
FoxTalk

Continues on page 4

Solutions for Microsoft® FoxPro® and Visual FoxPro® Developers

Turn Your VFP App
Client/Server: A 12-
Step Program, Part 2
Jim Falino

Last month, Jim began the first of this two-part series on the steps you need to take
to develop client/server applications with Visual FoxPro (see Part 1 in the April 1999
issue of FoxTalk). Jim raises six more important issues this month and concludes
with a sample form that can access both VFP and SQL Server tables.

I have a lot of information I’d like to pass along, so please see Part 1 for an
extended introduction. Let’s get right to it. One reminder: All examples are
from the SQL Server 7.0 Northwind Traders database.

Step 7: Use surrogate primary keys for all tables
Even before VFP 3.0 gave us the ability to add primary keys to our tables,
using a field—or group of fields—to uniquely identify a table row had been
suggested by many to be a sound practice. In file-server applications, though,
in many situations there really was no requirement to do this—it was only a
good idea. However, with views, the rules change.

In order to use updateable views, there must exist a primary key on the
table on which the view is based (I typically don’t update data from a multi-
table view). The reason is that since the view creates a local result set when
opened (USE <Viewname>), you need some mechanism to be able to find the
underlying record on the server that you’re attempting to update. This wasn’t
always necessary in a file-server model, whereby a shared record could be
directly edited.

In order for updates to work, views require that you either set the
KeyField property at design time in the View Designer or with

6.06.0

1 Turn Your VFP App
Client/Server: A 12-Step
Program, Part 2
Jim Falino

3 Editorial: Certification:
Should You Care?
Whil Hentzen

9 Best Practices: Seeing
Patterns: The Singleton
Jefferey A. Donnici

15 Driving the Data Bus:
Matchmaker, Mitchmoker . . .
Is That a Match? Or
De-mystifying De-duplication
Andrew Coates

20 The Kit Box: VLT on Rye,
Hold the Mustard
Paul Maskens and Andy Kramek

23 May Subscriber Downloads

EA Supercharged Date Entry!
Jeff Baker

EA Where is That Control?
Jim Booth

EA What’s Really Inside:
Buffering, the Vampire Slayer:
The Continuing Story
Jim Booth

EA Help Eliminate DBF Corruption
with a Posting Engine
Steve Zimmelman

EA Visual Basic for Dataheads:
Creating the User Interface: VB
Forms and Controls
Whil Hentzen

May 1999
Volume 11, Number 5

Applies to
FoxPro v2.x

Applies to
VFP v5.0

Applies to
VFP v3.0

Applies to VFP
v6.0 (Tahoe)

6.06.06.0

Accompanying files available online
at http://www.pinpub.com/foxtalk

Applies specifically to one of these platforms.

2 http://www.pinpub.comFoxTalk May 1999

http://www.pinpub.com 3FoxTalk May 1999

From the Editor FFFoooxxxTalk

Certification: Should You Care?
Whil Hentzen

HERE’S a trick question: If you were interviewing
candidates for a development job, and you had to
choose between someone with 15 years of

experience and absolutely no credentials and a 25-year-
old with a year of experience and six certifications, who
would you hire?

Witness these messages I’ve received over the past
couple of months.

“I wonder what the VFP 6 exam will be like. I
laughed out loud when the Visual FoxPro 3.0 exam came
out—only two questions out of 100 or more had ‘visuals’
along with the question, and they both showed screen
shots of the Menu Builder—the one part of Visual FoxPro
that: a) hadn’t changed a bit from 2.x to 3.0; and b) was
probably the least ‘visual’ tool in all of VFP. What were
the test designers thinking of?”

“I took the VB 5.0 exam on a lark last year when my
free coupons ran out. Didn’t study at all. Passed five of
the eight sections with 100 percent, never heard of a
dynaset, and just missed passing.”

“I had a voucher for a free exam that expired shortly,
and since the VFP test wasn’t out yet, I decided to take the
VB test. Of course, I waited until the weekend before (the
test was Monday), and you know the rest—well, except
the result of the test. I scored 850+ out of 1,000, where 714
is required to pass. So I went from a regular guy who’s
never developed a VB application to a MS Certified VB6
Developer who’s never developed a VB application.”

Obviously, there’s a danger with certifications. First of
all, of course, is that certification only measures what’s on
the test—and, thus, your ability to take a test. You all
know some people who weren’t all that smart, but got
through school because they were really good at taking
tests. And there were, of course, those for whom the
opposite applied <s>.

Second, a test doesn’t necessarily measure what the
tool is actually used for in the real world—just what the
developer of the test thinks should be on the test.
Microsoft has often tilted their tests toward their view of
what they want their tool to be used for—never mind the
current work-a-day world where you have to deliver apps
for customers.

Third, it doesn’t consider what you know about
developing applications. I’ve found it ironic to have the
titles for the various certifications include the word
“Developer”—because a developer’s skill set must
include a wide range of abilities that don’t have anything

to do with syntax and hands-on keyboarding. You
could ace every test offered by Microsoft and Oracle
combined and still not be able to normalize your way
out of a paper bag or write a specification longer than
half a sheet of paper.

It’s much like learning to drive a nail with a hammer,
and slicing up some wood with a saw. Just because you’re
certified with a hammer and saw doesn’t mean you’re
qualified to build a house, does it? But it does mean that
you can distinguish between the two, and you have a
basic idea of what each is used for.

