Readme for PDFReportListener

By Lisa Slater Nicholls
To run the demo program, making a PDF and installing on-the-fly at the same time:

1) Replace the #DEFINE at the top of PDFLISTENER.PRG to point to your FFC class directory.

2) DO TEST. Pick as many reports as you want to have included in the PDF file. Press Esc or Cancel when you've picked as many reports as you want.

Make sure to pick reports that don't have printer environments installed. (This is especially important if you're on a web server, where the web application may be running in the context of a user without printer setups available. PDFListener installs the one printer setup it does need, to a setup name of your choice.)

To use in your application:

1) Configure PDFListener as shown in TEST.PRG. Oldstyle printing is recommended *unless* you are decorating output via Listeners or have other reasons to use new-style, since the resolution will be high either way and files will be smaller (new-style must write PS and then PDF to describe EMF images rather than text).

Include your preferred name for your application's PDF printer driver setup. This name will be re-validated and, if not found, installed-on-the-fly for every run, user permissions allowing.

Include your preferred location for the GS files, if installing on the fly, or the actual location of these files, if you set them up with your application.

Set the PDFListener to QuietMode if you don't want to see any status messages during any on-the-fly installation procedures. Note that you will still see a Windows message as a DLL is installed to the Windows system directory, but this is a standard system message, nothing from GhostScript. Also, there are ways to prevent this message from appearing by using VBS scripts that are available in the Windows system32 directory. You cna transparently add the port, etc.

Look for prn*.vbs scripts in the system32 directory, and see

http://www.geocities.com/thompso_m1/freepdf/winxp/, for more information.

2) For each PDF report run, just addReports to the PDFListener's collection, as shown in the Run method of the Test class, as many as you want in the one PDF file and then call the Listener's RunReports() method, as shown there. Set up a targetFileName as standard for the FFC ReportListener classes.

To distribute and include all necessary files in your application setup:

1) Write your own license text file, following instructions in the article. Include this file as the Contents memofield for the license.txt record of INSTALL.DBF.

2) Add an EXTERNAL TABLE line, similar to what you see in TEST.PRG, if you want to include INSTALL.DBF in your EXE. Otherwise deliver it separately and make sure it is available by path.

3) Alternatively, include the files by the install procedures with your application SETUP.EXE directly, rather than installing them on the fly. Be sure to include your version of the license file. When you create your setup, remember that PDFListener expects all the GS files to be in a specific relation to each other (root with DLL & EXE, lib and fonts directories). CASE SENSITIVE.

4) If you want to include the PDF printer setup as part of your SETUP.EXE, to avoid showing the installation of the driver on-the-fly during your application, simply include a batch file with the same command that PDFListener uses and have it run at the end of your SETUP procedures. This also ensures that the action takes place with necessary permissions.

To create your own INSTALL.DBF for your application's use, from a different version of GS:

1) set up an appropriate GS installation source directory as expected by CREATEINSTALLDBF.PRG:

GSWIN32C.EXE and GSDLL32.DLL in the root for your version of GS

Required Lib files in lib under root, matching your version

Required Font files in fonts under root

2) Write a distribution readme/license file following instructions in the article, as above. This file can be in any directory; CREATEINSTALLDBF.PRG asks for the location of this file explicitly.

3) DO CREATEINSTALLDBF.

Readme for Fix of PDFReportListener

While I have used this technique for years, I have obviously not used it with ReportListeners for years. The code in PDFListener embodies my basic technique in a format that gave me the opportunity to talk about some additional VFP 9 usage and features, and some of it was developed expressly for this article.

The code that handles PDF processing is very careful about file names and path-handling, because it's part of the basic technique. The code that extends _ReportListener to use the generated filenames is new, and not as robust. It contains a bug if the temporary filenames contain a space in their path.

As a quick workaround, you could simply set the PDFListener's GSLocation member property value to a path that does not contain a space. You see the lines in TEST.PRG to do this as follows:

 * where you want ghostscript files to be

 * installed (all tempfiles will go here too)

 thisPDF.GSLOCATION = ADDBS(FULLPATH(".\GS"))

Change the line above to something like:

 thisPDF.GSLOCATION = "C:\TEMP\GS\"

For production work, change the way the PDFListener class's AdjustReportClauses method adjusts each report form command, as follows:

 * -- edit the following line:

 * THIS.reportClauses.Add(lcClauses + ;

 " TO FILE "+ UPPER(lcTempFile))

 * -- changing it to:

 THIS.reportClauses.Add(lcClauses + ;

 " TO FILE (["+ UPPER(lcTempFile) + "]) ")

Thanks to Andrew M. Weiss and the ProFox list for pointing out this infelicity!

