
Chapter 16: Extending the Framework 373

Chapter 16
Extending the Framework

Once you have become comfortable with the basics, it is time again for new
challenges. Extending the Web Connection framework classes and creating some of
your own classes can significantly improve both your productivity and the quality of
your applications.

Most of the important classes in the Web Connection framework can be easily subclassed
when needed. In this chapter I will present the proper method for creating and installing such
subclasses. I will also show several examples of useful extensions to the Web Connection
framework. But first, I want to make sure that all readers are comfortable with the mechanics
of subclassing in general in Visual FoxPro. The next section presents a primer on this subject.
Developers who are already comfortable with these concepts can skip over this material.

A subclassing primer
To be successful as a developer of Web Connection applications, it is essential to become
comfortable with object-oriented programming (OOP) in Visual FoxPro. As a developer, if
you are new to both the Web and OOP, you will face a steep learning curve. After mastering
the basics with Web Connection, you will encounter needs to create subclasses of your own.
In this section I will show the basics of defining a subclass in code. With Visual FoxPro, you
have the choice of creating your classes and subclasses with either the Class Designer, which
is a visual tool, or with code alone. I am only going to discuss creating classes in code,
because the Web Connection classes that you will be interested in subclassing are defined
in code.

When you create a class, you start with a suitable Visual FoxPro base class, and then
define all of its additional properties and methods from scratch. Properties are like variables
that allow an object to have attributes assigned to it (such as height, width, color, and so forth).
Methods are functions or procedures that are contained (or encapsulated) within an object.
When you create a subclass, you are instead taking some existing class as a starting point and
extending its properties and methods. The class from which you start is known as the parent
class, or super class, if you are familiar with that terminology from another language. You
extend and alter the parent class definition in the subclass. Any property or method in the
parent that you do not specifically alter in the subclass is “inherited” by the subclass. You can
make any combination of five types of alterations in a subclass:

• Add new properties.

• Override the initial values of parent properties.

• Add new methods.

• Completely override parent methods.

• Augment parent methods, while also calling the parent method code.

374 WebRAD: Building Database Applications on the Web

To see these five types of changes in action, you must start with a parent class—the
class from which your subclass will be derived. Here is an example of a parent class named
CoWorker that defines two properties and two methods:

DEFINE CLASS CoWorker AS CUSTOM
* Properties:
WorkerName = "Joe"
Efficiency = 1.0
* Methods:
FUNCTION SayHello

 MESSAGEBOX("Hello, my name is " + THIS.WorkerName + "!")
ENDFUNC
*
FUNCTION ListProperties
? "Name: " + THIS.WorkerName
? "Efficiency: " + TRANS(THIS.Efficiency)

ENDFUNC
ENDDEFINE && CLASS CoWorker

Class definition code is placed in PRG files just like other Visual FoxPro code. You can
include one or more classes in a single PRG file. In this example class with two custom
properties and two custom methods, you might create a file with the same name as the class
(that is, CoWorker.PRG). You can easily deploy and test this class from the Visual FoxPro
Command Window (see Figure 1).

Figure 1. Deploying the parent class.

Now that you have created a working parent class, it is time to look at an example of
creating a subclass that includes all five of the types of changes listed previously. Here is such
an example, which you could package in the same PRG file with the parent, or in its own
separate file:

DEFINE CLASS LazyCoWorker AS CoWorker
* (1) Add a new property:
LazinessQuotient = 10
* (2) Override a parent property:
Efficiency = 0.5

Chapter 16: Extending the Framework 375

* (3) Add new method:
FUNCTION TakeCoffeeBreak(lnSeconds)
DECLARE Sleep IN WIN32API INTEGER
Sleep(1000 * m.lnSeconds)
MESSAGEBOX("I'm awake now and raring to go.")

ENDFUNC

* (4) Completely override a parent method:
FUNCTION SayHello
MESSAGEBOX("Yawn... My name is " + THIS.WorkerName + ;
 ", and I sure am lazy.")

ENDFUNC

* (5) Augment a parent method:
FUNCTION ListProperties
DODEFAULT() && call parent method
? "Laziness Quotient: " + TRANS(THIS.LazinessQuotient)

ENDFUNC
ENDDEFINE && CLASS LazyCoWorker

This is a complete working subclass that includes five modifications to the parent class.
Notice how little source code a class can require. There are important factors to understand
about each of the five types of changes in the subclass:

1. The first change was to add a new property called LazinessQuotient. When doing
so, only the subclass and its descendents can reference this property. Thus, if you
instantiate an object based on the parent class CoWorker, you could not refer to its
LazinessQuotient property. When you discover that a parent class really requires a
property that only exists in a subclass (for example, you discover that all co-workers
can be lazy on occasions), you can simply add the property back to the parent
class definition.

2. The second change was to override the value of a property that was defined in the
parent—to change Efficiency from 1.0 to 0.5. This is a very frequent type of change
to make in a subclass.

3. The third change was to add a brand-new method called TakeCoffeeBreak(). This is
very similar to adding a new property—only objects derived from the subclass can
utilize this method.

4. The fourth change was to completely override the SayHello() method from the parent.
In this case, the interface to any object derived from the subclass remains the same as
for those derived from the parent class; it is the implementation that changes. You
still can call to loWorker.SayHello(), for example, and if you had passed parameters
to the parent SayHello() method, you would pass the same parameters to the
SayHello() method of the subclass, provided you included the same PARAMETERS
or LPARAMETERS statement at the top of both the parent and subclass.

5. The fifth and final change is to augment a parent method, in this case the
ListProperties() method. You do this when you want to retain some of the parent
class behavior, while adding some additional code. The technique for implementing
this is to call the DODEFAULT() function in the subclass. You have the flexibility of

376 WebRAD: Building Database Applications on the Web

calling this anywhere in the method code, although most commonly this will be either
the first or last line of code.

Subclassing Web Connection framework classes
Web Connection provides significant functionality in its framework classes. When starting
out, you will find this functionality almost overwhelming, such that subclassing is the last
action you would consider. Nevertheless, after working with the framework for some time,
you may encounter situations, such as tasks that are repetitive in nature, where you think
framework extensions are in order. You may also discover behavior that you would like to
create and fine-tune in one place and have it apply to your entire application, or to all Web
Connection applications in your domain. In this section I will discuss several of the Web
Connection framework classes and which of those are particularly amenable to subclassing.

In fact, if you have explored the sample code or created a project of your own, you can
see that you are already working with subclasses of two of the framework classes. First, the
main program for your project consists primarily of a subclass of the server class (wwServer).
Second, each process program consists of a subclass of the process class (wwProcess). These
two examples are cases of “implementation” subclassing, meaning that they represent a
specific usage in a single application. Every Web Connection developer performs this type of
subclassing. A more interesting form of subclassing involves actually extending the Web
Connection framework for reuse. When you do this, you create functionality from which each
of your implementation subclasses can benefit. This chapter focuses more on this latter
concept of extending the framework itself.

An example extension to the response class
In each case where you identify a need to extend the Web Connection framework, there are at
least four steps for you to perform:

• Define the need.

• Identify the correct framework class to be extended, if any.

• Implement the design.

• Integrate the design into your application.

Because I want to focus on the mechanics of successfully implementing a framework
extension, I will start with a very simple example. In Chapter 18, “Advanced Troubleshooting
and Maintenance,” I discuss the advantage of using comments in your code, but with an
unusual twist—by inserting the comments into your HTML output stream, you get the “double
impact” of seeing the same comment in both your Visual FoxPro source code and in the
HTML source for the page. This can be very convenient when debugging HTML layout and
formatting problems.