So, if you’re a developer, understand what you’re
going to get out of becoming certified. You’ll get a
foundation of knowledge and some understanding of
the breadth of the product—as Microsoft’s test creators
view it—but it doesn’t mean you’re an expert. View
certification, as one of my friends put it, “as a driver’s
learning permit. You’ve learned enough to read the
manuals, and you have some idea of what Microsoft
thinks its tool is used for, but now you need to go learn
how to really use it.”

If you’re a development firm, certification is a
marketing tool you can use with potential customers.
You can explain that your developers have a consistent
footing in terms of foundation knowledge, instead of
happenstance knowledge picked up randomly here and
there. It means that your firm cares enough about the
education of its developers that you were willing to foot
the bill for the certifications, whatever that means in your
particular situation—whether you paid for the exams,
gave employees time off, or whatever. And it means that
you’ve got a never-ending supply of CDs, newsletters,
magazines, and other information from Microsoft—so
you’re well-informed and are staying on the leading edge
of the learning curve.

If you’re an employer or hiring a development firm,
the next developer or shop that comes in with a bunch of
certifications is worth looking at, because it means they
had enough initiative to get certified, but it doesn’t mean
you can turn off your judgment meter. You still need to
evaluate the developer as you would any other potential
candidate. Use certification credentials as a tie-breaker
between two otherwise equal candidates.

And the answer to my trick question? “You don’t
have enough information to make a decision.” You can’t
let a resume do your thinking for you, and you need to
understand what certification means and doesn’t mean. ▲

4 http://www.pinpub.comFoxTalk May 1999

DBSETPROP(“Viewname.KeyField1”, “Field”,
“KeyField”, .T.), or set the KeyFieldList property on
the open cursor at runtime using CURSORSETPROP
(“KeyFieldList”, <comma-delimited list of primary
key fields>).

In either case, the view will use the key field(s) to find
the record on the server you’ve requested to SQL Update
or SQL Delete. The keys will also be used to detect update
conflicts—reporting back an error if anyone has either
deleted the record you’re trying to update or has changed
the key. Aside from being a necessity for updateable
views, adding primary keys to your tables also makes
querying for one particular record simpler. You’ll find that
in the client/server world, you’ll often need that ability.

The argument for surrogate keys
If you do have multiple fields that make up your primary
keys, I suggest using a system-generated surrogate key in
addition. Having this field, typically an integer type, will
give you the luxury of a unique Row ID that you’ll be
glad you have. Along with this, for child tables you’ll
want to add one more integer field to serve as the foreign
key. You’d populate it with its parent’s surrogate primary
key before saving a new child.

The benefits of surrogate keys include faster joins,
faster updates, faster deletes, and the simplified retrieval
of the children of a parent. The only drawback is
generating them. I use a system table of next numbers—it
contains one row per table in the application—but this can
cause multi-user contention problems if you’re not
careful. Since these keys really are meaningless (that’s
why they’re also called abstract keys), you shouldn’t
attempt to get the next sequential number from the server
while in the midst of a transaction. This might create too
much contention on the system table when you need
primary keys for a highly active table. It’s better to get the
key outside of the transaction and risk losing it if an
update fails.

One other thought might be to use one of several
techniques to generate a unique ID locally—eliminating
the trip to the server and any possible multi-user
contention. Much like the way I never let a contractor
leave my house without recommending a good roofer,
I never let a conversation with a developer end without
asking about their unique ID generation technique.
Two interesting ones I’ve heard that use client-side
generation are:

1. Use a GUID. They’re 26 characters long, (supposedly)
unique across the world, and lightning-fast to

generate. They’re not beautiful to look at, but it might
be well worth the pain.

2. Get a unique ID from a server-side system table on
application startup, and then use a local application
property as a counter. Concatenate the two to
generate a unique alphanumeric string. Although
I’m simplifying it a bit, I believe this technique is
used in Code Book.

Step 8: Add a timestamp column to every table
Client/server applications almost exclusively use
optimistic locking. Given that fact, multi-user
contention checking becomes much more of a challenge
to implement. You must continually remind yourself
while coding, “I might not have the latest version of this
record set.”

Although the primary key is used to detect update
conflicts, its ability is limited to detecting whether another
user has either deleted the record you’re trying to update
or has changed the key. The primary key won’t help you
determine whether another user made changes to non-key
fields before you committed your changes.

Typically, client/server applications use some form
of timestamp column—one that’s re-stamped as part of
every update—to indicate the latest version of a record.
(I say “some form of timestamp” because the datatype
can be almost anything.) This column is then queried on
the server during every update to determine whether it
conflicts with the version on the local workstation. For
example, a VFP view might generate the following SQL
statement after updating the customer view:

Replace state With 'NY' For city = 'New York' In
vcustomers
TableUpdate(.T., .F., "vcustomers"):

* This is what is auto-generated by the view
* and passed to the server.
* There would be one of these per updated record.
Update customers Set state = 'NY' ;
 Where cust_pkey = ?vcustomers.cust_pkey and ;
 timestamp = ?vcustomers.timestamp

If this SQL update statement fails with an Update
Conflict error, you can report to your user that someone
else changed this record while you were editing it.
Where you go from here depends on how nice you are.
Ultimately, either a requery must occur or you can try to
issue TableUpdate again with the Force parameter set to
true (which isn’t recommended unless you provide the
user with a field-by-field comparison of the changes).

