Connecting to a Windows NT Server Manually

It's an interop world. We need to connect Windows and Linux machines. Here's how to access directories and files on a Windows NT server from a Linux workstation. As you start to work with Linux, you'll find that you need to be able to access files on a Windows network from a Linux workstation. You don't need to do anything complicated – perhaps just open files. 

Why

There are many reasons for needing to connect to Windows files from a Linux workstation. First, you'll probably find yourself installing and reinstalling Linux on a computer any number of times. At some point you'll find that you're creating data on your Linux box that you want to keep. Instead of copying to CD (or, horror, to floppy), why not just keep your data files on a server like we were intended to? That way, you can blow away your workstation installation, experiment, etc. without having to worry about your data. Second, as you're getting up to speed with Linux, you'll want wo be able to test with real data Â– like the day to day work you do that would be stored on a server, instead of just some fake documents and files. And third, once you're in a production environment, you may still need to connect to a Windows network in your daily job. 

What you need

You will need both a Windows server and a Linux workstation that are connected to each other on an Ethernet network. In order to make the examples clear, I'm going to create some sample machine, file and user names to use.

The Windows server is a primary domain controller running NT4. It is a machine named HERMAN, and has an IP address of 12.34.56.78. It has a drive 'E' that is shared as 'herman_e'. There is a directory called 'evo' in the root of that drive and there's a small text file called 'mytest.txt' in the 'evo' directory. Thus, the fully qualified path to that file is 

\\herman\herman_e\evo\mytest.txt 

Finally, there is a user in the domain named 'bob' whose password is 'robert' and who has complete access to drive E on the server. (We'll get into permission issues where bob would have only limited rights later.) Note that bob is a member of the domain. He's not a local user of the server machine. 

The Linux box is running a fairly recent kernel (this paper was written initially with RedHat 7.2 and later tested with RedHat 8.0.) 

Prepare your Linux box 

You'll need to do some configuring so that your Linux box knows about the Windows server. Then you'll connect to the server in the next step. 

1. On your Linux box, become root. 

Either log in as root to begin with or open a terminal window and issue the 'su' command. 

2. Edit your /etc/hosts file to add a line that maps the Windows server's name ('herman') and its IP address ('12.34.56.78'). 

You want to be very careful when editing this file; if you mess it up, you'll lose networking capability. On the other hand, it's just a text file,f or Pete's sake. Your hosts file could look something like this before you start: 

127.0.0.1 localhost.localdomain localhost 

nn.nn.nn.nn yourdomain.com 

where nn.nn.nn.nn is the IP address of your company's domain. Open the hosts file and add a line like so: 

12.34.56.78 herman 

Your Linux machine already knows where the IP address, 12.34.56.78, is because it's on the same network. This simply gives your Linux machine a 'friendlier' handle. 

3. Create a directory on your Linux box that will map to your Windows share. You know how you can map a drive letter on a workstation to a Windows share? You can think of this Linux workstation directory as a drive letter that maps to that same Windows share. 

You can create this directory anywhere, but it's common practice to create it under the /mnt directory, like so: 

cd /mnt 

mkdir q 

This creates a directory named 'q' that will be mapped to your herman_e share on the Windows machine in the next step. 

Mount the Windows filesystem - manually

The final step to make the connection is to use the Linux 'mount' command to connect herman with /mnt/q. 

1. Switch to the /etc directory (you're root, remember) 

cd /etc 

2. Issue the mount command, like so 

[root@yourmachine etc] mount   -t   smbfs   -o   username=bob    //herman/herman_e   /mnt/q 

3. You'll be prompted for bob's password 

password: 

4. Enter 'robert' and press Enter 

5. You're now connected to the Windows share.

Working with a mounted Windows filesystem 

You're probably quite used to working with directories and files on another compute via a mapped drive Â– they work just like directories and files on a local drive. For instance, if your Windows workstation has a mapping to a Windows server via the drive letter 'R', you can look for a text file on drive R just as if it were a text file on your local hard drive, drive C, or a local floppy disk, drive A. 

It's a little different when working with a mapped drive. To get used to the differences, let's take a look at how to do so. 

On your Linux box, open a terminal window and switch to the mapped drive. 

cd /mnt/q 

this is essentially the same as entering 

q: 

in a Windows command window. 

Now, list the contents of the Windows drive: 

ls 

You'll see all of the directories on the root of the Windows drive, including Â“evoÂ”. So, you can pretend that the Windows drive is just another drive on your Linux box, Just as if you were to work with a file in 

/home/yourname/somedir 

you can work with a file in 

/mnt/q/evo 

Or if you wanted to copy a file from a local directory on your machine to the server, it'd just be like copying it to another local directory. For instance, the Evolution mail client stores its mail data in a directory called 'local' under the evolution directory in a user's home directory. Well, mail data should be stored on the server, along with all sorts of other data. Here's how to move it from the local drive to the server: 

cp -r /home/whil/evolution/local /mnt/q/evo 

*\\\ more examples???

When you're done 

If you want to mount a drive, you may need to unmount it at some later time. Use the 'umount' command. Note Â– there's no 'n' in the 'umount' command! 

umount -t smbfs /mnt/q 

That's all! 

What if something goes wrong? 

This is all fine and good if everything works properly. But life isn't fair, and it's possible you could run into a problem. Here are a couple of things that you might run into, and how to fix them. 

The first set of problems have to do with the mount command failing. For example, if you misspell the name of a machine or directory, you'll get something like 

7240 SMB ...*\\\ fill in 

The second set of common problems have to do with other functions not working. For example, copying a file doesn't work. These are often a result of permissions. For example, log on as another user *\\\ 

gedit was unable to save the file /mnt/q/evo/mytest.txt 

The last set of problems I've commonly run into have to do with unmounting. You may end up with a Â“drive busyÂ” message after trying to unmount. *\\\ specific error. You can resolve this in one of two ways. First, make sure you're not logged in on the drive you're trying to unmount. For example, 

[root@yourmachine q] umount -t smbfs /mnt/q 

will fail. You'll get a message 

umount /mnt/q: device is busy 

This is because you're in directory q Â– so you can't unmount it. So what you want to do is get out of the q directory. 

cd .. 

Alternatively, you could just switch to the root of the mount directory: 

cd /mnt 

I've found that sometimes this doesn't work. In those cases, I quit out of terminal and get back in and then it works. 