To embed a comment into your HTML response, you could issue a command similar to
the first line here:

Response.Write([<!-- Beginning of TABLE for query results. -->] + CR)
Response.Write([<table border=1 bgcolor="gray" cellpadding=2>] + CR)

Chapter 16: Extending the Framework 377

Now suppose that you start embedding comments like this liberally in your code. If you
are like me, you will find it repetitive to type that syntax for HTML comments each time.
Further, you may not even remember the syntax and have to look it up in your trusty, dog-
eared HTML reference. You realize that efficiency would be gained if you had a simple
method for inserting comments into the HTML output. You have thus completed the first step
of defining the need.

The next step is to identify the correct framework class to be extended. Sometimes, this
will be obvious. Other times, you will not be certain, and will have to analyze the situation
more closely. Sometimes there will not even be a good answer, which might suggest the need
for designing a new class from scratch. The more you study and understand the Web
Connection messaging model, the easier it is to identify the proper class to be extended.

Fortunately, this example fits into the first category. You see from the preceding code that
it is the Response object that you wish to have the extended behavior of providing a simple
interface for adding comments. The requirement is to have a method that is more specific than
the Write method to the needs of inserting comments into the HTML output. WriteComment()
might be a good choice of name for this method.

Now that you have identified the object whose behavior you want to enhance, you
must discover the correct class name from which to derive your subclass. By examining the
Web Connection documentation, you will discover that the Response object is defined in
the wwResponse class. Thus you implement your design change by extending that class
in a subclass called MyResponse, which you create in a new file named MyResponse.PRG
as follows:

#INCLUDE WCONNECT.H
DEFINE CLASS MyResponse AS wwResponse
FUNCTION WriteComment(lcText)
THIS.Write([<!--] + m.lcText + [-->] + CR)

ENDFUNC && WriteComment
ENDDEFINE && CLASS MyResponse

That’s all it takes! You now have a class that allows easy insertion of HTML comments
without your having to remember and type that syntax. And due to inheritance, your new class
still has the Write method and all of the other methods in the base wwResponse class. Using
the new WriteComment() method in your application code is simple:

Response.WriteComment("Beginning of table for query results.")

You are probably thinking that it cannot be quite that easy, and you are correct. You still
have to get this change installed into your application so that your class is recognized and
used. If you did nothing more, your application would continue to implement the framework
wwResponse class, rather than your new MyResponse class, which would mean the Response
object would not have a WriteComment() method at all. There are two steps required to get
your class recognized and used.

First, you must add the class to the active set of defined classes at run time. Because this
class is defined in program code, the required statement is SET PROCEDURE..ADDITIVE.
Thus you insert the following line near the top of your application’s main program file, right
after the line DO WCONNECT:

378 WebRAD: Building Database Applications on the Web

SET PROCEDURE TO MyResponse ADDITIVE

This step serves only to make your class available for use. How do you tell Web
Connection to use it in place of its own wwResponse class? The answer lies in the use of
compiler constants in the sometimes mysterious WCONNECT.H file. This file contains
numerous constants for a variety of uses. Some are available for developer modification
and some should never be touched! One set of constants that is definitely meant for
developer modification is the one that is specifically included to facilitate subclassing. These
constants all start with the prefix WWC_ , and in this case the one you are interested in is
WWC_RESPONSE. If you examine the WCONNECT.H file, you will find this setting:

#DEFINE WWC_RESPONSE wwResponse

This setting is used by the Web Connection framework to know the correct parent class to
use when implementing framework-specific objects. Thus all you need to do in order to have
your class used is to change the definition to:

#DEFINE WWC_RESPONSE MyResponse

For the purpose of testing this simple example, you can make this change directly to the
WCONNECT.H file. In the section that follows, I will present the preferred way of changing
these constants, which minimizes maintenance problems when new revisions of Web
Connection are issued.

You’ll also notice that I included a #INCLUDE WCONNECT.H line at the top of
MyResponse.PRG. This is because I’m using the constant CR in my code instead of having
to type out CHR(13)+CHR(10). Any #INCLUDE compiler directive applies only to the
current PRG file, so it is necessary to repeat this line in each PRG where you intend to use
these constants.

One last detail to point out is that our WriteComment() method does not alter the output
stream directly, but rather uses the existing Write() method and simply supplies the specifics
that format a comment for HTML. Because the Write() method already encapsulates the
proper mechanism for sending strings to the output stream, you leverage this code rather than
trying to duplicate it. This is more important than it might sound. The Web Connection
framework actually deploys further subclasses, wwResponseFile or wwResponseString, based
on whether file-based messaging or COM messaging is in use. Each of these subclasses has
different code to implement the Write method. By simply calling this method, you allow these
differences to be handled for you automatically, rather than writing messaging-specific code
yourself. In fact, you do not even need to be aware that two different mechanisms exist.

Managing changes to #DEFINE constants in WCONNECT.H
In the previous example, you had to change a #DEFINE constant in WCONNECT.H in
order to implement a subclass of a Web Connection framework class. In this section I will
explain why this is necessary. I will then present a more maintainable approach for altering
these constants.

The important concept is why you need these constants at all. In other words, if you are
subclassing the wwResponse class, why isn’t:

Chapter 16: Extending the Framework 379

DEFINE CLASS MyResponse AS wwResponse

sufficient in and of itself? Why do we need to change WCONNECT.H at all? The answer
lies in the internal workings of the Web Connection framework. In many cases, including
that of the Response object, another framework object is responsible for instantiating and
manipulating that object. In this case, it is the Process object that instantiates the Response
object. The problem is that other Web Connection framework objects have no knowledge of
the details or even the existence of your subclass. Therefore, how could they know to
instantiate your subclass instead of the framework class?

The answer, as you can probably guess, comes from the compiler constants. Each relevant
framework class has an associated constant that defines the class name to be used. In the case
of the wwResponse class, the constant is WWC_RESPONSE and its default definition is:

#DEFINE WWC_RESPONSE wwResponse

Now for the trick! Rather than ever instantiating the wwResponse class directly, the
constant is always used instead. Thus the code might look like:

THIS.oResponse = CREATEOBJECT([WWC_RESPONSE])

This technique of providing an indirect way of referring to the class name provides all
of the flexibility you need to implement your subclassing. All you need to do is revise the
value of the constant, and the framework will now use your subclass in all places where
wwResponse was previously used. This is very elegant and powerful.

The second important concept is maintainability. Obviously WCONNECT.H is a file
provided with the Web Connection framework. As such, it is subject to change from one
revision to the next. In fact, it always changes with each revision, because one of the constants
in WCONNECT.H defines the Web Connection revision number. If you also make several
changes to this file, how will you ensure that these changes are not lost when you install a
new revision of Web Connection? Further, suppose you have two or more separate Web
Connection applications, and these applications do not use the same subclasses as one another.
How would you manage the constants in that scenario?

The answer to both situations is not to make the changes in the WCONNECT.H file itself,
but instead in a separate header file of your own for each application. This file will contain all
of the values to override from the framework defaults. The secret is to ensure that your revised
constants be used. After all, the framework classes will not know about your new header file.
The trick to making this work is to insert these lines at the very bottom of WCONNECT.H that
reference your own header file:

#IF FILE("WCONNECT_OVERRIDE.H")
 #INCLUDE WCONNECT_OVERRIDE.H
#ENDIF

Starting with version 4 of Web Connection, the preceding lines are included by default. If
you are working with prior versions, simply add the lines manually. Now, you can create your
header file WCONNECT_OVERRIDE.H, which will need two lines for each class that you

380 WebRAD: Building Database Applications on the Web

want to subclass. For the example I presented in the previous section, your header file would
look like:

* WCONNECT_OVERRIDE.H
* Application-specific overrides to WC framework constants.
*
* Subclass the Response class:
#UNDEF WWC_RESPONSE
#DEFINE WWC_RESPONSE MyResponse
*
* more subclassing as required..

Note the use of the #UNDEF compiler directive. This causes the previous definition of
this constant to be dropped, prior to substituting your own definition. Failure to include this
line will produce a compile-time warning “Constant is already created with #DEFINE.”