The view property—WhereType—is responsible
for the multi-user contention check. You have four
options to determine what fields are compared when
the contention check portion of the SQL statement is

12-Step Program . . .
Continued from page 1

http://www.pinpub.com 5FoxTalk May 1999

generated. Key and Modified Fields and Key and
Updatable Fields sound like powerful features, but I feel
that in most cases these options are too dangerous to
implement. (I wouldn’t want user 1 and user 2 to update
two different columns of the same record without first
knowing of each other’s changes.)

That leaves Key Fields Only and Key and Timestamp.
Key and Timestamp is only supported if your database
supports a timestamp-type column. This column is
automatically re-stamped by the server on every update.
The client application doesn’t maintain this field—the
view will just include the column in the contention check.

SQL Server has support for a timestamp column. In
fact, the SQL Server Upsizing Wizard has an option to
create a timestamp column for each table. The column
isn’t actually a datetime datatype, but rather a system-
generated unique string. The beauty of it is that the server
automatically manages it and that it’s much more accurate
than the datetime datatype (you’ll never have to worry
about two users updating at the same exact time).

Trap!
Some behaviors to be aware of when using the SQL Server

timestamp column:

If you don’t requery your view after every save, the timestamp

column in your local view cursor won’t be refreshed with the

current value on the server. Thus, subsequent attempts to save

the same record will fail with an Update Conflict error when the

two timestamps are compared.

Tip!
Workarounds to the shortcomings of the Upsizing Wizard:

The SQL Server Upsizing Wizard has many problems that make

it, in my opinion, almost unusable. Most people I know have had

to write their own tools to get around the issues. The one saving

grace is that the source code for all of the wizards and builders

now ships with version 6.0 of VFP. It’s really not that tough to

hack your way through your stumbling blocks. The source code

is located in \<location of VFP 6.0>\Tools\Xsource\Xsource.zip.

So Key and Timestamp sounds great for SQL Server,
but what about other back ends that don’t support a
timestamp column? And how can my prototype with local

views against a VFP database work with the same set of
code? My workaround is to add your own timestamp
column and maintain it from either the client-side or a
server-side update trigger. You then make the field a
KeyField (see Step 7) and use the Key Fields Only
WhereType. So your KeyFieldList might be cust_pkey
and timestamp. (Note that the fields in the KeyField or
KeyFieldList property of a view don’t actually have to be
primary or candidate keys.)

You can use a datetime-type column for this purpose.
However, the VFP datetime column is only precise to a
second, so conceivably two users can update the same
record within the same second. If you feel that this is a
potential problem for your application, use some other
technique to generate a unique number or string. I used
this workaround until I upsized to SQL Server and
included its timestamp-type column. (Since you have no
control over this field name, you might want to call your
VFP timestamp column something different so there’s no
conflict when you upsize.) Then you can just change the
WhereType to Key and Timestamp, and you’re done.

Step 9: Life without dates
It was a bit unsettling—okay, maybe more like a sudden
jolt—to find out that SQL Server, like most big-time
databases, doesn’t support a date datatype. You must
use a datetime-type field instead. If you’re converting
an existing VFP application that uses date fields, the
problems this causes could be quite extensive. It really
all depends on how your application uses dates and
how much you care about seeing 12:00:00 AM tacked
onto the end of your date fields. I’ve summarized the
issues I’ve been confronted with as well as their
possible workarounds.

Controls bound to date fields
In cases where showing the time portion of a datetime
field is just plain inappropriate, you obviously have to
perform some sort of trickery to lose the default time
of 12:00:00 AM. You have several options. You could
use DBSetProp to change the datatype of the view
definition from datetime to date. (As mentioned in Part 1,
having a local DBC of views eliminates any multi-user
contention issues.)

Create SQL View vOrder Remote Connection ;
 Remote1 As Select * from orders
DBSetProp("vOrders.orderdate", ;
 "Field", "DataType", "D(8)")
Use vOrders

Doing so will not only truncate the time portion,
but also provide you with a VFP date type field in
your view—enabling your date-specific code to work
unchanged. And fortunately, when you issue TableUpdate

6 http://www.pinpub.comFoxTalk May 1999

on a view with a date-type field in it, a default time of
12:00:00:000 AM is automatically appended to it on SQL
Server . . . without error.

If you have controls that aren’t bound to a view but
rather to a read-only SQL Passthrough (SPT) cursor, you
can use the back end’s data type conversion function to
do the truncation. Here’s a SQL statement that could be
passed to SQL Server that would do just that:

SELECT orderid, ;
 customerid, ;
 CONVERT(char(10), orderdate, 101) as orderdate ;
 from orders

Note that 101 refers to the optional style argument
of the CONVERT function. 1 indicates American
format—mm/dd/yy. You then add 100 if you want
the century included.

To make the CONVERT function work against
local data as well, you might want to create a stored
procedure called “Convert” in the database of views.
Have it accept the three arguments of SQL Server’s
CONVERT function and, if passed a datetime-type,
return SubStr(TToC(pDateTimeField),1,10). You’d also
need to write a Char stored procedure as well to handle
the SQL Server function datatype, char(10).

Datetime fields can’t be “empty”
As if losing date fields wasn’t bad enough, you also
must contend with the fact that datetime fields can’t be
empty on most databases. (There’s a whole world of
limited functionality beyond FoxPro, isn’t there?!)
Datetime columns must be populated by a valid date
and time or be Null.

