
Page 1 FoxRockX April 2008

April 2008
Number 2

 2 ADS Special Issue
 Advantage Database

Server for Visual
FoxPro Developers

Doug Hennig

Your Free Issue!
Dear FoxPro Developer,
Here is your free copy of the new magazine dedicated to FoxPro,
FoxRockX! This is not a regular issue but a sample issue to show you
how FoxRockX looks like. And we are sure you will like it!
As you know the FoxPro community is alive, well and keeps going.
And the roughly one hundred thousand active users of FoxPro with
their amazingly large number of FoxPro applications in production are interesting to other companies. The
lack of marketing at Microsoft for Visual FoxPro does not mean that other companies are not allowed to ex-
tend their products to work together with Visual FoxPro and make interesting offers to the FoxPro commu-
nity.
One of these offers is the new version 9.0 of Advantage Database Server from Sybase (formerly Extended
Systems). The first feature mentioned in the press release published March 17th, 2008 consists in the unique
support for the Visual FoxPro file format, see http://www.sybase.com/detail?id=1056446. Now you can
work with DBF tables on the server with no direct access to the tables by the end user, no damaged index
files, and you can even use ODBC. Doug Hennig took a close look at the pros and cons from a VFP perspec-
tive.
This free special issue of FoxRockX contains all the details you need to know. And we are also going to pub-
lish a localized German edition of this special issue, available for free as well. If you want to start working
with the trial version of Advantage Database Server afterwards, you can view a webcast about how to set up
everything at http://devzone.advantagedatabase.com/jeremym/fox1/fox1.html.
We are committed to providing the best dedicated magazine for FoxPro Developers worldwide. Our list of
authors includes many names already familiar to you and we will be actively encouraging contributions
from new authors. Great articles from great developers will help you hone your skills and increase your
productivity. This issue just gives you an idea of the quality of our articles. Besides that we have no business
connection with Sybase except that they sponsored this issue. If you like FoxRockX, take action and:
Join FoxRockX today at our affordable rates (which include access to one of the world's largest online ar-
chives of articles on Visual FoxPro). We already have more than a thousand subscribers for this first issue
and we hope that you will help to spread the word and help us expand the readership even further. After all,
the wider our membership, the more material we will be able to provide. Here are the details:
FoxRockX is published bimonthly with 24 pages DIN A4 (same size as FoxTalk) and all subscriptions in-
clude access to the complete online archive of FoxTalk as well as of FoxRockX. Sometimes we add a free is-
sue (with sponsored articles) like this one - at least once a year and possibly more often. The Annual On-Line
Subscription is US$ 99.00 / 75.00 EUR and the Annual On-Line and Printed Copy Subscription is US$ 158.00
/ 109.00 EUR. Note: If you are a former subscriber of FoxTalk 2.0 you can upgrade your existing on-line sub-
scription to the printed version by paying only the difference (US$ 59.00/ 34.00 EUR).
For more details visit our small new homepage at: http://www.foxrockx.com. To subscribe now, visit either
http://shop.dfpug.com (Europe/Asia) or http://www.hentzenwerke.com (USA/Canada). On-line articles,
archives and companion materials will be accessible through the "FoxRockX" tab at http://portal.dfpug.de
(Access information will be sent with the confirmation of your subscription).

April 2008 FoxRockX Page 2

Advantage Database
Server for Visual FoxPro
Developers
Doug Hennig

Advantage Database Server is a full-featured,
high-performance client/server database engine.
Interestingly, it can use Visual FoxPro DBF files as
its data store and provides a number of benefits
over accessing these files directly. This article in-
troduces Advantage and discusses how to access
it from VFP applications.

Introduction
Visual FoxPro is a wonderful development tool.
Its rich object-orientation, powerful language fea-
tures, integrated report writer, and open and ex-
tendible interactive development environment
(IDE) make it one of the best tools available for
developing desktop applications. However, its
built-in data engine is both one of its greatest
strengths and greatest weaknesses. Strength be-
cause the data engine is tightly integrated into
VFP and is one of the fastest on the planet and
weakness because the DBF file structure can be
subject to corruption, lack of security, and size
limitations. Fortunately, VFP developers aren’t
restricted to only using VFP tables as their data
store; VFP makes a great front-end to cli-
ent/server databases such as SQL Server, Oracle,
and Sybase.

This article discusses another product in the
client/server database market: Advantage Data-
base Server. It first looks at what Advantage Da-
tabase Server is and what features it has, then
delves into how to access Advantage from VFP
applications. For the sake of those who are rela-
tively new to client/server technologies, this arti-
cle assumes you don’t have much experience with
accessing backend databases and goes into some
detail on how to do that.

Introducing Advantage Database
Server
Advantage Database Server, or ADS, is from Sy-
base iAnywhere, a subsidiary of Sybase. Accord-
ing to their marketing materials, “Advantage Da-
tabase Server is a full-featured, high performance
client/server data management system specifi-

cally designed to meet the needs of business ap-
plication developers.” The more you read about
ADS, the more you realize that its features align
very nicely with those of the database engine in
Visual FoxPro. However, it doesn’t replace VFP.
Like SQL Server, ADS is a database engine rather
than a full-featured programming language, and
you can easily access its data in VFP using ODBC
or ADO. However, as you will see, ADS has better
support for VFP than any other database engine,
and its latest incarnation, version 9, greatly ex-
tends this support.

Here’s an overview of the features of ADS
compared to VFP:
• It’s a true client/server database engine. With

file-based engines like VFP, the server con-
taining the data files is just a file server. All
processing, such as selecting records, is per-
formed on the workstation, so the entire table
must be brought down from the server. With
client/server engines, all processing is done
on the server, so only the results are sent to
the workstation. This provides several bene-
fits, including reduced network traffic and
more database management capabilities. In
addition, the engine is multi-threaded and
supports multiple processors for better scal-
ability.

• ADS actually comes with two database en-
gines: local and remote. The local engine isn’t
a true database server but more like VFP in
that it uses file-based access to the data. It
uses an in-process DLL that loads into the
ODBC driver on the client’s machine. The re-
mote engine is a true database server that
provides all of the benefits of a client/server
architecture. Advantage Local Server is useful
for testing on a single development system or
as a low-cost database engine (it’s actually
free) for commercial applications, but has
many significant limitations the Advantage
Remote Server doesn’t have. The benefit of
Advantage Local Server is that it gives you a

Page 3 FoxRockX April 2008

client/server-like mechanism you can scale
up to the full remote server if necessary.

• The remote server can be accessed over the
Internet if necessary. It supports encrypted
and compressed data transmission for secu-
rity and performance.

• One of the most interesting things about ADS
is that it can use either a proprietary file for-
mat (files with an ADT extension) or DBF files
for data storage. While there are benefits to
using ADT files, including additional data
types DBFs don’t support, using DBFs makes
it easier to migrate an existing VFP applica-
tion to a client/server model. What’s really
interesting about this is that you can access
your existing DBFs through ADS to take ad-
vantage of the features ADS provides while
still accessing them directly as VFP tables.
This makes a very attractive migration strat-
egy: you can modify your application module
by module to use client/server techniques
while older modules continue to work un-
changed.

• When accessing DBF files, it supports two
locking mechanisms: compatible and proprie-
tary. Compatible locking, which uses operat-
ing system locks on bytes in the DBF files, al-
lows simultaneous access to the data by ADS
and non-ADS (such as VFP) applications.
Proprietary locking uses an internal locking
mechanism. This provides better stability and
control but means that the files are opened
exclusively by ADS and cannot be access by
another application until they are closed in
ADS.

• It provides database security. A valid user
account is required to connect to the database
so unauthorized users cannot access your
data. Different user accounts can have differ-
ent levels of permissions. For example, it’s
unlikely normal users need to alter, create, or
drop tables, so you can prevent everyone but
administrative users from performing these
database-altering tasks. Even if you’re using
ADS with DBF files, you can place these files
in a folder on the server that normal users
don’t have access to, so the only access they
have to the data is through ADS. This would
be a lot more difficult to implement using a
purely VFP solution.

• For additional security, ADS can encrypt the
tables using a case-sensitive password. Doing
so in purely VFP solution requires a third-
party product such as Cryptor by Xitech and
managing the access to the encrypted data
yourself.

• Like VFP, ADS tables can be free or enhanced
with a data dictionary (an ADD file). Similar
to the VFP database container (DBC), ADD
files don’t “contain” the tables but instead
provide additional information, or meta data,
about them. Advantage’s data dictionary
maps very closely to the VFP DBC, including
things such as long field names, primary keys,
referential integrity rules, default field values,
field validation rules and custom error mes-
sages (although ADS only supports minimum
and maximum or null values rather than ex-
pressions which can do any type of valida-
tion), table validation rules and custom error
messages, views, triggers, and stored proce-
dures. As this article discusses later, ADS
comes with a utility that generates an ADD
from a DBC, automating most of the effort in
creating an Advantage data dictionary.

