Control PRoJect file) to store project information for Visual
Basic projects. If you are storing files with those extensions in other languages, and you don’t
need to store VB projects in SourceSafe, consider dropping the extension from the dialog, and
eliminating the unnecessary file.

The final portion of the dialog deals with file groups and their related buttons. File groups
are used to populate the Add Files dialog “Files of type” drop-down box (see Figure 11) with
the appropriate file extensions for each language. The File Types tab allows you to add your
own language and matching file types.

64 Essential SourceSafe

Figure 50. The Warnings tab of SourceSafe Explorer’s Tools | Options dialog lets you
enable or disable many of the warning dialogs. I appreciate the warnings in most
cases, and leave them enabled.

Figure 51. The File Types tab of SourceSafe Explorer’s Tools | Options dialog.

Chapter 2: SourceSafe in Theory and Practice 65

The file groups also have a special group, named “<Relevant Masks>.” This group is the
default group used in the Add Files dialog, and the masks here determine which files are used
in Project Compare and drag-and-drop operations. If you are restricting your use of SourceSafe
to only a few types, consider setting them up here. Add a new file group by selecting the Add
button and giving it a name. Add new file extensions to a group by highlighting the group and
adding the file skeletons to the text box labeled “File types included in file group.”

The last tab of the Tools | Options dialog is the tab for Command Line Options, shown
in Figure 52. These options take effect only when you’re working with SourceSafe from the
command line, as explained in Chapter 8, “Beyond the Basics.” SourceSafe commands
typically take effect in the current directory; the first option uses the project’s working folder
rather than the current directory. Projects are specified from the command line with the CP
(current project) command; they can, instead, be assumed from the current directory matching
a project’s working folder, if the second option is selected. The first set of option buttons on
the tab let you decide whether you want to require a comment on checkout, and whether each
file should get its own or whether one comment should be applied to them all. The next set
of option buttons determines whether comments are prompted for on the command line or in
an editor.

Figure 52. The Command Line Options tab of SourceSafe Explorer’s
Tools | Options dialog.

Font
This menu option allows you to change the font used to display the project tree view and the
file list (see Figure 53). This is a really handy option if you need to do presentations with the

66 Essential SourceSafe

SourceSafe interface. My experience is that any font will do for presentations, as long as it’s
Courier New, 14-point, bold.

Figure 53. Use the Font dialog to adjust the tree view and file lists for your comfort.

Customize Toolbar
The Customize Toolbar dialog (see Figure 54) allows you to add a few of the less commonly
used menu options to the toolbar, and also lets you rearrange the order of the buttons on the
toolbar. As you become more familiar with the product, take a look at this option to see whether
there may be toolbar buttons available for you to add to speed up common tasks.

Figure 54. The Customize Toolbar dialog lets you add, remove and reorder buttons on
the toolbar.

Chapter 2: SourceSafe in Theory and Practice 67

Change Password
The Password dialog (see Figure 55) allows you to change your password. To prevent
mischief, you must know your current password in order to change it. If you have forgotten
your password, the SourceSafe Administrator can change it.

Figure 55. Change your password with the Tools | Password dialog.

The Web menu
The Web menu is a recent add-on. As Microsoft turned its attention to the emerging Internet,
all of its products shipped with Web features. While SourceSafe had always been ideal for
version control of HTML, because HTML is always plain text, such control still required action
outside of SourceSafe to transfer files to and from the Web site. These functions were added to
the product.

Deploy
The Deploy dialog (see Figure 56) actually lets you upload or transfer a set of files,
representing a Web site, directly from SourceSafe to the Web server. The configuration
needed to make this happen is done in the Tools | Options dialog of the Administrator
executable, covered in Chapter 3, “Configuring Applications.” Note that you must have
Destroy permissions (the highest level) in order to be able to deploy a Web site. That’s not
a typo. While no files are destroyed, permission to deploy the Web site should probably be
restricted to a small number of users.

Figure 56. You can deploy a Web folder from SourceSafe to the Web using
this dialog.

Check Hyperlinks
The Check Hyperlinks dialog (see Figure 57) presents a neat feature—and one that seems a bit
odd in the middle of a source code control package. This dialog lets you check files, either in
the working folder or in the SourceSafe project’s image, to ensure that the files actually exist.

68 Essential SourceSafe

Optionally, SourceSafe will actually go out to the Web to verify that the URIs specified are
legitimate as well. This is a great last-minute check before deploying a Web site for the world
to see, I suppose, but I still don’t understand why it is included in the SourceSafe package.

The result of the Hyperlink check is shown in a Results dialog (see Figure 58) that lists all
of the documents checked, the hyperlinks found invalid, and those that were ignored. Clicking
on each document that was checked populates the lower two list boxes with the list of links. In
the case shown here, it appears that SourceSafe does not believe that relative links (those in
folders below the documents) can be referred to without a “./” preceding it. When the document
was changed to lead with the ./, all links checked out correctly.

Figure 57. Check the links in either the working folder or the SourceSafe project to
verify that the Web pages, graphics and URIs exist.

Figure 58. The results of Check Hyperlinks show files that couldn’t be located, as well
as listing those that were not checked.

Chapter 2: SourceSafe in Theory and Practice 69

Create Site Map
The final option on the Web menu in SourceSafe is the Create Site Map option (see Figure 59).
This dialog creates a simple HTML page (see Figure 60) that lists the contents of the Web
project, and displays a tree of the subprojects and their contents as well. The graphics used for
the site map—the folder and HTML file icons—can be modified by changing their entries in
the SRCSAFE.INI file, as described in Chapter 8, “Beyond the Basics.”

Figure 59. The Site Map feature allows you to create a list of those files in your
SourceSafe Web folder.

Figure 60. The Site Map created from Visual SourceSafe.

70 Essential SourceSafe