If you allow your datetime fields to accept Null, it
quickly solves the user-interface problem but probably
generates others. You could experience unexpected
results by blindly introducing Nulls. (For example,
comparing two dates where one is Null returns Null,
Empty(NullDate) returns .F., and so on.) But if you’re
prepared to tackle these issues, Nulls really come in
handy when presenting data to users because of VFP’s
Set NullDisplay To environment command, and the
NullDisplay property of controls like the text box.

If you don’t want to use Nulls, VFP and SQL Server
are actually pretty kind to you. Sending an empty date to
SQL Server causes no error. However, SQL Server will
create a default datetime of 01/01/1900 12:00:000 AM.
Now when you query that data, you’ll see 01/01/1900
on the local cursor—assuming you’ve used one of the
techniques discussed earlier for truncating the time. I
don’t feel that that’s such a horrible thing for a user to see,
but if you’ve chosen to Set Century Off, 01/01/00 will
look like January 1, 2000. (As if Y2K bugs weren’t bad
enough, upsizing will create a Y1.9K bug!)

I’ve come up with three possible workarounds.
The first is to add a column default to all datetime
fields—one that will make it very clear that this is a bogus
date—like 01/01/9999. (Note that the datetime datatype
has a date range from January 1, 1753, to December 31,
9999.) Again, you’d need Set Century On to differentiate it
from 1999. A similar option is to add a column default to
all datetime fields that follows a business rule. Perhaps all
Ship Dates can default to eight weeks after the Order
Date, a required field.

The third option involves some more sleight-of-hand.
Wouldn’t it be great if there were a way to clear out each
of the dates equal to {01/01/1900} in the open view
cursor, send no updates to the server, and leave no
pending changes? Well, it can be done, and it goes a little
something like this:

Procedure OpenView
LParameters pcView
* Retrieve data form server
Use (pcView) in 0
* Prevent update statements from going to server
CursorSetProp('SendUpdates', .F., pcView)
* Strip 01/01/1900 out of this cursor
RemoveDefaultDates(pcView)
* Remove pending changes/clear the change buffer
TableUpdate(.T., .T., pcView)
* Restore update capability to view
CursorSetProp('SendUpdates', .T., pcView)

For brevity, I won’t provide code for function
RemoveDefaultDates. But all it does is loop through the
columns for date-type fields and then replace them with {}
if they equal {01/01/1900}. Now all data entry screens
will look and work as they did with a VFP back end.

Well, that works for views, but what about SPT
cursors? You’d just need to run the function
RemoveDefaultDates against any cursor that will be
eventually presented to the user. (Hopefully, you’ve
built a report printing class.)

Tip!
Differences between remote SPT cursors and local SPT cursors:

SQL Passthrough cursors are read-only when created from

file-server data sources, but read/write when created from a

client/server data source. So, if you’re prototyping locally, you’ll

of course need to first make the cursor read/write before

changing it.

Date math
You need to be aware of any date math you might have in
your application. Being that you have datetime fields on

http://www.pinpub.com 7FoxTalk May 1999

the server (and might have them on a local cursor too)
where you originally had date fields, errors in calculations
could occur. For example:

?Date() + 20 && 03/08/99 + 20 = 03/28/99
?Datetime() + 20 && 03/08/99 10:35:15 PM + 20 = ;
 && 03/08/99 10:35:35 PM!
 * against SQL Server:
 * ExpectedDate is 14 DAYS after order date
Select orderdate, ;
 Orderdate + 14 as ExpectedDate ;
 From Orders

 * against VFP:
 * ExpectedDate is 14 SECONDS after order date
Select orderdate, ;
 Orderdate + 14 as ExpectedDate ;
 From Orders

You can see that adding a number to a datetime
field can have different results based on the back end.
It’s tough to tell whether seconds or days will be added.
A workaround might be to make the incrementing
number a function. That way, you have the necessary
hook to determine the back end and provide the
appropriate calculation.

Step 10: Avoiding that Empty() feeling about Nulls
If you’re like me, perhaps you’ve taken advantage of the
flexibility that the VFP Empty() function provides.
Empty(eExpression) works for any data type, except
object. So you could trap for 0, or an empty string, or an
empty date, or logical false with this one function without
even checking for the datatype. Bad move.

Problems can occur because after upsizing, you might
find some unexpected return values from functions and
queries. They might even be of a different data type than
you expect. When these values are evaluated with
Empty()—or any function, for that matter—it could cause
major problems. For example:

?Empty({}) && true
?Empty({01/01/1900}) && false
?Empty(Null) && false

You’ve seen the {01/01/1900} issue in Step 9—life
without dates, so you know it can occur. Clearing them
out locally seems to be the easiest workaround. But what
about the Null problem? Most know that Null is Not
Empty, but did you know that even if you have no
columns in your database that accept Null, you still might
get Nulls back from the server? Try this on SQL Server:

Function GetMaxOrderQty
lcSQL = "SELECT MAX(Quantity) AS nMaxQty" +;
" FROM [Order Details] " +;
" WHERE ProductID = 99 "
SQLExec(lcSQL, "cBigOrder")
If Reccount("cBigOrder") > 0
 lnRetval = 0
Else
 lnRetval = cBigOrder.nMaxQty
Endif
Return lnRetval

What’s the datatype of the return value? It depends.
If there are any records found for ProductdID = 99, the
answer is numeric. If there are no records found for
ProductdID = 99, the answer is Null—despite the fact that
the Quantity column doesn’t accept Nulls.