• Although ADS’s documentation uses the term
“Advantage optimized filters,” the descrip-
tion of the technology that provides the high
performance querying capabilities of ADS
sounds just like the Rushmore technology that
gives VFP its speed. ADS examines an index
to determine which records match the filter
conditions, only accessing the physical re-
cords when an index isn’t available. The ADS
documentation has terms like “fully opti-
mized” and “partially optimized” just like the
VFP documentation. This means VFP devel-
opers can use their existing knowledge of op-
timizing VFP queries with ADS databases.

• ADS has a full-text search engine providing
very fast searches of memo files. Many VFP
developers use third-party products such as
PhDbase for full-text searching in their appli-
cations, but some of these tools are no longer
available or haven’t been upgraded to work
with the latest versions of VFP.

• Although ADS can access DBF files, it doesn’t
have the same limits that VFP does. For ex-
ample, in VFP, DBF and FPT files are limited
to 2 GB. In ADS, there isn’t a direct limit on
the size of the file; instead, the limit is a
maximum of 2 billion (2,147,483,648) records.
Of course, if your DBF becomes larger than 2
GB, you’ll only be able to access it through
ADS since VFP will see it as invalid.

• Since the ADS ODBC driver fully supports
VFP 9 data types, you can use it in place of
the VFP ODBC driver, which hasn’t been up-
dated since VFP 6 and so doesn’t support new
features like Varchar, Varbinary, and Blob
fields.

• ADS supports transactions, complete with
commit, rollback, and automatic rollback if

April 2008 FoxRockX Page 4

Figure 1. After installing ADS, the Configuration Utility appears, allowing you to config-
ure the server properties.

the workstation or server crashes during the
transaction.

• Replication is a process that distributes
changes in records in the tables of one data-
base to the tables of another
database, such as changes
made in databases in remote
offices to a single
consolidated database at head
office or vice versa.
Replication with VFP data is
certainly possible but you
have to write the code
yourself, deal with all types of
issues such as conflict
resolution, and test it exten-
sively to ensure it works
under all conditions. ADS has
built-in replication features so
they’ve done all the hard
work for you.

• ADS includes online backup
capability, meaning you can
back up your tables while
they’re open in an
application. It isn’t possible to
do that using normal backup
procedures against VFP
tables. You can perform full
or incremental backups.

Installing Advantage Database Server
There are several components that make up Ad-
vantage: the database server itself, the Advantage
Data Architect, the ODBC driver, and the OLE DB
provider. At the time this article was written, ADS
version 9 was in beta and available for download
at http://devzone.advantagedatabase.com. The
release version is due out in March 2008 and the
beta will expire at the end of that month.

ADS runs on Windows, Netware, and Linux.
For Windows, the name of the installer for the
database server is NT.EXE. Run this program on
the server you want ADS installed on. You can, of
course, install it on the same system you do de-
velopment on rather than a separate server, but
you would normally install it on an actual server
in a production environment. By default, the en-
gine installs into C:\Program Files\Advantage 9.0
(this is also the default for the other components).
After installing the engine files, the installer
prompts you for the name of the registered
owner, whether the engine’s Windows service
should be started automatically or manually (the
default is automatic), which ANSI character set to
use (the default is to use the default setting for the
machine), and which OEM/localized character set

to use. Once you’ve answered these questions, the
Advantage Configuration Utility opens (see Fig-
ure 1), allowing you to see statistics about the
server, including the number of users and connec-

tions, and configure certain properties, such as
timeout, ports used, and log file locations.

The next thing to install is the Advantage
Data Architect, an ADS utility discussed in the
next section. Its installer is called Arc32.EXE. Like
the server installation, you can specify the install
folder name, the ANSI character set, and OEM
character set. Next, install the ODBC driver by
running ODBC.EXE if you plan on using ODBC to
access ADS and install the OLE DB provider by
running OLEDB.EXE (you should install this re-
gardless of whether you plan on using ADO or
not because OLEDB.EXE installs a VFP-specific
utility discussed later in this article). Both of these
prompt for the install folder name, the ANSI
character set, and OEM character set.

You’re now ready to start using ADS.

Advantage Data Architect
Advantage Data Architect, also known as ARC, is
a connection and database management tool for
ADS. If you’ve used SQL Server Enterprise Man-
ager or Management Studio, or even the VFP Data
Explorer, this utility will be somewhat familiar.
Interestingly, the complete source code for ARC,
which was written in Delphi, is included with the
utility. ARC is shown in Figure 2.

Page 5 FoxRockX April 2008

Figure 2. Advantage Data Architect provides many of the same features as the VFP Data Explorer or SQL Server Management Studio.

ARC has functions to:
• Create, maintain, and delete databases and

tables
• Browse tables with filtering, searching, sort-

ing, and navigation
• Import and export data
• Export table structures as code
• Manage security settings and user accounts
• Execute queries in the SQL Utility and Query

Builder tools
• Compare data dictionaries

The left pane in ARC is the Connection Re-
pository. This provides easy access to ADS data-
bases you’ve registered with ARC. (A database
doesn’t have to be registered with ARC to use it in
other applications.) To create a database and add
it to the repository, choose Create New Data Dic-
tionary from the File menu; this creates an empty
ADD file with the properties you specify in the
dialog that appears. To add an existing database
or a directory of free tables to the repository,
choose New Connection Wizard from the File
menu and follow the steps in the wizard dialog.

You’ll use various functions in ARC through-
out the examples in this article.

Upsizing a VFP database
Although ADS 9 supports most VFP data features,
some of this support relies on using an Advantage
database rather than “free” tables. (From an ADS
point-of-view, even tables in a VFP DBC are free
tables if they aren’t included in an ADS database.)

This includes support for long field names, pri-
mary keys, referential integrity, field and table
validation, triggers, and so on; in other words, the
same things the VFP database container is used
for. In anything but a small database, it would be
quite a bit of work to create an Advantage data-
base for an existing VFP database. Fortunately,
ADS comes with a utility written in VFP, ADSUp-
size.PRG, which creates an Advantage database
and populates it with information about the tables
in a VFP database. ADSUpsize.PRG is somewhat
misnamed since it doesn’t “upsize” the VFP DBC
or make any changes to the DBF files. In the re-
lease version of ADS 9, Sybase iAnywhere has
renamed the utility to DBCConvert.PRG.

To see how ADSUpsize.PRG works, upsize
the Northwind sample database that comes with
VFP. Start by creating a new folder and copying
all the files in the Samples\Northwind folder of
the VFP home directory to it; that way, you won’t
alter your original database when you make some
changes described later. Start VFP and run the
copy of ADSUpsize.PRG included in the source
code accompanying this article; it contains some
changes to the original program shipped with the
beta described in the “Fixing the ADS VFP upsiz-
ing utility” sidebar. When prompted for the data-
base, select Northwind.DBC in the folder you cop-
ied the files to. After a few seconds, the program
completes its tasks. However, note the message
displayed: there were 15 errors, but it doesn’t in-
dicate what they are. Fortunately, ADSUp-
size.PRG logs the upsizing process, as discussed
later.

April 2008 FoxRockX Page 6

Figure 3. Use the New Connection Wizard to create a connection to your upsized VFP database in Advantage Database Architect.

Check the directory containing the North-
wind database and you’ll see some new files:
• Northwind.ADD, AI, and AM: The ADS da-

tabase.
• BAK versions of every DBF and FPT: The up-

sizing process (not ADSUpsize.PRG but ADS
itself) backs up these files just in case.

• FieldUpgradeResults.ADM and ADT, Rela-
tionsUpgradeResults.ADM and ADT, Table-
UpgradeResults.ADM and ADT, and
ViewUpgradeResults.ADM and ADT: These
ADS tables contain log information about the
upsizing process, including any errors that
occurred. You’ll use these extensively to find
and resolve problems in the upsizing process.

• FAIL_EMPLOYEES.DBF and FPT: Discussed
later.

Open ARC and choose New Connection Wiz-

ard from the File menu or click the New Connec-
tion Wizard button in the toolbar. Choose “Create
a connection to an existing data dictionary” in the
first step of the wizard. In step 2, specify a name
for the database and the path to Northwind.ADD,
the Advantage database created by the upsizing
utility. Leave the other settings at their default
values and click Finish (see Figure 3). ARC asks
you to login as the AdsSys user (the default ad-
ministrative user name); since there’s no pass-
word for that user in this example, click OK.

All the tables in Northwind appear under the

Tables node but only five of the seventeen views
appear under Views. In addition, there are the
four new tables mentioned earlier, FieldUpgrad-
eResults, RelationsUpgradeResults, TableUpgrad-
eResults, and ViewUpgradeResults.