If you are managing multiple applications, this approach will still work. If you need
different subclass definitions in each application, simply move the individual
WCONNECT_OVERRIDE.H files into application-specific paths.

There is one potential problem you must be aware of when working with multiple Web
Connection applications, if you also subclass framework classes. You must be very careful
when testing these applications from the Command Window by simply running your main
program file. If you do this after switching from one application to another, the framework
classes may have been last compiled using the overrides from a different application, possibly
leading to problems that could be very difficult to diagnose and debug. This is not an issue
when running your compiled EXE files. This problem can be avoided, allowing you to test
successfully from Visual FoxPro, by first recompiling all of your classes when switching to a
different application.

Framework classes suitable for subclassing
Now that you have seen an example of how to implement a subclass, and you know how to
manage the header files that control the compilation process properly, it is time to examine
when you would want to create these subclasses.

Web Connection provides many framework classes. Some of these are well suited to
subclassing, while others should probably never be considered. In this section, I will examine
each of the major Web Connection classes plus a few of the supporting classes and discuss
their suitability for subclassing.

Subclassing the wwServer class
The wwServer class is the basis for the primary Server object that runs your application. You
always create a new subclass of this class in the main program of each Web Connection
application. As such, it is trivial to add functionality to this object for a specific application,
simply by adding the code to the class implementation in the main program. Beyond this basic
extension, you can also create a subclass of wwServer from which each of your applications
derives its server class. This would be appropriate if you identified additional Server object
functionality that you wanted to apply to more than one of your applications.

From a completeness standpoint there is little reason to extend the wwServer class. This
class already performs all of the functions needed to respond to requests from WC.DLL and to

Chapter 16: Extending the Framework 381

call the process classes that you design. Little could be added to this mechanism. Nevertheless,
there is one tempting reason to add functionality here, and that involves persistence. Whereas
the Request, Response, Process, and Session objects are instantiated and destroyed on every
hit, the Server object persists until your EXE terminates. Because of this, the server becomes a
tempting target for performing various tasks, even though they may be unrelated to Web
Connection messaging. Tasks such as opening files and setting up the environment can be
performed here.

Beyond that level, you are probably better off designing separate worker classes and
instantiating them from the Server object, thus providing the persistence, but not adding
to the complexity of the server class itself. The best place for adding such code is the
SetServerProperties() method, which is always called from the Web Connection framework
before the first hit is processed.

Subclassing the wwRequest class
The wwRequest class is used to encapsulate the incoming request for each Web hit. Although
it is suitable for subclassing, for most situations there is no reason to do so, because it already
contains the basic functionality required to read information about the incoming request. Some
examples of reasons to subclass this class include:

• If you install a third-party ISAPI filter that alters the information received by
WC.DLL, you might need one or more methods to facilitate parsing out this
additional information.

• If your developers are all trained in Active Server Page (ASP) technology, you might
want to revise the Form method in Web Connection so that it can handle multiple-
selection popups in the same manner as ASP (via repeated calls to the Form method,
rather than using the Web Connection GetFormMultiple() method).

• If your application includes any forms that include file upload controls, the
wwRequest class is missing two methods that are needed to allow more flexibility in
those forms. If you have multiple-selection popups on the same form, Web
Connection does not include a method for reading the popup values. There is also not
a method for verifying a form variable’s existence. Neither the GetFormMultiple()
nor the IsFormVar() method works with “multi-part” forms, which are the type used
when uploading files. Following is a subclass that includes the needed methods. The
methods GetMultipartFormMultiple() and IsMultipartFormVar() can be used for
multi-part forms in exactly the same way that their counterparts work for basic forms.

DEFINE CLASS WebRadRequest AS wwRequest
* Sub-class of Web Connection wwRequest.
* --- *
FUNCTION GetMultipartFormMultiple(taVars,tcVarName)
* Adapted by Randy Pearson from other methods in wwRequest class.
*
* This method retrieves multipart, multiselect HTML form variables
* from the request buffer into an array.
*
* Multipart form variables are submitted on the client side by
* specifiying an encoding type of "multipart/form-data":

382 WebRAD: Building Database Applications on the Web

* <form METHOD="POST" ENCTYPE="multipart/form-data">

* Parameters:
* @taVars
* An array that will receive the form variables. Pass by reference!!
* tcVarname
* The name of the form variable to retrieve.

* Returns:
* Numeric - count variables retrieved into the array.

* Example:
* DIMENSION laVars[1]
* lnVars=Request.GetMultipartFormMultiple(@laVars,"LastName")
* --- *
LOCAL xx, lcValue, lnAt, lcFind, lcPointer
xx=0
lcPointer = THIS.cFormVars
lcFind = [NAME="] + m.tcVarName + ["]
lnAt = ATC(m.lcFind, m.lcPointer)
IF m.lnAt = 0
 RETURN 0
ENDIF

* Following is required as of WC 3.20, which adds new handling of
* multi-part borders:
IF EMPTY(THIS.cMultiPartBorder)
 THIS.GetMultiPartBorder()
ENDIF

DO WHILE m.lnAt > 0
 lcValue = Extract(@lcPointer, ;
 tcVarName + ["] + CHR(13) + CHR(10) + CHR(13) + CHR(10), ;
 CHR(13) + CHR(10) + "--" + THIS.cMultipartBorder)
 * Before WC 3.20, was: ** CHR(13)+CHR(10)+"---------"
 xx = m.xx + 1
 DIMENSION taVars[m.xx]
 taVars[m.xx] = m.lcValue
 lcPointer = SUBSTR(m.lcPointer, m.lnAt + LEN(m.lcFind))
 lnAt = ATC(m.lcFind, m.lcPointer)
ENDDO

RETURN m.xx
ENDFUNC && GetMultipartFormMultiple

* --- *
FUNCTION IsMultipartFormvar()
* Created by Harold Chattaway.
* Determines whether a form variable name was part of
* the current request submittal.
LPARAMETER lckey
LOCAL lcMultiPart, lnLoc
lcMultiPart = THIS.cFormVars
lnLoc = ATC([NAME='] + m.lckey + ['], m.lcMultiPart)
IF m.lnLoc=0
 RETURN .F.
ELSE
 RETURN .T.

Chapter 16: Extending the Framework 383

ENDIF
ENDFUNC && IsMultipartFormvar
* --- *
ENDDEFINE && WebRadRequest

Subclassing the wwResponse class
In the example already presented in this chapter, you have seen the mechanism for subclassing
the wwResponse class to enhance the methods available for simplifying the creation of HTML
output. This class is very suitable for subclassing, and many Web Connection developers do
so. You should weigh these situations carefully. This is a lightweight class with good
performance. If you were to burden the class with properties and methods to automate every
aspect of HTML, this performance would suffer. On the other hand, additional methods can
improve your development productivity.

You need to find a good balance here. I suggest using the default Web Connection class
for your first few projects, and moving to subclassing only after becoming convinced of the
need to improve your productivity. Another alternative is to create helper classes that are
instantiated only when the need arises. The wwShowCursor and wwDbfPopup classes, which
are provided with Web Connection, are examples of such classes.

Subclassing the wwProcess class
The wwProcess class is at the heart of your application. If you develop more than one
application, you are bound to identify ways that you want to extend this class to suit your own
style and requirements. I have found almost limitless possibilities in this area. Just a few of
these ideas are presented in the section “Extending the wwProcess class” later in this chapter.

Subclassing the wwSession class
The wwSession class provides a convenient tool for managing state in Web Connection
applications. Chapter 13, “Identifying Users and Managing Session Data,” presents this class
in detail. Although the class can be subclassed, doing so is not simple, particularly if you
want to support moving the session data to SQL Server using the wwSessionSQL class.
Furthermore, the potential reasons for doing so are relatively minor.