The reason is because in SPT queries to SQL Server,
you won’t get a result cursor without records for
aggregate queries such as these. You’ll get one record
regardless of whether any matches are found, unless you
have a Group By clause on a non-aggregate column. And
the aggregate column(s) will have a value of Null. That
could really sting you in many places if you’re not careful
to avoid it.

In the preceding example, lnRetval would be Null
because there’s no ProductID = 99. To avoid getting Null
return values, you have several choices. Of course,
finding all of the aggregate functions in your code and
doing an IsNull() check is one way. You could also write a
wrapper for Empty, perhaps IsEmpty, that traps for Null,
and 01/01/1900 as well. This can be used to check the
values of different data types without the fear of
encountering unexpected results.

Lastly, adding the Count() function, as in Count(*) as
Cnt, to all queries such as these gives you a common way
to check for a return value. The Cnt column will always
be numeric, so now you can check for Cnt > 0 instead of
Reccount() > 0 without fear of Nulls.

Step 11: The case for unbound controls
You’ve seen a lot of shortcomings to working with fields
that are of different data types—depending on the back
end. I see them as well. These problems make it very
difficult to write one set of code to access multiple data
sources. Obviously, not all applications require such
flexibility, but for those that either need or would like this
functionality, unbound controls might be the answer.

Unbound controls on a form don’t have a datatype.
You take the result set of a query and essentially “paint”
the controls with the values of the field contents. That
would give you the necessary hooks to manipulate the
data any way you need to before presenting it to the user.

This provides great flexibility, but a ton of coding.
Can you just imagine how much code it would take to
read the data, loop through the controls, and paint the
form, then loop through the controls again to create
the SQL code that will write the updates to the server?
Not to mention having to add the field-level, data type
validation that you get for free with a bound control. The
average FoxPro developer is so used to bound controls
that he or she would rather chew glass than write all of
that tedious code. There must be a better way.

If I had to live my life over again, I’d change only
one thing: I’d have created yet another layer of data
abstraction. (Okay, two things: I also would have bought

8 http://www.pinpub.comFoxTalk May 1999

Microsoft stock 10 years ago. Who knew?) The extra
layer would be implemented in the form of a read/write
cursor with the same structure and content of the view’s
result set.

Controls can then still be bound to a data source,
while at the same time you have the ability to manipulate
the cursor in any way before presenting it. So the process
would go something like this:

Procedure Load
* For this test, open the form with data.
Use vOrders In 0
* Get a copy of the result set.
Select * from vOrders Into Cursor cOrders1 NoFilter
* Make a read-write copy of cOrders1.
Use (DBF()) In 0 Again Alias cOrders
* Close the temporary read-only cursor.
Use In cOrders1
*
* Now the Init of the controls fire,
* which are each bound to cOrders.
* cOrders will be the form’s master alias.
EndProc

Now just edit the form as usual. On the Save,
dump the edited cursor back into the view and issue
TableUpdate against it. The entire view-based framework
discussed earlier would all still apply—you’re just
slipping in one additional layer. And with small result
sets—a client/server requirement—coupled with the
lightning-fast VFP data engine, performance shouldn’t
be an issue.

By providing yourself with this opportunity to
manipulate the data before presenting it, you get the best
of bound and unbound controls. This will make possible
the addition of new features where the underlying data
doesn’t match what the user sees—for instance, multi-
currency, multi-language, and character representations of
data like 4 DOZ (four dozen).

Step 12: Creating a form that
accesses multiple back ends
I’ve provided a form that’s indicative of how you
could design a form that needs to access multiple data
sources. It’s rather down and dirty—with all instance-
level code—for ease of learning, but you could always
enhance it once you understand the design. Also for
simplicity, I’ve created only one filter field and haven’t
implemented Query by Form.

Before you can run the form, do the following: Extract
the files and subfolders in 05FALINO.ZIP—available in
the Subscriber Downloads at www.pinpub.com/foxtalk—
to any directory. You’ll find the form Orders, the bmps to
support the form, and main.prg. The subdirectory
AppData contains a copy of the Northwind Traders
database in VFP format. (I used the SQL Server Data
Transformation Wizard to do this.) The SSViews directory
contains a remote view, vOrders, in a DBC called
AppViews. Similarly, the VFPViews directory contains a
local view, vOrders, in a DBC called AppViews. (Refer to

Step 5 in last month’s article for more on the file and
directory layout.)

Run VFP version 6.0 and set the default to the
directory where you extracted the files. Have SQL Server
7.0 installed and running. In the Control Panel, create an
ODBC User DSN that connects to the Northwind Traders
database and call it NORTHWIND_SS7.

To run the form against SQL Server, issue:
MAIN(“NORTHWIND_SS7”). To run the form against a
the VFP back end, issue: MAIN(“NORTHWIND_VFP”).
As you can see from Figure 1, the title bar indicates the
data source. Choose Find, enter a customer like “VINET,”
and then choose Retrieve. The five orders for this
customer will be retrieved from the server.