Open TableUpgradeResults by double-
clicking it. Each upsized table is listed multiple
times, once for each operation. The various col-
umns in this table indicate what process was per-
formed in each step. For example, for Customers,
there are records for adding the table to the ADS
database, specifying long field names, creating
indexes, specifying the table validation expression
and message, and defining the primary key. Note
that one table, Categories, has an error in the step
specifying long field names. The error message is
(edited for space):

The requested operation is not legal for the
given field type. ALTER TABLE CATEGORIES
ALTER "CATEGORYID" "CATEGORYID" autoinc NOT
NULL ALTER "CATEGORYNA" "CATEGORYNAME" char(
15) NOT NULL ALTER "DESCRIPTIO"
"DESCRIPTION" memo NULL ALTER "PICTURE"
"PICTURE" blob NULL

Open FieldUpgradeResults. This table shows
the results of upsizing field comments, validation
messages, and default values. Again, one record
has an error indicating the upsizing utility
couldn’t set the comment for Categories.Cate-
goryName; that field doesn’t exist in the data dic-
tionary because the error logged in TableUp-

Page 7 FoxRockX April 2008

gradeResults prevented defining the long field
names for Categories, so the field is actually
named CategoryNa, the 10-character name stored
in the DBF header.

RelationsUpgradeResults contains log infor-
mation for upsized relations. This table contains
no errors. However, ViewUpgradeResults, which
contains log information for upsized views, has
lots of errors. In fact, all but five views could not
be upsized. Some of the views failed because they
reference Categories.CategoryName, which
doesn’t exist, but there are several different rea-
sons why others failed.

In VFP, SET DELETED OFF and open Em-
ployees. Note that one of the records, Andrew
Fuller, is deleted. If you open the FAIL_EMPLO-
YEES table created by upsizing, you’ll find An-
drew’s record there. Why did upsizing the data-
base delete that record? You’ll see what happened
in a moment.

While upsizing a VFP database takes you a
long way to having a complete ADS version of the
database, there are a few things to note.
• ADS doesn’t understand nested JOINs, such

as SELECT * FROM Table1 JOIN Table2 JOIN
Table3 ON Table2.Field = Table3.Field ON
Table1.Field = Table2.Field. You’ll need to
convert views that use nested JOINs to the
more normal sequential JOIN syntax before
upsizing them. One way to do that is to open
the view in the View Designer and save it
again. This works because while in older ver-
sions of VFP the View Designer used nested
syntax, starting in VFP 8 it uses sequential
syntax by default.

• ADS doesn’t support views with ORDER BY
clauses.

• Views using VFP functions won’t upsize
properly. For example, the
Sales_Totals_By_Amount view in the North-
wind database uses the VFP BETWEEN()
function for one of the WHERE conditions. In
that case, changing it to use the SQL BE-
TWEEN clause instead resolves the problem.
Other views may not be as easy to fix, how-
ever. For example, the Sum-
mary_of_Sales_by_Year and Sum-
mary_of_Sales_by_Quarter views both use
EMPTY() and NVL() in WHERE clauses, so
they can’t be upsized and must be recreated
manually.

• Tables with General fields won’t upsize prop-
erly because ADS doesn’t support them (yet
another reason not to use General fields).
That’s why the Categories table had an error:
Categories.Picture is a General field. In fact, if
you try to display the structure of the table in

ARC (right-click the table and choose Proper-
ties), you’ll get an error message and no prop-
erties are displayed for that field. You must
either remove the Picture field from the table
or change it from General to something else,
such as Blob.

• VFP field-related properties ADS supports are
default value, whether nulls are allowed, de-
scription (which is upsized from the field
comment property), field validation message,
and whether codepage translation is per-
formed, so those are all upsized. ADS doesn’t
support field validation rules, but it does sup-
port minimum and maximum values, so you
could manually populate those properties af-
ter upsizing is complete.

• Other field properties ADS doesn’t support
are format, inputmask, field mapping, and
field captions, so none of these are upsized.
All of these are UI-related properties so they
aren’t necessary in ADS.

• VFP table-related properties ADS supports
are memo block size, table description (up-
sized from the table comment property), table
validation rule, and validation message so
those are all upsized. However, rules contain-
ing VFP functions are obviously a problem.

• Triggers aren’t upsized since they use VFP
code which wouldn’t be understood by ADS.
However, the most common use for triggers is
to support referential integrity rules and they
are upsized. Note that ADS doesn’t support
an Ignore RI rule, so those are upsized as Set
to NULL. You’ll have to recreate triggers used
for other purposes.

• Stored procedures aren’t upsized for the same
reason. You don’t have to worry about stored
procedures used for RI since RI rules are up-
sized. However, you’ll have to rewrite any
other stored procedures in ADS SQL or per-
haps move the code into a middle tier com-
ponent.

• Referential integrity is enforced during upsiz-
ing. That’s why the Andrew Fuller record in
Employees was deleted. The Employees table
has a ReportsTo column that contains the
EmployeeID of each person’s manager and
Andrew’s ReportsTo value is 0, which doesn’t
match the EmployeeID of any record. The In-
sert referential integrity rule for this self-join
is set to Ignore, so VFP doesn’t raise an error
with this record. However, ADS doesn’t have
an Insert referential integrity rule, just Update
and Delete, both of which are set to Restrict.
Since Andrew’s ReportsTo value is invalid,
the RI rule fails and that record is deleted.
You could argue that deleting the record is a

April 2008 FoxRockX Page 8

bit harsh; perhaps ADS could set ReportsTo
to NULL instead. Interestingly, undeleting it
in VFP works.

• ADS version 9 doesn’t support VFP binary
indexes, but Sybase plans to support them in
version 9.1 or possibly a service pack released
before 9.1.

You can fix some of these issues and upsize

again. Because ADSUpsize.PRG creates an ADS
database, that database can’t be open in ARC, so
close the Northwind connection by right-clicking
the connection and choosing Disconnect. Open
the Northwind database in VFP and make the fol-
lowing changes:
• Invoices and Product_Sales_For_1997: modify

these views, remove the relationships, and
recreate them. These views used nested joins
so recreating them in VFP 9 will convert them
to sequential join syntax. (Use the View SQL
function in the View Designer to confirm
that.) While you could do the same for
Sales_By_Category, as you’ll see later, this
view can’t be upsized for other reasons.

• Quarterly_Orders and
Sales_Totals_By_Amount: modify these
views, save, and close without making any
changes. These views use the VFP BE-
TWEEN() function for one of the WHERE
conditions. Simply saving changes it to use
the SQL BETWEEN clause. (Prod-
uct_Sales_For_1997 and Sales_By_Category
also use BETWEEN() but they were automati-
cally fixed in the previous step when you
saved those views.)

• Alphabetical_List_of_Products, Cur-
rent_Product_List, Invoices, and Prod-
ucts_By_Category: modify these views and
remove the ORDER BY clause. Unfortunately,
you can’t do that with
Ten_Most_Expensive_Products since it has a
TOP clause and requires an ORDER BY
clause. You’ll have to recreate that view
manually. Also, while you could make this
change for Sales_By_Category, Sum-
mary_of_Sales_by_Quarter, and Sum-
mary_of_Sales_by_Year, it won’t help because
those views can’t be upsized for other rea-
sons.

• Invoices: modify this view, choose View SQL,
and change both occurrences of ALLTRIM to
TRIM, since ALLTRIM() isn’t a supported
function in ADS but TRIM() is.

• Categories: modify this table and remove the
Picture field.

CLOSE TABLES ALL and run ADSUp-

size.PRG again. This time you get only four er-

rors. Open the Northwind connection in ARC and
check the log tables. Categories was upsized
properly so now all errors are in views:
• Sales_by_Category can’t be upsized because it

queries on another view, which isn’t sup-
ported in ADS.

• Ten_Most_Expensive_Products has a TOP
clause and so requires an ORDER BY clause,
which isn’t supported in ADS.

• Summary_of_Sales_by_Year and Sum-
mary_of_Sales_by_Quarter both use EMPTY()
and NVL() in WHERE clauses.

Accessing data in VFP or ADS
Upsizing a VFP database doesn’t mean it can’t be
accessed through VFP anymore. It simply means
that you now have two ways you can access the
database: as native VFP tables or through ADS.
You can modify the data in the tables using VFP
or ADS and the other one sees the changes. This
includes support for auto-incrementing fields.

For example, after upsizing the Northwind
database, open it in ARC and double-click the
Employees table to open it. Click the “+” button in
the toolbar at the bottom of the table window (see
Figure 2) to add a record. Leave EmployeeID
blank but fill in the rest of the fields; be sure to fill
in a valid value (for example, “2”) for the Report-
sTo field since the RI rule for the table won’t allow
a blank or invalid value. Once you’ve moved off
that row, notice the EmployeeID is automatically
filled in with the next value.

Now close the table window and disconnect
from the database in ARC. Open the database in
VFP and open the Employees table. Notice the
new record is there. Add a record and notice the
next available ID number is automatically filled in
for EmployeeID. VFP doesn’t require a valid Re-
portsTo value; you can leave it blank or type
something invalid like “99” without an error be-
cause the Insert RI rule for the self-join is set to
Ignore.

As discussed earlier, being able to access your
tables both directly in VFP and through ADS al-
lows you to migrate an existing application to a
client/server model one module at a time. For
example, in an accounting system, you could
modify the Accounts Receivable module to access
the data using ADS and deploy that module once
the changes are completed and fully tested. The
other modules would continue to access the tables
directly in VFP. The benefit of this approach is
that you don’t have to migrate the entire applica-
tion at once and face the much larger develop-
ment and testing burden that accompanies such a
wholesale change.