The most frequent reason I have identified is when you have a session variable that you
need to reference in most if not all of your process methods. Session variable names and
values are stored in XML format in the Vars memo field of wwSession.DBF, which must be
parsed to read the value. You could improve the performance of the Session object in this case
by adding a field to the data structure that is specific to this session variable, thus allowing its
value to be read directly, rather than by parsing through the Vars field. However, in order to
use this technique, you must still create a method for storing data to and reading data from that
field. It does not happen automatically. Nevertheless, one look through the source code for
these classes will probably convince you not to implement such a change. There are several
monolithic methods that embed the entire data structure in such a way that you would be
forced to copy and paste the entire methods into your subclass for the purpose of addressing
the one or two additional fields that you want to add. This would put you in a precarious
position each time a new version of Web Connection is released.

384 WebRAD: Building Database Applications on the Web

Subclassing the wwHtmlHeader class
The wwHtmlHeader class in an optional class that provides an easy way to encapsulate the
otherwise manual process of creating the detailed <head> section of an HTML response.
This class already contains convenient methods for adding JavaScript, cascading style sheets
(CSS) links, and some other frequent needs. It does not, however, encapsulate everything you
might want to include in this section. Although you can address any further needs via the built-
in AddMetaTag() method, or by addressing the cHeadSection property directly, these require
that you know the often arcane syntax of the items that can be placed in this section of an
HTML document. In addition, the AddMetaTag() method covers only the use of the name
attribute in <meta> tags, while there are also needs to use the http-equiv attribute in some
cases (such as adding content rating information). As you might be guessing, I find this a ripe
area for subclassing.

Here is a simple subclass that adds some further functionality to this class:

#INCLUDE WCONNECT.H
DEFINE CLASS MyHtmlHeader AS wwHtmlHeader

* --- *
FUNCTION AddMetaEquivTag
* Adds a META tag to the header.
LPARAMETERS lcEquiv, lcValue
THIS.cHeadSection = THIS.cHeadSection + ;
 [<meta http-equiv="] + m.lcEquiv + [" content="] + ;
 m.lcValue + [">] + CRLF
ENDFUNC && AddMetaEquivTag

* --- *
FUNCTION AddKeywords
* Adds keywords to the header for indexing information.
LPARAMETERS lcKey
THIS.AddMetaTag("keywords", m.lcKey)
ENDFUNC && AddKeywords

* --- *
ENDDEFINE && Class MyHtmlHeader

Your new class can easily be tested from the Command Window. The following shows
some of the new functionality combined with some of the built-in framework functionality:

SET PROCEDURE TO MyHtmlHeader ADDITIVE
SET PROCEDURE TO wwHttpHeader ADDITIVE && includes wwHtmlHeader
loHead = CREATE("MyHtmlHeader")
loHead.AddTitle("My Special Web Page")
loHead.AddStyleSheet("styles/myAppStyle.css")
loHead.AddKeywords("widgets, cheap, best")
? loHead.GetOutput()

The output produced is as follows:

<html>
<head>
<title>My Special Web Page</title>
<link rel="stylesheet" type="text/css" href="styles/myAppStyle.css">

Chapter 16: Extending the Framework 385

<meta name="keywords" content="widgets, cheap, best">
</head>
<body>

Finally, I should note that you do not need to invoke the familiar technique of altering a
define constant in order to implement this subclass. This is because the wwHtmlHeader class
is an optional class for your own use and is never invoked directly by the Web Connection
framework. Thus all you need to do is make certain that you instantiate your subclass rather
than the framework class.

Subclassing the wwShowCursor class
The wwShowCursor class is a RAD tool that can be used to quickly convert a Visual FoxPro
cursor to an HTML table with one row for each record in your cursor. This is a very handy
tool for producing content with almost no code during the early stages of development in your
applications. However, in many cases developers end up wanting more control over final
appearance than the wwShowCursor class allows. There have been several questions posted
on the West Wind support forums about the possibility of creating a subclass in order to gain
this control.

Unfortunately, attempting to create such a subclass is not practical in most cases. An
examination of the source code for wwShowCursor reveals a few monolithic methods that
produce the bulk of the work for this class with very little use of customizable properties or
hooks for added functionality. The only way to add control over the formatting would be to
completely override the huge ShowCursor() method, and probably the BuildFieldListHeader()
and ShowRecord() methods as well. Before undertaking this task, you should carefully
evaluate either creating your own class from scratch, or hand-coding SCAN loops to generate
your tables. This latter approach is more labor-intensive, but provides you with total control
over the appearance of your application, which can be essential when those change requests
are made.

The zero-maintenance subclass
You have now seen both the approach for creating subclasses and some of the candidate
classes that can be altered to suit your needs. One point to remember is that there is some
maintenance involved in using your own framework extensions. Always consider that there
may be one other option: If your need is sufficiently generic that other Web Connection
developers would also benefit from its inclusion, consider making a suggestion to West Wind
Technologies that the framework itself be modified. Over the years I have recommended
dozens of improvements to the Web Connection framework, many of which have been
adopted. The best subclass is no subclass at all.

Extending the wwProcess class
As I discussed earlier, the wwProcess class is a great candidate for subclassing. Why is this?
The Process object is at the heart of your application. It is a point of orchestration (or
mediation) between the incoming request and the outgoing response. It is where you perform
between 70 and 90 percent of your work (depending, for example, on whether you have
separate business classes). There should be little surprise then that many opportunities to
extend the framework are created at this point.

386 WebRAD: Building Database Applications on the Web

In this section I will present two extensions that could be used in any Web Connection
application. The first is a Web-based assertion mechanism that can be very convenient for
streamlining your development process. The second is a Web-based substitute for the
ubiquitous MESSAGEBOX() function in Visual FoxPro. In each of these examples, the
overriding design requirement is to simplify the coding for the Web Connection developer
who uses these methods. In other words, these are ideal framework methods.

A Web-based assertion mechanism
The wwProcess class has a very convenient method to handle aborting out of one of your
methods if a problem is identified. This method is called ErrorMsg(). It provides two services:

1. It aborts the current page, discards any content that has been generated up to that
point, and ensures that no further output is sent to the user.

2. In place of the expected response, it displays a Web page back to the user with a
description of the error or other condition that occurred. When deployed by the
developer, this message can contain customized content explaining the situation.

A typical hypothetical example of how you might deploy this method would be:

IF NOT User.IsAdmin()
 THIS.ErrorMsg("System Message", ;
 "Only administrators can perform this function.")
 RETURN .T.
ENDIF
.. remainder of processing code

As this example suggests, you might use this function frequently for security checks,
to handle error conditions, and so forth. In fact, the Error() method of wwProcess calls
the ErrorMsg() method to display a page to the user if an unhandled error occurs in
your application.

What more could you ask than this? Well, first of all, you have already written four lines
of code, and all you have accomplished is to advise the user of the error condition. It is very
likely that, in this type of example, triggering this message is indicative of either a logic failure
(this user should never have had a link to this page in the first place) or perhaps a hack attempt
on your Web site. In either case, you definitely want to take other action. At minimum, you
would want to log the event, but more likely you would want to alert a system administrator
immediately, probably via email. Fortunately, there is the SendErrorEmail() method available
to handle this situation. Thus you can alter your code as follows:

IF NOT User.IsAdmin()
 THIS.SendErrorEmail("Invalid Access", ;
 "A non-administrator attempted to gain access to this page!")1

 THIS.ErrorMsg("System Message", ;
 "Only administrators can perform this function.")

1 This code assumes you are already connected to your mail server. If your development machine requires a dial-up
connection and you are not already connected, you’ll need a command like wwipstuff:rasdial to establish a connection
before this command.