Don’t get too excited to see some magical code,
because there really isn’t any. In fact, it’s not only simple,
but almost the identical code you’d see in a form bound to
buffered tables. The only differences are the addition of
the NoData clause of the Use command in the Load, the
setting of the cCustomer private variable that serves as
the view parameter, and the subsequent Requery function
call that will retrieve the data for the appropriate
customer. These are the only two procedures of even
remote interest (pun highly calculated):

PROCEDURE Load
* Important for local views
Set Exclusive Off
* Need this for table buffering
Set MultiLocks On
Set Data To AppViews
* No data on load, please
Use vOrders NoData
* Set optimistic table buffering
CursorSetProp("Buffering", 5)
ENDPROC

PROCEDURE cmdfind.Click
PRIVATE cCustomerID
cCustomerID = ""
IF Thisform.PendingChanges()
 WITH Thisform
 .Lockscreen = .T.
 IF Not Thisform.lFindMode
 thisform.lFindMode = .T.
 * Change to find mode
 this.Caption = "\<Retrieve"

Figure 1. The Customer Sales Orders form can access data from
multiple data sources.

Continues on page 19

http://www.pinpub.com 9FoxTalk May 1999

Best Practices FFFoooxxxTalk

Seeing Patterns: The Singleton
Jefferey A. Donnici 6.06.0

This month, the Best Practices column is back with another
chapter in the continuing “Seeing Patterns” saga. The purpose
of this series is to discuss common object-oriented design
patterns in a context that’s familiar to the Visual FoxPro
developer—using VFP terminology, analogies, and examples.
This month, the pattern being dissected is the Singleton
pattern, which is also the first “creational pattern” to be
addressed in this series.

WELCOME back to the “Seeing Patterns” series in
Best Practices. For those who are just joining us,
the purpose of this series is to explore the use of

a variety of object-oriented design patterns, using VFP
examples for illustration. If you get the chance, take a look
through some of the recent Best Practices columns for a
brief introduction to the theories and ideas involved with
design patterns. Each of the patterns I discuss was first
introduced in Design Patterns: Elements of Reusable Object-
Oriented Software, by E. Gamma, R. Helm, R. Johnson, and
J. Vlissides (Addison-Wesley, ISBN 0-201-63361-2). The
focus with each of these columns is to explore the patterns
in a manner that’s familiar to VFP developers, using
samples that can be readily understood. Because the
discussions here are intended to be a brief “refresher”
for each pattern and not a complete, “soup-to-nuts”
discussion, you’ll probably find it useful to have a copy
of the book nearby when reading this series.

As I’ve mentioned in the past, the term “design
patterns” refers to patterns that are intended to solve an
object-oriented design problem. Although this series uses
VFP as the language of illustration, I want to stress again
that these patterns are equally useful in any other object-
oriented language. As such, the examples I’m providing
here aren’t the only possible implementations of a design
based on these patterns.

Creational patterns
As promised last time, I’m going to focus this month on a
“creational pattern”—the Singleton. Before I get started
with the Singleton pattern itself, however, I want to first
discuss what a “creational” pattern is and how these
patterns differ from other types of patterns.

Creational patterns are patterns that deal specifically
with the process of object instantiation. As applications
become more complex, they must evolve to use
aggregation and composition more than simple

inheritance. While inheritance is a useful tool and a
fundamental part of object-oriented development, it’s
often over-used and results in unnecessarily complex
class hierarchies. This, in turn, leads to increased
maintenance and reduced reusability across the
foundation of an application. With composition, a number
of smaller classes that each define a very specific, very
basic functionality are combined at runtime to provide
larger, more complex behaviors. Different combinations
of these smaller classes yield different behaviors, but
knowing what to instantiate, when to instantiate it, and
who’s responsible for instantiating different classes
becomes key in determining the specific desired behavior.
That’s where creational patterns come in.

As explained in Design Patterns, “There are two
recurring themes in these patterns. First, they all
encapsulate knowledge about which concrete classes the
system uses. Second, they hide how instances of these classes
are created and put together. All the system at large knows
about the objects is their interfaces as defined by abstract
classes . . . They let you configure a system with ‘product’
objects that vary widely in structure and functionality.
Configuration [of the classes] can be static (that is,
specified at compile-time) or dynamic (at runtime).”

Here’s a rundown of the creational patterns
described in Design Patterns, along with brief descriptions
of how each might be used to dynamically change a
system’s behavior through selectively creating members
of an overall composite. I’ll use a system’s reporting
capabilities to describe how each type of pattern might
be put into practice.

• Abstract Factory—This pattern uses an object’s
interface as a “blueprint” to describe how other
objects are created. For example, a “Report Factory”
class might contain methods and/or properties that
tell another object, which might receive the “factory”
as a parameter, how to build a report (orientation,
fonts, paper size, and so forth). Providing a different
descriptor object as a parameter changes the way the
report-building object creates the report.

• Builder—Similar to the Abstract Factory, except that
this patterns calls for the “blueprint” component and
the “constructor” component to be the same thing.
When the Builder component uses its own, or, more

10 http://www.pinpub.comFoxTalk May 1999

accurately, its members’ methods and properties to
build the report itself, using inheritance allows
subclasses to create more specific types of reports.
This allows the same report “constructor” component
to create different types of reports by varying the
member “blueprint” information.