Page 9 FoxRockX April 2008

Figure 4. The Full Text Search Index Definitions page of the Table Designer dialog in ARC
allows you to create indexes that provide fast and powerful full text searching.

If you are starting a new application and have
no requirement for backward compatibility of the
data, you might consider using ADS native tables
(ADT files) rather than DBF files. ADT files have
many advantages over DBFs, including no memo
file bloat, more data types (such as case-
insensitive character fields), longer field names,
larger file sizes, more than 255 fields in a table,
and automatic reuse of deleted records.

Full Text Searching
ADS has a fast and powerful full text search (FTS)
feature. FTS uses an index on each word in a
memo field to provide fast, index-based lookups
for desired words. To enable FTS on a table, you
have to create an FTS index on one or more memo
fields in the table.

If you’d like to test the
performance of FTS but
don’t have a large table
with lots of memo content,
a program named MakeDe-
moMemo.PRG included in
the source code for this
article can help. It goes
through your entire hard
drive, looking for text files
(including PRG, TXT, and
HTML) as well as VFP VCX
and SCX files and pulls
them into the Content
memo of a table called De-
moMemo.DBF. As you may
imagine, this can take some
time to run. One test took
about ten minutes to create
an 81,000 record table with
a 545 MB FPT file.

Before adding the table
to ADS, a test program
looked for all instances of
the word “tableupdate” in
Content:

select * from DemoMemo where ;
 atc('table-update', Content) > 0 ;
 into cursor Temp
select * from DemoMemo ;
 where 'tableupdate' $ Content ;
 into cursor Temp

The first statement, which uses a case-
insensitive search, took 305 seconds. The second,
which is case-sensitive but faster, took 65 seconds.

Here are the steps to prepare this table for FTS
searches:
• Open ARC and choose New Connection Wiz-

ard from the File menu. Choose “Create a
connection to a directory of existing tables”

and click Next. Specify the desired name for
the database, select the folder containing De-
moMemo.DBF, choose “vfp” for TableType,
and click OK. (Note that this accesses De-
moMemo as a free table rather than through
an ADS data dictionary because in the beta
version, there’s a problem accessing FTS in-
dexes on DBF files through a data dictionary.)

• Right-click the DemoMemo table under the
Tables node and choose Properties. Select the
Full Text Index Definitions page (see Figure
4), click Add Index, and enter the desired
name of the index. For Key Field, choose
CONTENT (the memo field containing the
text to index). You can fine-tune the index by
specifying the values of other properties, such

as the minimum and maximum word length,
“noise” words such as “and” and “the” to ex-
clude from the index, and whether the index
is case-sensitive or not. Click OK to create the
index.

It can take some time for ADS to create the

FTS index since it creates an index entry for every
word in every record. Once you’ve created the
index, though, by default it’s automatically up-
dated like other indexes are by record additions,
modifications, and deletions. If you wish, you can
turn the automatic update off and rebuild the in-
dex on demand for better record update perform-
ance.

April 2008 FoxRockX Page 10

Figure 5. You can define a DSN using the ADS ODBC driver.

After creating the FTS index, the following
statement, executed through the ADS engine, took
a mere 0.070 seconds for a case-insensitive search:

select * from DemoMemo ;
 where contains(Content, 'tableupdate')

Full text searches have a lot more power than
just searching for the existence of a word, though.
For example:
• You can search all fields for a word by speci-

fying “*” as the field name.
• You can search for multiple occurrences of the

same word in a given record using the
SCORE function. Although not required for
this function, turning on the Keep Score prop-
erty for the index gives better performance
since the score value is stored in the index.

select * from DemoMemo where ;
 contains(Content, 'tableupdate') and;
 score(Content, 'tableupdate') > 1

• You can look for one word in proximity to
another:

select * from DemoMemo where ;
 contains(Content, ;
 'tableupdate near aerror')

One thing to note is that once
you’ve created an FTS index for a
table, you can no longer access that
table directly in VFP. Trying to do
so causes an “operation is invalid
for a Memo, Blog, General or
Picture field” error because VFP
doesn’t support indexes on these
types of fields.

Connecting to ADS
There are two ways to access data
managed by ADS: using its ODBC
driver or its OLE DB provider.
(There is actually a third way, using
the ADS API functions, but those
are low-level functions requiring a
lot of coding.) OLE DB requires a
connection string while ODBC can
use either an ODBC data source
name (DSN) or a connection string,
sometimes called a DSNless
connection.

Here’s an example of an OLE
DB connection string:

provider=Advantage.OLEDB.1;data source=
C:\ADSTest\Northwind\Northwind.add;

 User ID=adssys;Password=""

An ODBC connection string is similar:

driver=Advantage StreamlineSQL ODBC;
 DataDirectory= C:\ADSTest\Northwind\
 Northwind.add;uid=adssys;pwd=""

If you’d rather use an ODBC DSN than a con-
nection string, you can define one using the
ODBC Data Source Administrator. Open the
Windows Control Panel, open Administrative
Tools, and double-click Data Sources (ODBC).
Choose the User DSN tab to create a DSN only
you can use or System DSN to create a DSN any-
one who logs onto your computer can use. Click
Add to create a new DSN, select Advantage
StreamlineSQL ODBC for the driver, and click
Finish. Figure 5 shows the ADS ODBC driver
setup dialog.

Specify a name for the data source and fill in
the path for the ADS data dictionary. Set the op-
tions as desired (the defaults will do for now) and
click OK.

Page 11 FoxRockX April 2008

Accessing ADS using remote views
Like a local view, a remote view is simply a pre-
defined SQL SELECT statement that’s defined in a
database container. The difference is that a remote
view accesses data via ODBC rather than natively.

You can create a remote view either pro-
grammatically using the CREATE SQL VIEW
command or visually using the View Designer. In
both cases, you need to specify an ODBC connec-
tion to use. The connection can either be an ODBC
DSN set up on your system or a Connection object
that’s already defined in the same database.
Here’s an example that defines a Connection ob-
ject and creates a remote view to the Customers
table of the upsized Northwind database. This
was excerpted from code generated by GENDBC;
there’s actually a lot more code that sets the vari-
ous properties of the connection, the view, and
the fields.

CREATE CONNECTION NORTHWINDCONNECTION ;
 CONNSTRING "DSN=Northwind"
CREATE SQL VIEW "CUSTOMERSVIEW" ;
 REMOTE CONNECT "NorthwindConnection" ;
 AS SELECT * FROM CUSTOMERS Customers
DBSetProp('CUSTOMERSVIEW', 'View', ;
 'UpdateType', 1)
DBSetProp('CUSTOMERSVIEW', 'View', ;
 'WhereType', 3)
DBSetProp('CUSTOMERSVIEW', 'View', ;
 'FetchMemo', .T.)
DBSetProp('CUSTOMERSVIEW', 'View', ;
 'SendUpdates', .T.)
DBSetProp('CUSTOMERSVIEW', 'View', ;
 'Tables', 'CUSTOMERS')
DBSetProp('CUSTOMERSVIEW.customerid', ;
 'Field', 'KeyField', .T.)
DBSetProp('CUSTOMERSVIEW.customerid', ;
 'Field', 'Updatable', .F.)
DBSetProp('CUSTOMERSVIEW.customerid', ;
 'Field', 'UpdateName', ;
 'CUSTOMERS.CUSTOMERID')
DBSetProp('CUSTOMERSVIEW.companyname', ;
 'Field', 'Updatable', .T.)
DBSetProp('CUSTOMERSVIEW.companyname', ;
 'Field', 'UpdateName', ;
 'CUSTOMERS.COMPANYNAME')

One of the easiest ways you can upsize an ex-
isting application is using the ADS upsizing util-
ity to create an ADS database from your VFP da-
tabase, then create a new VFP database (for ex-
ample, REMOTE.DBC) and create remote views in
that database with the same names as the tables
they’re based on. That way, the code to open a
remote view will be exactly the same as that to
open a local table except you’ll open a different
database first. For example, if you have an appli-
cation object named oApp and it has an lUseLo-
calData property to indicate whether local or re-
mote data is used, this code will open the appro-
priate database and then open either the Custom-
ers table or the Customers remote view:

if oApp.lUseLocalData
 open database Local

else
 open database Remote
endif
use Customers

If you’re using cursor objects in the DataEnvi-
ronment of forms and reports, you have a little bit
of extra work to do because those objects have a
reference to the specific database you selected
when you dropped the views into the DataEnvi-
ronment. To handle this, put code similar to the
following into the BeforeOpenTables method of
the DataEnvironment:

local loObject
for each loObject in This.Objects
 if upper(loObject.BaseClass) = 'CURSOR' ;
 and not empty(loObject.Database)
 loObject.Database = ;
 iif(oApp.lUseLocalData, ;
 'local.dbc', 'remote.dbc')
 endif
next

Advantages
The advantages of remote views are:
• You can use the View Designer to create a

remote view visually. It’s great to visually see
all the fields in the underlying tables, easily set up
the various parts of the SQL SELECT statement
using a friendly interface, and quickly set proper-
ties of the view using checkboxes or other UI ele-
ments.