Chapter 16: Extending the Framework 387

 RETURN .T.
ENDIF
.. remainder of processing code

This is fine, but now you have a reasonable chunk of code to handle just one, possibly
unlikely, scenario that you need to check. Web development presents countless needs to
perform checks like this, given the stateless nature of the Web, sophisticated hacker tools, and
so forth. The more code you have to write to check for conditions that may seem unlikely or
impossible, the less likely you are to implement the checks. If you get lazy about performing
such checks, you will be sorry in the long run. What is needed is a more convenient way for
the developer to perform checks like the one shown previously.

When I tackled this need, I decided to create the programmatic interface that would do the
best job and then develop the implementation to make that interface work. The solution is
patterned after the Visual FoxPro assertion technique, wherein you can simply insert a single
line in your code, such as:

ASSERT <condition>, <message>

What you do here is assert that a condition is true, and if not, display the message. If the
condition is true, processing continues with the next line of code. If not, the program aborts
with the message shown. This is not precisely what you want in your Web applications, but it
is very close. It is not acceptable to be providing failure messages on the server or to quit the
application, but you do want to stop further processing of the current page, and you do want to
display a message back to the user. Thus, I decided that in the simplest form the developer
should be able to enter a line of code like this:

THIS.Assert(<condition>, <message>)

In this simple form, if the condition is not true, a simple Web page should be returned to
the user displaying the message, and further processing of the page should be aborted. The
second factor is very important, because once you have identified an invalid condition of this
nature, you want to ensure that this user does not perform the indicated task.

First, I will show a method that can be added to the wwProcess class to support this basic
interface. After introducing that class, I will add some optional parameters to handle some
interesting variations. Here is the first revision of the new method:

DEFINE CLASS MyProcess AS wwProcess
FUNCTION Assert(llCondition, lcMessage)
IF VARTYPE(m.llCondition) <> "L" OR NOT m.llCondition
 * assertion failed!
 THIS.ErrorMsg("Assertion Failure", m.lcMessage)
 RETURN TO Process
ENDIF
ENDFUNC && Assert
ENDDEFINE && CLASS MyProcess

This is all it takes to add the basic mechanism. Note the RETURN TO line, which aborts
any possible further processing of your own method and returns to the point from which your
method was called.

388 WebRAD: Building Database Applications on the Web

To test this, you need to install this subclass as described at the beginning of the
chapter. This includes adding the following line to your main program right after the line
“DO Wconnect”:

SET PROCEDURE TO MyProcess ADDITIVE

Next, you need to make sure your class is recognized and used. Either choose a method in
one of your current Web Connection applications (such as the “Hello World” method in the
example application). At the top of the program file that includes this method, add these lines:

#UNDEF WWC_PROCESS
#DEFINE WWC_PROCESS MyProcess

Now you are able to test this basic mechanism. Open one of your Process methods and
insert a line of code such as the second line of code here:

FUNCTION HelloWorld
THIS.Assert(CDOW(DATE()) = "Friday", "Page can only be shown on Fridays!")
*...remainder of method

Now fire up your browser and navigate to the page in question. For this example, I used
the basic “Hello World” example that is provided with Web Connection. The result is shown
in Figure 2.

Figure 2. Users get a blunt message when they don’t belong here.

You can probably see the advantage in using this function: Because it aborts from your
method when the assertion fails, you need only enter a single line of code to check a critical
condition and keep the user out if that condition is not met. I will often have five or more calls
to the Assert() method near the beginning of most of my methods. Would I be so meticulous if
each of these checks required several lines of code? Probably not!

Chapter 16: Extending the Framework 389

I will now finish up the presentation of the assertion mechanism by adding three more
features to enhance its power and flexibility:

• Notice that the result page in Figure 2 does not provide the user with any place to go.
The method needs an optional URL parameter that, if provided, causes a hyperlink to
display after the message.

• There needs to be a flag to control whether the assertion failure is sufficiently serious
to require the generation of an email notice to the system administrator.

• There needs to be the ability for additional information to be provided to the system
administrator that would not be appropriate to display to the user (typically for
security reasons).

Here is the final Assert method, shown within the class definition:

DEFINE CLASS MyProcess AS wwProcess
FUNCTION Assert
LPARAMETERS llCondition, lcMessage, lcUrl, llEmail, lcExtraInfo
IF VARTYPE(m.llCondition) <> "L" OR ;
 NOT m.llCondition && assertion failed!
 *
 IF m.llEmail && send alert message to admin
 THIS.SendErrorEmail("Assertion Failure", ;
 "Message Presented: " + m.lcMessage + ;
 IIF(EMPTY(m.lcExtraInfo), "", CHR(13) + CHR(10) + ;
 "Additional Info: " + m.lcExtraInfo))
 ENDIF
 THIS.ErrorMsg("Assertion Failure", m.lcMessage + ;
 IIF(EMPTY(m.lcUrl), "", [
<H3 ALIGN=CENTER><A HREF="] + ;
 m.lcUrl + [">OK</H3>]))
 RETURN TO Process
ENDIF
ENDFUNC && Assert
ENDDEFINE && CLASS MyProcess

There are plenty of ways to enhance this function and improve the displayed appearance.
Then again, the messages should be displayed only when something goes wrong, so it does not
need to be the flashiest part of your Web site! I am certain you can make extensive use of this
method in your applications.

A Web-based MESSAGEBOX function
One area that every desktop application developer finds to be missing when they first start
developing Web applications is the easy ability to interact with the user in a granular fashion
by using functions such as the ubiquitous MESSAGEBOX() in Visual FoxPro. Although you
can use the JavaScript alert and confirm functions to produce modal dialogs on the client
system, these are seldom adequate substitutes for server-side needs. In addition, some
browsers do not support JavaScript, while others allow the user to disable script languages
for security reasons.

Consider a simple example where the user can click a “Delete” hyperlink in order to
delete a customer record from the database. Suppose that you are not willing to delete a record

390 WebRAD: Building Database Applications on the Web

this important without receiving confirmation. As a seasoned desktop developer, you might be
tempted to include this code in your Process method:

lnConfirm = MESSAGEBOX("Delete this customer?", MB_YESNO, "Confirm")

The result of this would be a modal dialog appearing on the server waiting for a non-
existent user to answer the question. This is equivalent to crashing your application, probably
not your intention. What you need is a technique for posing this question to the client and
processing the answer that the client provides back on the server. First, I will show how to ask
a question in a specific case, and then I will generalize the approach for use in the framework.

For this example, suppose you are creating a DeleteCustomer() method wherein the ID of
the customer to be deleted is passed as a URL parameter. In order to determine whether the
user has confirmed his or her intention to delete the record, an additional URL parameter will
be used. The technique will be to examine the URL and see whether there is evidence that the
question has been answered. If so, the record will be deleted or not, depending on the answer.
If there is not an answer, it means the question has not yet been asked, so you stop and ask the
question, and defer any decision until the next hit from the current user.

The code presented here uses the named constants that are typically used with the
MESSAGEBOX() function. Before implementing the actual code, you need to ensure
that these constants are defined. The following definitions are best placed in your
WCONNECT_OVERRIDE.H file, or equivalent; however, for this example it will suffice to
place them at the top of the current process program file.