• Factory Method—This pattern, also known as the
“Virtual Constructor,” describes that a component is
responsible for creating another object, but leaves the
decision over which object to create up to subclasses.
For example, you might have an abstract “reporting
system” component with a CreateReport() method.
You might also have another class that models the
report itself. In practice, however, you might need to
support reports built with VFP’s own reporting
engine, as well as some third-party reporting tool.
In this example, a subclassed “reporting system”
component for each report type would have an
overridden CreateReport() method that deals with
the specific “report model” it’s responsible for. The
abstract framework for creating a report doesn’t
change; it just lets the actual construction be handled
by concrete subclasses.

• Prototype—With the Prototype pattern, a
“client” component uses a “prototype” component
whenever multiple objects of that prototype’s
behavior/appearance are required. For example,
suppose your report construction mechanism calls
for several columns to be built in a spreadsheet.
With this pattern, the report constructor would
instantiate only one “column prototype” and use
that prototype instance repeatedly to build the
columns. The “column prototype” might have a
“CreateColumn(tcColumn, tcField)” method, where
“tcColumn” is a parameter describing the column to
be built within the spreadsheet and “tcField” is the
field to be displayed in that column. By using one
“prototype column” to model how a column is
created on the report, multiple columns can be
created by essentially “copying” the one prototype
with different values for each successive copy.

Finally . . . the Singleton
With that, you should have a handle on what a creational
pattern is and how they’re different from structural
patterns, like the Bridge and Decorator, and behavioral
patterns, like the Mediator and Chain of Responsibility.
The Singleton pattern, like the other creational patterns,
describes the instantiation or creation of a component, but
it also describes how other components interact with that
instance. With the Singleton pattern, there should be only
one instance of the “Singleton class,” and the rest of the

system should have a single, global point of access to it.
It’s worth noting that just about any of the other
creational patterns can also use the Singleton pattern as a
part of their design.

In Design Patterns, the authors use the example of a
printing system and explain that, “although there can be
many printers in a system, there should be only one
printer spooler. There should be only one file system and
one window manager.” By providing a single point of
access to a system resource, device contention and
prioritization can be managed in one place, providing for
less overhead and increased efficiency. Not only should
this type of component have only one instance, but it
should also be easily accessible to the “clients” that must
use it. Further, the “clients” that use that instance should
be able to use subclasses or more specialized instances of
the Singleton class without having to be aware of, or
compensate for, the change.

For several familiar examples of a Singleton type of
approach, I’d suggest you open your Windows Control
Panel (in any 32-bit version of Windows) and look
through some of the Control Panel applets available to
you. Here, for example, are a few of the obvious
“Singleton” designs you’ll find:

• Modems—Remember back in the old days (say, four
years ago) when every application had to be told
what type of modem you had, how to dial, what
connect strings to use, and so forth? With Windows,
the operating system manages a single collection of
modems in the system, with all of the necessary info
about each accessible to applications that might use
the modem. Additionally, this “modem manager”
assures that no two applications are trying to use the
modem at the same time.

• ODBC—Imagine having to tell every application
you install about all of the different types of data
sources you have on your machine. Or imagine
having to load a set of proprietary data-source drivers
for every application that needs access to your data.
No, thanks.

• Printers—One of the best things about the Windows
and Mac operating systems is the common print
manager shared by the whole operating system. Sure,
there are problems with errant printer drivers now
and then, but it wasn’t that long ago that us DOS
types had to tell every application on our systems
about the old LaserJet II we had connected to LPT1—
and then hope that the application knew how to talk
to it. With these newer OSs, we install one driver, and
every application talks to it via the single printer
management mechanism.

http://www.pinpub.com 11FoxTalk May 1999

• Regional Settings—I like my date formats to be just
so, and I really prefer my system clock to show me
24-hour time instead of “a.m.” or “p.m.” Plus,
different countries use different symbols for the
decimal place and digit grouping symbols. Given all
of the applications you have that display numbers or
have the time and date in their status bars, would you
want to specify this information for every app?

As I was working on this article, another great
example of a Singleton pattern occurred to me. I got a
phone call from someone telling me that they’d sent some
information to me via my personal e-mail address. When I
tried to connect to my local Internet Service Provider, I got
a message telling me that there was already a Dial-Up
Networking connection established. Sure enough, I’d
forgotten that I was already connected to my office’s
Windows NT network. Suddenly, it struck me right
between the eyes that I was looking at the Singleton
pattern in action.

With Dial-Up Networking, each connection (or
“connectoid,” as many refer to them) that’s been defined
describes how the computer will connect with other
computers. This can be a TCP/IP protocol connection for
Internet connectivity or “WinSock” access, or it could be
some other protocol that’s required for the type of system
you’re connecting with. The point, however, is that there
can be only one Dial-Up Networking connection
established at a time. When a second connection is
attempted, which is what I was trying to do, a gentle
warning is given that multiple “instances” aren’t allowed.
Also, just as the Singleton pattern describes, there’s only
one “global point of access” to the Dial-Up Networking
component. That point of access is a “system folder,”
surprisingly named “Dial-Up Networking.” You can view
this folder in the Windows Explorer where it’s listed with
some of the other “Singleton” functions of the operating
system—Control Panel, Printers, and the Recycle Bin.

Back To VFP
Okay, so now you have a pretty good idea of what
the Singleton pattern is about and how it’s used
throughout the Windows operating system. Let’s take
a look at how you might see the Singleton pattern used
in a VFP application.