• From a language point-of-view, remote views
act just like tables. As a result, they can be
used anywhere: you can USE them, add them
to the DataEnvironment of a form or report,
bind them to a grid, process them in a SCAN
loop, and so forth.

• It’s easier to convert an existing application to
use remote views, especially if it already uses
local views, than using other techniques dis-
cussed later.

• Because you can add a remote view to the
DataEnvironment of a form or report, you can
take advantage of the visual support the DE
provides: dragging and dropping fields or the
entire cursor to automatically create controls,
easily binding a control to a field by selecting
it from a combobox in the Properties Window,
and so on. Also, depending on the settings of
the AutoOpenTables and OpenViews proper-
ties, VFP will automatically open the remote
views for you.

• It’s easy to update the backend with changes:
assuming the properties of the view have
been set up properly, you simply call TA-
BLEUPDATE(). Transaction processing and
update conflict detection are built-in.

• Remote views are easy to use in a develop-
ment environment: just USE and then
BROWSE.

April 2008 FoxRockX Page 12

Disadvantages
The disadvantages of remote views are:
• Remote views live in a DBC, so that’s one

more set of files you have to maintain and in-
stall on the client’s system.

• Since a remote view’s SQL SELECT statement
is pre-defined, you can’t change it on the fly.
Although this is fine for a typical data entry
form, it can be an issue for queries and re-
ports. You may have to create several views
from the same set of data, each varying in the
fields selected, structure of the WHERE
clause, and so forth.

• You can’t call a stored procedure from a re-
mote view, so a remote view needs direct ac-
cess to the underlying tables.

• When you use TABLEUPDATE() to write
changes in the view to the backend database,
you have little ability (other than by setting a
few properties) to control how VFP does the
update.

• As is the case with local views, if you use a
SELECT * view to retrieve all the fields from a
specific table and the structure of that table on
the backend changes, the view is invalid and
must be recreated.

• When you open a view, VFP attempts to lock
the view’s records in the DBC, even if only
briefly. This can cause contention in busy ap-
plications where several users might try to
open a form at the same time. Although there
are workarounds (copying the DBC to the lo-
cal workstation and using that one or, in VFP
7 and later, using SET REPROCESS SYSTEM
to increase the timeout for lock contention),
it’s something you must plan for.

• Until VFP 8, which allows you to specify the
connection handle to use when you open a
remote view with the USE statement, you had
little ability to manage the connections used
by your application.

• The connection information used for a remote
view is hard-coded in plain text in the DBC.
That means that a hacker can easily discover
the keys to your backend kingdom (such as
the user name and password) using nothing
more complicated than Notepad to open the
DBC. This isn’t much of an issue starting in
VFP 7 because it allows you to specify a con-

nection string when you open a remote view
with the USE command, meaning that you
can dynamically assemble the database path,
user name, and password, likely from en-
crypted information, just before opening the
view.

Basically, it comes down to a control issue:

remote views make it easy to work with backend
data, but at the expense of limiting the control you
have over them.

Accessing ADS using SQL
passthrough
VFP provides a number of functions, sometimes
referred to as SQL passthrough (or SPT) functions,
which allow you to access a backend database.
SQLCONNECT() and SQLSTRINGCONNECT()
make a connection to the backend database en-
gine. The difference between these two functions
is that SQLCONNECT() requires an existing
ODBC DSN while SQLSTRINGCONNECT() uses
a connection string. SQLDISCONNECT() discon-
nects from the backend. SQLEXEC() sends a
command, such as a SQL SELECT statement, to
the database engine, typically (but not necessarily,
depending on the command) putting the returned
results into a VFP cursor.

Here’s an example that connects to the up-
sized Northwind database, retrieves all custom-
ers, and disconnects. (This assumes there’s a DSN
called “Northwind” that defines how to connect
to this database.)

lnHandle = sqlconnect('Northwind')
sqlexec(lnHandle, 'select * from Customers')
browse
sqldisconnect(lnHandle)

To use a DSNless connection instead, replace
the SQLCONNECT() statement with the follow-
ing:

lcConnString = 'driver=Advantage '+ ;
 'StreamlineSQL ODBC;'DataDiretory='+ ;
 'C:\ADSTest\Northwind\Northwind.add;'
lnHandle = sqlstringconnect(lcConnString)

Table 1 lists the keywords you can specify in
a connection string; most of these have equiva-
lents in the ODBC dialog shown in Figure 5. All
but DataDirectory are optional.

DOWNLOADS
Subscribers can download FR200804_code.zip in the SourceCode sub directory of the document portal. It contains the following files:
doughennig200804_code.zip
Source code for the article "Advantage Database Server for Visual FoxPro Developers" from Doug Hennig

Page 13 FoxRockX April 2008

Table 1. ADS ODBC driver connection string keywords.

Keyword Description
DataDirectory Specify the path and name of the ADD file to use an ADS database. For free tables, specify the

directory for the tables.
DefaultType For free tables, specify “FoxPro” for VFP tables or “Advantage” for ADS tables (ADT files). This

setting is ignored for databases.
ServerTypes Specify a numeric value that’s the sum of the types of ADS server to connect to: Remote (2),

Local (1), or Internet (4). For example, use 3 (2 + 1) for Remote and Local.
AdvantageLocking “ON” (the default) to use ADS proprietary locking or “OFF” for VFP-compatible locking.
Locking “Record” (the default) for record locking or “File” to lock the entire file during updates.
Rows Similar to SET DELETED. “True” displays deleted records while “False” (the default) omits

them. This setting is ignored for ADS tables because deleted records are never visible in that
case.

TrimTrailingSpaces Similar to Varchar fields. “True” removes trailing spaces from character fields returned to the
application and “False” (the default) does not.

MemoBlockSize Similar to the SET BLOCKSIZE command. Specify the block size for memo fields for new ta-
bles. The default is 64 for VFP tables and 8 for ADS tables.

CharSet The collation setting to use: “ANSI” (the default) or “OEM”. If you use “OEM”, you must also
specify the Language setting.

Language The language to use if CharSet=OEM.
MaxTableCloseCache The number of cursors in the ADS cache; the default is 5.
Compression The type of compression to use. See the ADS help file for a discussion of the types of compres-

sion available.
CommType The communication protocol to use. See the ADS help file for details.

Regardless of whether you use a DSN or a
connection string to connect to ADS, you then use
the same type of SQL statements you’d use to ac-
cess, update or delete records in VFP tables, but
you use the SQLEXEC() function to execute them.
In addition to DML (Data Manipulation Lan-
guage) functions like SELECT, INSERT, UPDATE,
and DELETE, the ODBC driver also supports
DDL (Data Definition Language) functions such
as CREATE DATABASE | TABLE | INDEX |
VIEW | PROCEDURE, DROP INDEX | TABLE |
VIEW | PROCEDURE, and ALTER TABLE.

Note that while ADS supports most of the
VFP data types, how you specify values for Logi-
cal, Date, and DateTime fields is a little different
than with VFP syntax. ADS Logical values come
back to VFP as Logical fields but you must specify
them using True or 1 for true and False or 0 for
false. For example, only the last two of the follow-
ing statements succeeds:

sqlexec(lnHandle, ;
 "select * from Products where Discontinued")
sqlexec(lnHandle, "select * from " + ;
 "Products where Discontinued=.T.")
sqlexec(lnHandle, "select * from " + ;
 "Products where Discontinued=True")
sqlexec(lnHandle, "select * from " + ;
 "Products where Discontinued=1")

(Sybase iAnywhere has indicated they may
support “.T.” and “.F.” syntax in the release ver-
sion.)

Date and DateTime values must be specified
using standard ODBC syntax: {d 'YYYY-MM-DD'}

for Date and {ts 'YYYY-MM-DD HH:MM:SS'} for
DateTime. Here’s an example:

sqlexec(lnHandle, "select * from orders " + ;
 "where OrderDate between " + ;
 "{d '1997-07-01'} and {d '1997-07-31'}")

Here’s a function called VFP2ODBCDate that
converts VFP Date and DateTime values to ODBC
syntax:

lparameters tuDate
local lcDate, ;
 lcReturn
lcDate = transform(year(tuDate)) + ;
 '-' + padl(month(tuDate), 2, '0') + ;
 '-' + padl(day(tuDate), 2, '0')
if vartype(tuDate) = 'D'
 lcReturn = "{d '" + lcDate + "'}"
else
 lcReturn = "{t '" + lcDate + ;
 ' ' + padl(hour(tuDate), 2, '0') + ;
 ':' + padl(minute(tuDate), 2, '0') + ;
 ':' + padl(sec(tuDate), 2, '0') + "'}"
endif vartype(tuDate) = 'D'
return lcReturn

The following example uses this function:

ldFrom = {^1997-07-01}
ldTo = {^1997-07-31}
sqlexec(lnHandle, "select * from orders " + ;
"where OrderDate between " + ;
VFP2ODBCDate(ldFrom) + " and " + ;
VFP2ODBCDate(ldTo))

Instead of converting VFP values into ODBC
syntax, you can use a parameterized query, re-
placing a hard-coded value with a variable name
prefixed with “?” (the variable, of course, must be

April 2008 FoxRockX Page 14

in scope). In that case, VFP will take care of data
type conversions for you. This has the additional
benefit of avoiding SQL injection attacks (which
are beyond the scope of this article). For example:

ldFrom = {^1997-07-01}
ldTo = {^1997-07-31}
sqlexec(lnHandle, 'select * from orders ' + ;
 'where OrderDate between ?ldFrom and ?ldTo')

Although VFP can use single quotes, double
quotes, and square brackets as string delimiters,
pass string values to SPT functions delimited with
single quotes only.