*-- MessageBox parameters
#DEFINE MB_OK 0 && OK button only
#DEFINE MB_OKCANCEL 1 && OK and Cancel buttons
#DEFINE MB_ABORTRETRYIGNORE 2 && Abort, Retry, and Ignore buttons
#DEFINE MB_YESNOCANCEL 3 && Yes, No, and Cancel buttons
#DEFINE MB_YESNO 4 && Yes and No buttons
#DEFINE MB_RETRYCANCEL 5 && Retry and Cancel buttons

#DEFINE MB_ICONSTOP 16 && Critical message
#DEFINE MB_ICONQUESTION 32 && Warning query
#DEFINE MB_ICONEXCLAMATION 48 && Warning message
#DEFINE MB_ICONINFORMATION 64 && Information message

*-- MsgBox return values
#DEFINE IDOK 1 && OK button pressed
#DEFINE IDCANCEL 2 && Cancel button pressed
#DEFINE IDABORT 3 && Abort button pressed
#DEFINE IDRETRY 4 && Retry button pressed
#DEFINE IDIGNORE 5 && Ignore button pressed
#DEFINE IDYES 6 && Yes button pressed
#DEFINE IDNO 7 && No button pressed

Now insert the following DeleteCustomer() method in your process program (for
example, MyDemoProcess.PRG):

FUNCTION DeleteCustomer
LOCAL lnCust, lnAnswer, lcUrl
lnCust = INT(VAL(Request.QueryString('CustId')))
IF m.lnCust <= 0

Chapter 16: Extending the Framework 391

 THIS.ErrorMsg("No customer specified!")
 RETURN
ENDIF
* [Code to confirm valid customer ID would go here.]
lnAnswer = INT(VAL(Request.QueryString('MsgBox')))
lcUrl = Request.GetCurrentUrl()
DO CASE
CASE m.lnAnswer = IDYES && user said yes
 * [Actual code to delete the customer would go here.]
 THIS.StandardPage("You have deleted customer #" + ;
 TRANSFORM(m.lnCust))
CASE m.lnAnswer = IDNO && user said no
 THIS.StandardPage("You elected not to delete customer #" + ;
 TRANSFORM(m.lnCust))
OTHERWISE
 THIS.StandardPage("Confirm Customer Deletion", ;
 "Do you really want to delete customer #" + ;
 TRANSFORM(m.lnCust) + "?<P><P ALIGN=CENTER>" + ;
 [] + ;
 '<LARGE>[Yes]</LARGE>' + [] + ;
 [] + ;
 '<LARGE>[No]</LARGE>' + [</P>])
ENDCASE
ENDFUNC && DeleteCustomer

To see this code in action, navigate your browser to access the DeleteCustomer() method.
You can do this by first navigating to the HelloWorld method and then manually changing the
URL. In my case, the virtual directory is /wcrad and the class name is WcRadProc, so the
complete local URL is:

http://localhost/wcrad/wc.dll?WcRadProc~DeleteCustomer

If you enter that URL by itself, you will trigger the “no customer specified” error
message. Bypass that validation check by appending a hypothetical customer ID to the URL:

http://localhost/wcrad/wc.dll?WcRadProc~DeleteCustomer~&custid=2

Your code now verifies that a customer has been specified, but that no answer has yet
been provided to a confirmation question. Therefore, as depicted in Figure 3, the user is asked
to confirm the deletion.

If the user clicks the Yes hyperlink, pay careful attention to what transpires. The URL
that corresponds to this hyperlink is identical to the previous one, except for the addition
of &MsgBox=6 at the end. In other words, the hit will again be processed by the same
DeleteCustomer() method, but in this case one more variable—the answer to the confirmation
question—will be included in the query string. If you follow the code for this case, you should
not be surprised that the result of the client clicking Yes is the confirming result page shown in
Figure 4. In a real application, of course, you would also include the code that performs the
customer deletion.

392 WebRAD: Building Database Applications on the Web

Figure 3. A confirming question is presented before performing a critical action.

Figure 4. A confirming message provides feedback that the task was completed.

One other important aspect of the DeleteCustomer() method is the manner in which the
URLs for the Yes and No hyperlinks were constructed. Rather than building the URLs
manually, the GetCurrentUrl() method of the Request object was used, and we simply
appended a parameter to the query string. Because of this, our code does not explicitly
reference the current class or method name, and is therefore much more suitable for reuse.

Although the approach shown previously is fairly simple, there are some shortcomings.
First, although the additional code to produce the confirmation question is brief, it is still not
nearly as simple as a call to MESSAGEBOX. Second, the style and layout of the HTML
confirmation page is embedded in the code. If your application included a large number of
these confirmations, you would need to manually ensure the consistency of each one, which
can be an onerous task if a global change to the appearance is requested. A more generic
solution is needed.

As with the assertion mechanism presented earlier, I will start with the interface. The goal
is to produce a method that is as similar as possible to the desktop usage of MESSAGEBOX.
A typical use of the method might look like:

Chapter 16: Extending the Framework 393

IF THIS.MessageBox(<question>, MB_YESNO) = IDYES
 * do Yes stuff
ELSE
 * do No stuff
ENDIF

Notice that the only difference would be to use THIS.MessageBox() in place of
MESSAGEBOX(). Achieving this result would greatly simplify application coding, and would
be a particular benefit to developers used to coding for desktop applications. The trick is to
make it happen. After studying the code in the DeleteCustomer() method shown earlier, you
may have concluded that this goal is not possible in a Web application. After all, the preceding
snippet does not appear to cover the case where the question has not been asked yet. In other
words, it appears to presume that either a Yes or a No answer is forthcoming. As you will see,
you can indeed achieve the desired result.

The secret is in using the same mechanism that the framework ErrorMsg method (and our
new Assert method) uses, which is the ability to abort page processing, if needed. In this case,
if no answer is available in the URL, the page processing will be aborted and the question will
be presented in place of the result page. When the user then clicks on one of the allowed
answers, your same method will be triggered again, except that this time there will be an
answer ready to use in your decision tree. Following is the first working version of a subclass
of wwProcess that can support this approach:

DEFINE CLASS MyProcess AS wwProcess
* --- *
FUNCTION MessageBox(lcMessage, lnType, lcTitle)
*
* Web approximation to MESSAGEBOX() function.
LOCAL lcAnswer, lnAnswer, lnDialog, lnIcon
lcAnswer = Request.QueryString("MBAnswer")
IF NOT EMPTY(m.lcAnswer)
 * Pop and restore any previous form vars.
 Request.cFormVars = Session.GetSessionVar("PreviousFormVars")
ENDIF
lnAnswer = INT(VAL(m.lcAnswer))
lnDialog = BITAND(m.lnType, 15)
lnIcon = m.lnType - m.lnDialog
DO CASE
CASE m.lnAnswer <= 0
 * No answer yet.
CASE m.lnDialog = MB_YESNO AND INLIST(m.lnAnswer, IDYES, IDNO)
 * Valid answer to YES-NO question.
 RETURN m.lnAnswer
CASE m.lnDialog = MB_OK AND INLIST(m.lnAnswer, IDOK)
 * Valid answer to OK dialog.
 RETURN m.lnAnswer
* [Additional CASE's removed for brevity.]
ENDCASE

* Save any form vars while we ask the question:
Session.SetSessionVar("PreviousFormVars", Request.cFormVars)

LOCAL lcMsg, lcBtn, lcUrl
lcUrl = Request.GetCurrentUrl() + "&MBAnswer="
IF VARTYPE(m.lcMessage) = "C"

394 WebRAD: Building Database Applications on the Web

 lcMsg = m.lcMessage
ELSE
 lcMsg = ""
ENDIF
lcBtn = ""
IF INLIST(m.lnDialog, MB_OK, MB_OKCANCEL)
 lcBtn = m.lcBtn + [] + [<A HREF="] + m.lcUrl + ;
 TRANSFORM(IDOK) + [">OK]
ENDIF
IF INLIST(m.lnDialog, MB_YESNOCANCEL, MB_YESNO)
 lcBtn = m.lcBtn + [] + [<A HREF="] + m.lcUrl + ;
 TRANSFORM(IDYES) + [">Yes]
ENDIF
IF INLIST(m.lnDialog, MB_YESNOCANCEL, MB_YESNO)
 lcBtn = m.lcBtn + [] + [<A HREF="] + m.lcUrl + ;
 TRANSFORM(IDNO) + [">No]
ENDIF
IF EMPTY(m.lcTitle)
 lcTitle = "System Message"
ENDIF
THIS.StandardPage(m.lcTitle, ;
 m.lcMsg + [<P ALIGN=CENTER>] + m.lcBtn + ;
 [])
RETURN TO Process
ENDFUNC && MessageBox
* --- *
ENDDEFINE && CLASS MyProcess

This class achieves our basic result, but there is still some work to do. First, I have
included only a few of the standard dialog types. The complete version should include
support for all types, including Abort-Retry-Ignore, and so forth. These are trivial

extensions of the previous code and are omitted here to save space. The source code for this
chapter, available at www.hentzenwerke.com, contains the full version.

This method also addresses one serious problem that I have not yet discussed. It considers
the possibility of an HTML form submission. If we abort processing the page to ask a
question, any form variables that were posted with the original request would be lost. This is
clearly not acceptable. One solution would be to limit the use of our new MessageBox()
method to only GET requests, and exclude POST requests. This would be too severe a
restriction, because confirmation dialogs are often needed in response to form submissions.
Instead, the solution is to employ the Session object to save the previous form variables while
the question is being answered, and to restore the form variables afterward. This requires that
you make sure you’ve added This.InitSession() to your Process method, or the Session
variable won’t be initialized.

Partitioning large applications
The first thing you will discover when you develop a Web Connection application is that the
process program file can become very large. Even with some of the editor enhancements
incorporated into version 7 of Visual FoxPro, this can become unwieldy.

What I always recommend is to create an application-level subclass of wwProcess (or
your own framework extension) and then create subclasses of that in separate implementation
PRG files. You can place common methods in the application-level class. These common
methods might include Process(), Login(), standard look-and-feel items, and so forth. Each of

Chapter 16: Extending the Framework 395

the other PRGs will have its class definition based on this common subclass rather than on
WWC_PROCESS.

Be forewarned that if you use script mapping in your Web Connection applications, and
you divide your application into two or more process PRG files, you will need to define a
separate script map extension for each, because that is the discriminator used in the main
program to decide which program to call for each method.

You may also consider adding properties to the application-level classes. As an example,
if some methods require the user to be logged in and others do not, you could add an
lLoginRequired property and then split your methods between PRGs based on this division.
I don’t use that particular division technique, instead preferring to divide my methods into
PRGs based on common functionality or modules. In either case, this is a highly recommended
approach. While it is particularly important for projects with multiple developers, it is even
useful for large applications when only a single developer is involved.

As an example, consider an application where you can divide all of the Process methods
into one of two “modules.” When you adopt this approach, your code might be structured
as follows:

 * MainProc.PRG – This is the application-level subclass.
DEFINE CLASS MainProc AS WWC_PROCESS
cNewProp1 = ''
cNewProp2 = ''
FUNCTION Process
...your code here...
= DODEFAULT()
ENDFUNC
FUNCTION Login
...
ENDFUNC
ENDDEFINE && MainProc

* ModuleA.PRG
* Generic WC code that instantiates class:
LPARAMETER loServer
LOCAL loProcess
loProcess = CREATEOBJECT("ModuleA")
loProcess.Process()
RETURN

* Actual class definition:
DEFINE CLASS ModuleA AS MainProc && inheritance
FUNCTION PageA1
ENDFUNC
FUNCTION PageA2
ENDFUNC
ENDEFINE

* ModuleB.PRG
etc...

To implement this approach, you first need to ensure that your MainProc class is available
by including an appropriate SET PROCEDURE TO..ADDITIVE statement in the main
program. Next you add one CASE for each module in the Process method of your main
program. For example:

396 WebRAD: Building Database Applications on the Web

CASE lcParameter == "MODULEA"
 DO ModuleA WITH THIS

CASE lcParameter == "MODULEB"
 DO ModuleB WITH THIS
* etc.

This is but one possible strategy for splitting up larger applications. Others have been
discussed on the West Wind message board. You should consider your situation and your
development environment carefully when choosing any such strategy.

Creating your own framework classes and tools
This chapter has endeavored to show you where and how the Web Connection framework can
be extended. Sometimes you will need something additional, but none of the framework
classes appear to be the right home for the required functionality. In this case, you may decide
to purchase a third-party product, or to develop your own classes. In most instances it is easy
to integrate new components with Web Connection.

If you design your own components, make sure you can test them as easily as possible. It
is very inefficient to debug components that can run only within a complete, running Visual
FoxPro application, and this is even more so for Web applications. My initial goal when
designing any new class is to be able to test it from the Command Window. This may sound
ambitious or even impossible, but it doesn’t have to be that way. If you think outside the box a
little bit and use a little creativity, you can usually meet this goal.

Web Connection also gives you some handy tools that allow you to test your designs more
easily, such as from the Command Window. Browsing through the wwUtils.PRG file will
often reveal something you had not used before. My favorite time saver is the ShowHtml()
function, which is great for testing any component that generates either HTML or XML. All
you do is pass any HTML as a string and this function calls up your default user agent
(browser) and displays the result. If Microsoft Internet Explorer is your browser of choice, this
works particularly well, because this browser is very flexible in what it will render. For
example, because Microsoft Internet Explorer does not even require a <body> tag, or even an
<html> tag, you can just pass little snippets of HTML and see how a browser would render it.
You can see this function in action from the Visual FoxPro Command Window:

SET PROCEDURE TO wwUtils ADDITIVE && pre-requisite
ShowHtml([Two different browsers are often like]+;
 [apples andoranges.])

I don’t think you could ask for anything much easier than that!
The second important issue is how to install your classes so they are accessible when

needed in your application. Typically, all that is required is one of these commands, depending
on whether you use the code editor or the visual tools:

SET PROCEDURE TO <PRG_File_Name> ADDITIVE
SET CLASSLIB TO <VCX_File_Name> ADDITIVE

Chapter 16: Extending the Framework 397

In almost all cases the best place to insert this code is in the main program, immediately
after the line “DO Wconnect”.

Leveraging existing code
When developing Web applications with Web Connection, you may encounter situations
where there is an existing desktop application with its own large code base. Even though Web
applications work quite differently, there may be strong incentives to reuse as much of the
existing code base as possible.

Although there are countless possible variations to this situation, there are a few general
areas worth covering:

• Making use of your application object class

• Integrating business objects

• Using FPD/FPW legacy code and data

Where does my application object go?
Many Visual FoxPro developers use either third-party frameworks or their own code that
makes use of a master application object. This object is assigned to a public variable (or
private variable created in the main program) with a name such as goApp. This object offers
various services and performs actions that hold the entire application together. Further, many
other modules in the application refer to the application object using the global variable name.
When developing a Web application, developers often ask where their application object
fits in.

First, you should be aware that you are not required to have an application object at all.
Web applications work very differently from desktop applications. Each hit to your Web
application is likely to come from a different user from the previous hit, so your application
cannot simply log one user in and assume nothing changes until a subsequent logout. You are
also not creating an application menu, toolbar, forms manager, or any of several other items
that are unique to the desktop and not applicable to a Web application.

Second, your application must avoid all user interface (UI) code, such as message boxes
and other dialogs that might pop up in the Visual FoxPro application. Your code must run
unattended on the Web server. Thus, you must hunt down and eliminate any such code,
possibly replacing it in a subclass with a Web-friendly approach. The less monolithic the
application, the easier this task should be. Classic n-tier application components often can fit
in quite easily. One technique for trapping any UI code is to insert a SYS(2335,0) statement in
the SetServerEnvironment() method in your main Web Connection program. This causes any
statements that would otherwise generate UI to instead trigger an error. You can use this
technique only if you do not want to display the Web Connection server status form.

Those considerations aside, you may still want to use an application object. If you have an
application class that is sufficiently flexible to exist in the stateless world of a Web
application, and it provides services that would be helpful to your application, by all means
use it. Most likely you will need to re-architect it for Web use, or design a Web-specific
subclass. The question becomes where to instantiate it within the Web Connection framework.