Although these examples omit it, be sure to
check the return value of SQLEXEC(). If it returns
something less than 1, the command failed so use
AERROR() to determine what went wrong. Also,
you can specify the name of the cursor to create as
the third parameter to SQLEXEC(); the cursor is
named SQLResult if you omit this parameter.

Advantages
The advantages of using SPT are:
• You have a lot more flexibility in data access

than with remote views, such as calling stored
procedures using the SQLEXEC() function.

• You can change the connection information
on the fly as needed. For example, you can
store the user name and password as en-
crypted values and only decrypt them just be-
fore using them in the SQLCONNECT() or
SQLSTRINGCONNECT() functions. As men-
tioned earlier, this isn’t nearly the advantage
over remote views that it used to be, since
VFP 7 and later allows you to specify the con-
nection string on the USE command.

• You can change the SQL SELECT statement as
needed. For example, you can easily vary the
list of the fields, the WHERE clause (such as
changing which fields are involved or elimi-
nating it altogether), the tables, and so on.

• You don’t need a DBC to use SPT, so there’s
nothing to maintain or install, lock contention
isn’t an issue, and you don’t have to worry
about a SELECT * statement being made inva-
lid when the structure of the backend tables
change.

• As with remote views, the result set of a SPT
call is a VFP cursor, which can be used any-
where in VFP.

• Although you have to code for it yourself
(this is discussed in more detail under Disad-
vantages), you have greater control over how
updates are done. For example, you might use
a SQL SELECT statement to create the cursor

but call a stored procedure to update the ADS
tables.

• You can manage your own connections. For
example, you might want to use a connection
manager object to manage all the connections
used by your application in one place.

Disadvantages
The disadvantages of using SPT are:
• It’s more work, since you have to code every-

thing: creating and closing the connection, the
SQL SELECT statements to execute, and so
on. You don’t have a nice visual tool like the
View Designer to show you which fields exist
in which tables.

• You can’t visually add a cursor created by
SPT to the DataEnvironment of a form or re-
port. Instead, you have to code the opening of
the cursors (for example, in the Before-
OpenTables method), you have to manually
create the controls, and you have to fill in the
binding properties (such as ControlSource) by
typing them yourself. Don’t make a typo
when you enter the alias and field names or
the form won’t work.

• They’re harder to use than remote views in a
development environment: instead of just is-
suing a USE command, you have to create a
connection, then use a SQLEXEC() call to get
the data you want to look at. You can make
things easier on yourself if you create a set of
PRGs to do the work for you or you can use
the Data Explorer that comes with VFP to ex-
amine the structures and contents of the ta-
bles. You can even create a DBC and set of
remote views used only in the development
environment as a quick way to look at the
data.

• Cursors created with SPT can be updatable,
but you have to make them so yourself using
a series of CURSORSETPROP() calls to set the
SendUpdates, Tables, KeyFieldList, Up-
datableFieldList, and UpdateNameList prop-
erties. Also, you have to manage transaction
processing and update conflict detection
yourself.

• Since SPT cursors aren’t defined like remote
views, you can’t easily switch between local
and remote data using SPT as you can with
remote views by simply changing which view
you open in a form or report.

Page 15 FoxRockX April 2008

Accessing ADS using ADO
OLE DB providers are similar to ODBC drivers:
they provide a standard, consistent way to access
data sources. Because OLE DB is a set of low-level
COM interfaces, it’s not easy to work with in lan-
guages like VFP. To overcome this, Microsoft cre-
ated ActiveX Data Objects (ADO), a set of COM
objects that provide an object-oriented front-end
to OLE DB.

ADO consists of several objects, including:
• Connection: This is the object responsible for

communicating with the data source.
• Recordset: This is the equivalent of a VFP cur-

sor: it has a defined structure, contains the
data in the data set, and provides properties
and methods to add, remove, or update re-
cords, move from one to another, filter or sort
the data, and update the data source.

• Command: This object provides the means of
doing more advanced queries than a simple
SELECT statement, such as parameterized
queries and calling stored procedures.

Here’s an example (ADOExample.PRG) that

gets all Brazilian customers from the upsized
Northwind database and displays the customer
ID and company name. Notice that the Connec-
tion object handles the connection while the Re-
cordset handles the data. This code references
ADOVFP.H, an include file of constants useful
when working with ADO.

#include ADOVFP.H
local loConn as ADODB.Connection, ;
 loRS as ADODB.Recordset, ;
 lcCustomers

* Connect to the ADS database.

loConn = createobject('ADODB.Connection')
loConn.ConnectionString = ;
 'provider=Advantage.OLEDB.1;' + ;
 'data source=' + ;
 'c:\adstest\northwind\northwind.add'
loConn.Open()

* Create a Recordset and set its properties.

loRS = createobject('ADODB.Recordset')
loRS.ActiveConnection = loConn
loRS.LockType = 3 && adLockOptimistic
loRS.CursorLocation = 3 && adUseClient
loRS.CursorType = 3 && adOpenStatic

* Execute a query and display the results.

loRS.Open("select * from customers " + ;
 "where country='Brazil'")
lcCustomers = ''
do while not loRS.EOF
 lcCustomers = lcCustomers + ;
 loRS.Fields('customerid').Value +chr(9)+;
 loRS.Fields('companyname').Value + chr(13)
 loRS.MoveNext()
enddo while not loRS.EOF
messagebox(lcCustomers)
loRS.Close()
loConn.Close()

Notice how this code uses object-oriented
code to access the Recordset. The EOF property is
the equivalent of the VFP EOF() function and the
MoveNext method is like SKIP. To access the
value of a field in the current record, use Record-
set.Fields('FieldName').Value.

Using parameterized queries with ADO is a
little more work than it is with ODBC. In addition
to specifying a parameter as “?” (without the
variable name), you also have to use ADO Com-
mand and Parameter objects to specify the pa-
rameter and its value.

* Connect to the ADS database.

loConn = createobject('ADODB.Connection')
loConn.ConnectionString = ;
 'provider=Advantage.OLEDB.1;' + ;
 'data source=' + ;
 'c:\adstest\northwind\northwind.add'
loConn.Open()

* Create a Command object and define the
* command type and connection.

loCommand = createobject('ADODB.Command')
loCommand.CommandType = adCmdText
loCommand.ActiveConnection = loConn

* Create a Parameter object, set its
* properties, and add it to the Command
* object.

loParameter = loCommand.CreateParameter;
 ('Country', adChar, adParamInput, 15)
loParameter.Value = 'UK'
loCommand.Parameters.Append(loParameter)

* Execute a parameterized query and
* display the results.

loCommand.CommandText = 'select * from ' + ;
 'customers where country = ?'
loRS = loCommand.Execute()
* same code as above to display the results

Advantages
The advantages of using ADO are:
• Many of the advantages are the same as with

SPT: you have more flexibility in data access
than with remote views, you can change the
connection information on the fly as needed,
you can change the SQL SELECT statement as
needed, you can manage your own connec-
tions, and there’s no DBC involved.

• Although performance differences aren’t sig-
nificant in simple scenarios (in fact, in general,
ODBC is faster than ADO), ADO is more scal-
able in heavily-used applications such as Web
servers.

• ADO is object-oriented, so you can deal with
the data like objects.

• Depending on how they’re set up, ADO Re-
cordsets are automatically updateable without
any additional work other than calling the

April 2008 FoxRockX Page 16

Update or UpdateBatch methods. Transaction
processing and update conflict detection are
built-in.

• You can easily persist a Recordset to a local
file, then later reload it and carry on working,
and finally update the ADS data source. This
makes it a much better choice for “road war-
rior” applications than remote views or SPT.

Disadvantages
The disadvantages of ADO are:
• It’s more work, since you have to code every-

thing: creating and closing the connection, the
SQL SELECT statements to execute, and so
on. You don’t have a nice visual tool like the
View Designer to show you which fields exist
in which tables on the backend.

• An ADO Recordset is not a VFP cursor, so
you can’t use it in places that require a cursor,
such as grids and reports. There are functions
in the VFPCOM utility (available for
download from the VFP home page,
http://msdn.microsoft.com/vfoxpro) that
can convert a Recordset to a cursor and vice
versa, but using them can impact perform-
ance, especially with large data sets, and they
have known issues with certain data types. If
you want to use ADO, CursorAdapter (dis-
cussed next) is the way to go.