398 WebRAD: Building Database Applications on the Web

In order to avoid having the application object be instantiated and destroyed on every hit,
which could be very bad for performance, you need to create it from the Server object. Here I
will consider a hypothetical class that includes a special method called BeforeProcess() that
you have designed for Web use that adjusts the object to the changing user identity. What you
could do is add a property oApplication to the server class in your main program. Then, in the
SetServerProperties() method, add this line:

THIS.oApplication = CREATEOBJECT("MyApplicationClass")

You now have an object that can be referenced by Server.oApplication, but when you are
processing each hit you might prefer to refer to this object by the familiar goApp variable
name. This may even be a requirement if you are calling other functions or classes that already
refer to this variable. Further, you need to ensure that your clever new method has been called
before the hit is processed. To accomplish this, you could add something like the following
code to the Process method of your process class:

PRIVATE goApp
goApp = Server.oApplication
goApp.BeforeProcess()
DODEFAULT()

This is deliberately vague and is based on a hypothetical application class. You must
analyze your own situation to determine whether you have this need, and whether your
application class is sufficiently flexible for Web use. The purpose of the preceding discussion
is to point you in the right direction when you are trying to determine how to plug such an
object into your Web Connection application.

Integrating business objects into Web Connection applications
Business objects are very suitable for Web Connection applications. The Process object in the
Web Connection framework is where incoming requests are analyzed and responses are
generated. This is also the point at which you would deploy business objects.

A design goal should be to avoid any direct data manipulation in your Process object.
Instead, you should deploy business objects to accomplish the same results. The design and
use of business objects is beyond the scope of this book, but an example of how they might be
deployed in a Web Connection Process method could be useful. Consider first this fragment of
code, which uses direct data manipulation:

FUNCTION SaveOrder()
*
IF !USED('Orders')
 USE Orders IN 0
ENDIF
SELECT Orders
SET ORDER TO cOrderID
LOCAL lcOrderID
lcOrderID = Request.Form("OrderID")
IF NOT SEEK(lcOrderID)
 THIS.StandardPage ('Order not found!')
 RETURN

Chapter 16: Extending the Framework 399

ENDIF
IF Request.Form('Amount') > Customer.MaxOrder
 THIS.StandardPage('Exceeded limit.')
 RETURN
ENDIF
IF RLOCK()
 REPLACE …
* etc.

Notice the problems inherent in this approach. First, it performs all of its data access
using Xbase code (USE, SET ORDER, SEEK, and so forth), which is fine if you use local
Visual FoxPro tables, but leaves you with a nightmare if you decide to migrate the application
data to Oracle or SQL Server. Also, the data manipulation code is mixed in with user interface
code, thus preventing future scaling to an n-tier architecture. Finally, the business rules are
intertwined with specifics of the Web application. If you also needed a desktop version of
this application, you would need to repeat all of the business rules there, creating a
maintenance nightmare.

Consider now the following code fragment, in which a hypothetical business object
is included:

FUNCTION SaveOrder()
*
LOCAL loOrder, lcOrderID
loOrder = CREATEOBJECT("BizOrder")
lcOrderID = Request.Form("OrderID")
IF NOT loOrder.FindRecord(m.lcOrderID)
 THIS.StandardPage ('Order not found!')
 RETURN
ENDIF
loOrder.Amount = Request.Form('Amount')
IF NOT loOrder.Validate()
 THIS.StandardPage(loOrder.cErrorMessage)
 RETURN
ENDIF
loOrder.SaveRecord()
* etc.

In this code, a lot of the work has been delegated to the BizOrder business object. There is
no assumption that the data resides in any particular format. Business rules are assumed to be
implemented in the business object. This process code is simply orchestrating the business
object with the Request and Response objects to create the Web version of this functionality.
There are two big advantages to this. First, if the data was migrated to Oracle or SQL Server,
no changes would be required in your Web Connection application code. Any changes would
be made in either the business object classes or in other classes that the business objects utilize
(such as separate data access classes). Second, you could create a desktop application that uses
the same business objects and be assured that all of the business rules would be consistent
between the two applications.

Alternatives to designing your own business classes
Rather than designing your own business classes, there are two interesting alternatives.
The first alternative is to use a commercial third-party Visual FoxPro framework in

400 WebRAD: Building Database Applications on the Web

conjunction with Web Connection. If you already are familiar with one of these frameworks,
you might want to investigate the suitability of its business class approach, if any, for use with
Web Connection.

A second alternative, available starting with version 4 of Web Connection, is to use the
wwBusiness class, which is provided with Web Connection as an optional utility class.
wwBusiness is a light-weight class, which is more of a data access class than a true business
class. In other words, its built-in methods are more oriented to the mechanics of reading and
writing data from their sources, rather than providing a robust mechanism for enforcing
business rules. Nevertheless, if you are looking for an easy object-oriented approach to data
access that also allows easy migration from a Visual FoxPro to a SQL Server back end, this
class could be worth investigating. Refer to the Web Connection Help documentation for
detailed information on the use of this class.

West Wind also sells an add-on application that implements a Web-based store using Web
Connection. This add-on uses the wwBusiness class for all of its data access. If you purchase
this add-on, the source code can be very useful for learning one approach to integrating
business objects.

When things go wrong
Although it is difficult to anticipate the specific problems that might occur, there are a few
common difficulties that can arise.

Symptom: You get a Visual FoxPro “class definition not found” error.
Diagnosis: This can be one of two problems. The first is that you created a subclass but

did not take the proper action to ensure that the class is available at run time. The simplest
way to correct this is to insert a SET PROCEDURE TO <your class> ADDITIVE statement in
your main program. This command can appear just after the DO WConnect line, which sets
up the Web Connection framework classes. The second possibility is that you issued a SET
PROCEDURE statement somewhere and failed to include the ADDITIVE clause. This
causes all previously declared procedure files to be dropped.

Symptom: Your subclasses no longer work after upgrading to a new version of
Web Connection.

Diagnosis: You have overwritten the previous copy of WCONNECT.H with the one from
the new version, but failed to edit that file to contain the same #INCLUDE statement as
before. See the previous section in this chapter, “Managing changes to #DEFINE constants in
WCONNECT.H,” for specific information on this topic.

Symptom: You created a subclass, but its methods are not being invoked.
Diagnosis: If the object is instantiated by your own code, check to be certain that you are

instantiating your subclass rather than the default framework class. If the object is instantiated
automatically by the framework, either you have not provided the proper override to the
constant in WCONNECT.H, or you have not recompiled the framework classes since doing
so. This problem is more common when testing from the Command Window (DO MainProg).
Correct the problem by compiling all framework classes:

Chapter 16: Extending the Framework 401

COMPILE CLASS \wconnect\classes*.vcx
COMPILE \wconnect\classes*.prg

There may also be other problems if, for example, the Web Connection console
application is running (Console.EXE). This causes compile copies of classes to be loaded into
memory, which may prevent new copies from loading. The following commands help clear the
Visual FoxPro environment:

CLEAR ALL
CLOSE ALL
CLEAR PROG
SET CLASSLIB TO

If this still doesn’t fix the problem, sometimes the only solution is to quit Visual FoxPro
and start back up. Also, remember to test correctly from your browser. Often you may have to
back up a few pages and refresh the content, or perhaps even start a fresh browser session, in
order to have a clean scenario for testing your modifications.

Once you take the plunge and follow the path of extending the Web Connection
framework, you also become more responsible for diagnosing problems that occur. Good
troubleshooting skills are a must. See Chapter 18 for a general discussion of troubleshooting
Web Connection applications. Also, remember that the West Wind support forums provide an
opportunity to get help from other developers.

402 WebRAD: Building Database Applications on the Web