• There’s no visual support for ADO Record-
sets, so you have to code their creation and
opening, you have to manually create the con-
trols, and you have to fill in the binding prop-
erties (such as ControlSource) by typing them
yourself. This is even more work than for SPT,
because the syntax isn’t just CUR-
SOR.FIELD—it’s Record-
set.Fields('FieldName').Value.

• They’re the hardest of the technologies to use
in a development environment, since you
have to code everything: making a connec-
tion, retrieving the data, and moving back
and forth between records. You can’t even
BROWSE to see visually what the result set
looks like (unless you use VFPCOM or Cur-
sorAdapter to convert the Recordset to a cur-
sor).

• There’s a bigger learning curve involved with
ADO than using the cursors created by
ODBC.

Accessing ADS using CursorAdapter
One of the things you’ve likely noted is that each
of the mechanisms discussed is totally different
from the others. That means you have a new
learning curve with each one, and converting an

existing application from one mechanism to an-
other is a non-trivial task.

Fortunately, there’s a VFP technology that
provides a common interface for both ODBC and
OLE DB: the CursorAdapter class. Cursor-
Adapter, added in VFP 8, is a great solution be-
cause:
• It makes it easy to use ODBC, ADO, or XML,

even if you’re not very familiar with these
technologies.

• It provides a consistent interface to remote
data regardless of the mechanism you choose.

• It makes it easy to switch from one mecha-
nism to another.

Here’s an example of the last point. Suppose

you have an application that uses ODBC with
CursorAdapters to access ADS data, and for some
reason you want to change to use ADO instead.
All you need to do is change the DataSourceType
of the CursorAdapters and change the connection
to the ADS database, and you’re done. The rest of
the components in the application neither know
nor care about this; they still see the same cursor
regardless of the mechanism used to access the
data.

Here’s an example (CursorAdapterExam-
ple.PRG) that gets certain fields for Brazilian cus-
tomers from the Customers table in the North-
wind database. The cursor is updateable, so if you
make changes in the browse window, close it, and
then run the program again, you’ll see that your
changes were saved.

local lcConnString, ;
 lnHandle, ;
 loCursor as CursorAdapter, ;
 laErrors[1]
close tables all

* Connect to ADS.

lcConnString = 'driver=' + ;
 'Advantage StreamlineSQL ODBC;' + ;
 'DataDirectory=C:\ADSTest\Northwind\' + ;
 'Northwind.add;'
lnHandle = sqlstringconnect(lcConnString)

* Create a CursorAdapter and set its
* properties.

loCursor = createobject('CursorAdapter')
with loCursor
 .Alias = 'Customers'
 .DataSourceType = 'ODBC'
 .DataSource = lnHandle
 .SelectCmd = "select " + ;
 "CUSTOMERID, COMPANYNAME, CONTACTNAME "+;
 "from CUSTOMERS where COUNTRY = 'Brazil'"
 .KeyFieldList = 'CUSTOMERID'
 .Tables = 'CUSTOMERS'
 .UpdatableFieldList = 'CUSTOMERID, ' + ;
 'COMPANYNAME, CONTACTNAME'
 .UpdateNameList = 'CUSTOMERID ' + ;
 'CUSTOMERS.CUSTOMERID, ' + ;
 'COMPANYNAME CUSTOMERS.COMPANYNAME, ' + ;

Page 17 FoxRockX April 2008

Figure 6. The CursorAdapter Builder provides a visual tool to create CursorAdapter subclasses.

 'CONTACTNAME CUSTOMERS.CONTACTNAME'
 if .CursorFill()
 browse
 else
 aerror(laErrors)
 messagebox(laErrors[2])
 endif .CursorFill()
endwith

You don’t have to create a CursorAdapter
programmatically. You can use the Class Designer
to create a CursorAdapter subclass and either fill
in the properties in the Properties window or use
the CursorAdapter Builder, which provides a nice
visual tool for the CursorAdapter (see Figure 6).
Note that the CursorAdapter Builder doesn’t
quite work right with ADS when you’re using
ODBC to connect to the database; see the “Fixing
the VFP CursorAdapter Builder” sidebar for de-
tails and how to correct the problem.

Although CursorAdapter has quite a few
properties and methods, the most important ones
are:

• DataSourceType: specifies how to access the
data. The choices are “Native,” “XML,”
“ODBC,” and “ADO,” although only the lat-
ter two are used with ADS.

• DataSource: the value of this property de-
pends on what DataSourceType is set to. In
the case of ODBC, it must be an open ODBC
connection handle. For ADO, it’s an ADO Re-
cordset object with its ActiveConnection set to
an open Connection object. Note that in either
case, you’re responsible for opening and man-
aging the connection yourself.

• SelectCmd: the SQL statement to execute to
retrieve the data.

• Alias: the alias of the cursor created.
• KeyFieldList, Tables, UpdatableFieldList, and

UpdateNameList: these fields are the key to

making the cursor updateable. Set them to the
appropriate values and CursorAdapter will
automatically write changes back to the

April 2008 FoxRockX Page 18

source data. See the VFP documentation for
details on these properties.

• CursorFill: call this method to create the cur-
sor and execute the statement in SelectCmd to
populate the cursor.

• CursorDetach: by default, the cursor created
by CursorAdapter is “attached” to the Cur-
sorAdapter object. When the CursorAdapter
is destroyed (such as when it goes out of
scope), the cursor is automatically closed. If
you want the cursor to remain open, call the
CursorDetach method to detach the cursor
from the CursorAdapter.

A CursorAdapter can use either ODBC or

ADO to connect to ADS. For ODBC, open a con-
nection to the database using SQLCONNECT() or
SQLSTRINGCONNECT() and set the Cur-
sorAdapter DataSource property to the connec-
tion handle and set the DataSourceType property
to “ODBC.” ADO is a little more work: instantiate
and open an ADO Connection object, instantiate a
Recordset object, set the Recordset’s ActiveCon-
nection property to the Connection object, set the
CursorAdapter’s DataSource property to the Re-
cordset object, and set DataSourceType to “ADO.”
For parameterized queries, use the “?Variable-
Name” syntax in your SQL statement, even for
ADO. For ADO, though, you must also instantiate
an ADO Command object and pass it as the
fourth parameter to CursorFill (don’t worry about
the Parameter object; VFP takes care of that inter-
nally).

Instead of doing all that work for ADO
manually, the SFCursorAdapterADO subclass
included in SFCursorAdapter.VCX in the source
code for this article does some of this work for
you. Its DataSourceType property is set to “ADO”
and its Init method sets up the DataSource prop-
erty.

local loRS as ADODB.Recordset
loRS = createobject('ADODB.RecordSet')
loRS.CursorLocation = 3 && adUseClient
loRS.LockType = 3 && adLockOptimistic
This.DataSource = loRS

After creating and opening a Connection ob-
ject, pass it to SetConnection.

lparameters toConnection
This.DataSource.ActiveConnection = ;
 toConnection

You don’t have to pass a Command object to
CursorFill; SFCursorAdapterADO automatically
uses a Command object if there’s a “?” in the SQL
statement.

lparameters tlUseCursorSchema, ;
 tlNoData, ;

 tnOptions, ;
 toSource
local loSource as ADODB.Command, ;
 lnOptions, ;
 llUseCursorSchema, ;
 llNoData, ;
 llReturn, ;
 laError[1]

* If we have a parameterized query, we need
* an ADO Command object. Create one
* if it wasn't passed.

if '?' $ This.SelectCmd and ;
 vartype(toSource) <> 'O'
 loSource = createobject('ADODB.Command')
 loSource.ActiveConnection = ;
 This.DataSource.ActiveConnection
 lnOptions = adCmdText
else
 loSource = toSource
 lnOptions = tnOptions
endif '?' $ This.SelectCmd ...

* If the first two parameters weren't
* specified, we don't want to explicitly
* pass .F., so use the default values.
* If CursorSchema is empty, we'll, of
* course, pass .F. for the first parameter.

do case
 case pcount() >= 2
 llUseCursorSchema = tlUseCursorSchema
 llNoData = tlNoData
 case pcount() = 1
 llUseCursorSchema = tlUseCursorSchema
 llNoData = This.NoData
 case pcount() = 0
 llUseCursorSchema = This.UseCursorSchema
 llNoData = This.NoData
endcase
if empty(This.CursorSchema)
 llUseCursorSchema = .F.
endif empty(This.CursorSchema)
llReturn = dodefault(llUseCursorSchema, ;
 llNoData, lnOptions, loSource) and ;
 used(This.Alias)

* If something went wrong, find out why.

if not llReturn
 aerror(laError)
 This.cErrorMessage = laError[2]
endif not llReturn
return llReturn

Here’s an example that uses SFCursorAdapter-
ADO, taken from ADOCursorAdapterExample.PRG:

local loConnection as ADODB.Connection, ;
 loCA as SFCursorAdapterADO ;
 of SFCursorAdapter.vcx
private pcCountry

* Create and open an ADO Connection object.

loConnection = createobject(;
 'ADODB.Connection')
loConnection.ConnectionString = ;
 'Provider=Advantage.OLEDB.1;' + ;
 'Data Source=C:\ADSTest\northwind\' + ;
 'northwind.add;' + ;
 'User ID=adssys;Password=""'
loConnection.Open()

* Create an SFCursorAdapterADO object
* and set it up.

loCA = newobject('SFCursorAdapterADO', ;

Page 19 FoxRockX April 2008

 'SFCursorAdapter.vcx')
with loCA
 .SetConnection(loConnection)
 .SelectCmd = 'select * from customers ' + ;
 'where country = ?pcCountry'
 .Alias = 'customers'

* Do the query and either
* show the result set or an error.

 pcCountry = 'Germany'
 if .CursorFill()
 browse
 else
 messagebox(loCa.cErrorMessage)
 endif .CursorFill()
endwith

* Close the connection.

loConnection.Close()

Advantages
The advantages of CursorAdapters are essentially
the combination of those of all of the other tech-
nologies.
• Depending on how it’s set up (if it’s com-

pletely self-contained, for example), opening a
cursor from a CursorAdapter subclass can
almost be as easy as opening a remote view:
you simply instantiate the subclass and call
the CursorFill method. You could even call
that from Init to make it a single-step opera-
tion.

• It’s easier to convert an existing application to
use CursorAdapters than to use cursors cre-
ated with SPT.

• Like remote views, you can add a Cur-
sorAdapter to the DataEnvironment of a form
or report and take advantage of the visual
support the DE provides: dragging and drop-
ping fields to automatically create controls,
easily binding a control to a field by selecting
it from a combobox in the Properties Window,
and so on.

• It’s easy to update the backend with changes:
assuming the properties of the view have
been set up properly, you simply call TA-
BLEUPDATE().

• Because the result set created by a Cur-
sorAdapter is a VFP cursor, they can be used
anywhere in VFP: in a grid, a report, proc-
essed in a SCAN loop, and so forth. This is
true even if the data source comes from ADO
and XML, because the CursorAdapter auto-
matically takes care of conversion to and from
a cursor for you.

• You have a lot of flexibility in data access,
such as calling stored procedures or middle-
tier objects.

• You can change the connection information
on the fly as needed, you can change the SQL

SELECT statement as needed, you don’t need
a DBC, and you can manage your own con-
nections.

• Although you have to code for it yourself,
you have greater control over how updates
are done. For example, you might use a SQL
SELECT statement to create the cursor but call
a stored procedure to update the backend ta-
bles.

Disadvantages
There aren’t a lot of disadvantages for Cur-
sorAdapters:
• You can’t use a nice visual tool like the View

Designer to create CursorAdapters, although
the CursorAdapter Builder is a close second.

• Like all new technologies, there’s a learning
curve that must be mastered.

Licensing
Advantage Database Server uses a concurrent li-
censing model; you need one license per con-
nected user. Each workstation can have an unlim-
ited number of database connections. Multiple
Advantage-enabled applications running on a
single workstation are licensed as a single user.
Sybase iAnywhere does not publish a price list for
licenses. Although they state that they have flexi-
ble pricing options and OEM partner discounts
and that their price is competitive to other data-
base servers, you must contact them for a quote
based on how many licenses you require.

Resources
The Advantage Developer Zone site,
http://devzone.advantagedatabase.com, has nu-
merous resources for learning more about ADS,
such as newsgroups (including a VFP-specific
newsgroup), online documentation, white papers,
tutorials, and sample code. Also, a book by Cary
Jensen and Loy Anderson, Advantage Database
Server: A Developer’s Guide (ISBN 978-1-4259-7726-
9), provides a great introduction to ADS. Al-
though none of the examples are in VFP, VFP de-
velopers will have no trouble understanding and
translating the code.

Andrew MacNeill interviewed J.D. Mullin, R
& D Manager for ADS, in The FoxShow #49, a
podcast available for download at
http://akselsoft.libsyn.com/index.php?post_id=3
02994. This interview provides some background
to ADS and VFP and discusses some of the design
features of ADS.

April 2008 FoxRockX Page 20

Summary
Advantage Database Server is an exciting data-
base engine that provides better support for VFP
application developers than any other cli-
ent/server database engine. It can form the basis
of a migration strategy to move your applications
from file-based data access to true client/server
technology.

At the time this article was written, ADS ver-
sion 9 was in beta, so it’s possible there are
changes in the final release of the product from
what is discussed in this article. However, the
basic concepts remain the same, including the
benefits of ADS and how VFP applications access
the database engine.

Fixing the ADS
VFP upsizing utility
Although this will change when the production
version is released, the beta version of the ADS
VFP Upsizing Utility, ADSUpsize.PRG, which
came with the beta version had a few issues:
• It didn’t handle auto-incrementing fields

properly.
• It gave an error in the AddDatabaseToTable

method for some tables.
• It didn’t allow you to run it more than once

without doing some manual cleanup tasks.
• It didn’t properly handle the case where it

couldn’t connect to the ADS OLE DB pro-
vider.

• It named relationships between table with
unhelpful names like Relation_1 and Rela-
tion_2.

• It didn’t handle differences between VFP syn-
tax and ADS syntax when upsizing views,
particularly with filters on Logical, Date, or
DateTime fields or with references to the da-
tabase container (that is, Data-
baseName!TableName).

• It gave an error on tables without indexes.
• It didn’t properly upsize tables with Varchar

or Varbinary fields.

Fortunately, these were all easy to fix, so the
source code accompanying this article includes a
replacement ADSUpsize.PRG that takes care of
these issues.

Fixing the VFP
CursorAdapter Builder
The CursorAdapter Builder has a problem with
the ADS ODBC driver (it works fine with the ADS
OLE DB provider). The Select Command Builder
dialog displays when you click the Build button
for the Select command in page 2 of the Cur-
sorAdapter Builder. This dialog gives an error
with the ADS ODBC driver because the driver
returns a different result set to the SQLTABLES()
and SQLCOLUMNS() functions than SQL Server
and many other drivers do. Rather than having
fields named TABLE_NAME and COL-
UMN_NAME, ADS names them TABLENAME
and COLUMNNAME.
Fortunately, Microsoft provides the source code
for the CursorAdapter Builder and the fix was
easy, so the source code accompanying this article
includes a replacement DEBuilder.APP that takes
care of these issues. Copy that file to the Wizards
folder of the VFP home directory, overwriting the
existing file. The source code for the fix is in the
included DECABuilder.VCX, which you normally
find in the Tools\XSource\VFPSource\Wi-
zards\DEBuilder folder of the VFP home direc-
tory after extracting XSource.ZIP in
Tools\XSource.

Biography
Doug Hennig is a partner with Stonefield Systems Group Inc.
and Stonefield Software Inc. He is the author of the award-
winning Stonefield Database Toolkit (SDT); the award-winning
Stonefield Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that come with
Microsoft Visual FoxPro; and the My namespace and updated
Upsizing Wizard in Sedna. Doug is co-author of the “What’s
New in Visual FoxPro” series (the latest being “What’s New in
Nine”) and “The Hacker’s Guide to Visual FoxPro 7.0.” He is
the technical editor of “The Hacker’s Guide to Visual FoxPro
6.0” and “The Fundamentals.” All of these books are from
Hentzenwerke Publishing (www.hentzenwerke.com). Doug
wrote over 100 articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor and Advisor Guide. He
has spoken at every Microsoft FoxPro Developers Conference
(DevCon) since 1997 and at user groups and developer con-
ferences all over the world. He is one of the administrators for
the VFPX VFP community extensions Web site
(www.codeplex.com/VFPX) and one of the organizers of the
Southwest Fox conference (www.swfox.net). He has been a
Microsoft Most Valuable Professional (MVP) since 1996. Doug
was awarded the 2006 FoxPro Community Lifetime Achieve-
ment Award (fox.wikis.com/wc.dll?Wiki~FoxProCom-
munityLifetimeAchievementAward~VFP). Web:
www.stonefield.com and www.stonefieldquery.com, Email:
dhennig@stonefield.com, Blog: doughennig.blogspot.com

FoxRockX™(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH
dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor: Rainer Becker

Copyright
© 2008 ISYS GmbH. This work is an independently produced publication of ISYS GmbH, Kronberg, the content of which is
the property of ISYS GmbH or its affiliates or third-party licensors and which is protected by copyright law in the U.S. and
elsewhere. The right to copy and publish the content is reserved, even for content made available for free such as sample
articles, tips, and graphics, none of which may be copied in whole or in part or further distributed in any form or medium
without the express written permission of ISYS GmbH. Requests for permission to copy or republish any content may be
directed to Rainer Becker.

FoxRockX, FoxTalk 2.0 and Visual Extend are trademarks of ISYS GmbH. All product names or services identified throughout this journal are trademarks or
registered trademarks of their respective companies. Printed in the Czech Republic.