Back in my December 1998 column (“Seeing Patterns:
The Mediator”), I discussed the idea of using a Forms
Manager in your applications. The idea is that a Forms
Manager provides a central place for accessing all of the
open forms in an application. In that column, I presented
the basic skeleton for a Forms Manager class, which
contained the following methods:

• GetFormCount—Returns the number of open

forms in the application.

• NoForms—Returns a logical indicating
whether or not the Forms Manager has an empty
forms collection.

• FindForm—Returns the index number of the passed
form within the Forms Manager’s collection.

• FormExists—Returns a logical to indicate whether
or not the passed form appears in the Forms
Manager’s collection.

• AddForm—Receives a form object as a parameter and
adds a reference to that form to the Forms Manager’s
collection, increasing the collection size as needed.

• RemoveForm—Removes the reference to the passed
form from the Forms Manager’s collection and
adjusts the size of the collection accordingly.

• RemoveAllForms—Removes all forms from the
Forms Manager’s collection by iterating through the
collection and calling RemoveForm for each.

• GetFormRef—Searches for a form that matches the
passed parameters and returns an object reference to
the passed form. If no match is found, a NULL value
is returned.

Obviously, a “system resource” like a Forms Manager
component is a good candidate for the Singleton pattern.
Not only should there only ever be one Forms Manager
for an application, but there must also be a single point of
access to it. Without that single point of access, there’s no
way for other modules or objects within the application to
know how to get information about the system’s forms.

I’ll save the discussion of a “system resource”
Singleton for the next example, though, because I want
to focus instead on that last method in the preceding
list—GetFormRef. The purpose of that method is to
return an object reference to the form that matches the
passed parameters. If there’s no open form that matches,
then a NULL value is returned. This method, as well as
the global accessibility of the Forms Manager, lets us
create a “Singleton Form class” that we can use for all
forms that should only ever be opened once. You might,
for example, have a navigation window that you only
want opened once. In a multi-windowed system,
however, your user might not see the already-open
instance and choose the toolbar button or menu option
that opens your navigation form. Instead of opening yet
another instance of that form, you might want to just
bring the instance that’s already open to the top so that

12 http://www.pinpub.comFoxTalk May 1999

the effect for the user is the same.
To do this, the Singleton Form class must check the

Forms Manager for a previous instance before it
completes its instantiation. If there’s already an open
instance, then the form class shouldn’t instantiate and
should instead activate the existing form instance. The
following code in a base “Singleton Form” class would
handle this functionality for me:

*-- Check the app's oForms collection
*-- to see if there's already an instance of
*-- this class running. If so, bring it to
*-- the front and don't finish instantiating this
*-- second instance.
loPrevForm = ;
 goApp.oForms.GetFormRef(THIS.Class, "CLASS")
IF TYPE("loPrevForm") == "O"
 ACTIVATE WINDOW (loPrevForm.Name)
 RETURN .F.
ELSE
 oApp.oFormsManager.AddForm(THISFORM)
ENDIF

The loPrevForm variable is used to store the return
value from the Forms Manager’s GetFormRef method. If
that method returns an object reference, then I know that
there’s already an instance of this form class in the Forms
Manager. In that case, I use ACTIVATE WINDOW to
bring that previous instance up to the top. The user
doesn’t have to know whether I created a new instance or
am reusing the earlier instance because the objective for
them is completed. If a NULL value is returned from the
GetFormRef method, then I know there isn’t a previous
existence in the collection, so I call the AddForm method
of the Forms Manager, passing the newly created form
as a parameter.

So, while the Forms Manager itself is a good example
of a Singleton pattern at work, it can also serve its
Mediator role and let us create multiple “Singleton
Forms” within an application. Reusing open forms like
this saves on instantiation time, as well as the memory
overhead of multiple, redundant form instances.

Designing a system resource
The “security mechanism” is one of the more common
system-wide resources we must deal with in our database
applications. The fundamental property of all database
applications is that they manage data, and sometimes that
data can be of a sensitive nature. For example, you don’t
want every data entry clerk to have access to your
employee salary tables, right? Similarly, you probably
don’t want the volunteer at the admitting desk of your
local hospital to have access to every patient’s medical
records. Other times, the data isn’t especially sensitive,
but it’s mission-critical data that absolutely must be
available and accurate at all times. For that reason, you
don’t want every employee to be able to change the data
or lock tables and perform database maintenance.

Enter the security system. A good security system

requires the user to log in to the application so that the
system can decide which functions to enable, which to
disable, which data to hide completely, which to provide
on a read-only basis, and which data can be modified or
deleted by that user. Most security systems allow an
administrator to define certain “roles” and then assign
those roles to the users that will be using the system. This
makes administration and management of the system
easier because all of the individual settings and tasks
don’t have to be enabled or disabled on a per-user basis.
Those of you who are familiar with Windows NT
administration will recognize this approach in the “User
Manager for Domains” tool that lets you assign “group”
permissions and then add or remove users to and from
the group.

In this example, I’ve mocked up a sample security
component and sample “application.” For our purposes
here, the “application” is actually a form (see Figure 1)—
while the form is open, the application is “running,” and
the application will “shut down” when the form is gone.
The form contains a combo box to indicate the current
security level. As the security level is changed, different
“capabilities” in the application are made visible/
invisible or enabled/disabled (that is, controls on the
form will have their properties changed to reflect the
security level). The form also contains a button that will
add another instance of the security component, the
cstSecurity class, to the application’s oSecurity property.
More accurately, it attempts to add another instance and,
as you’ll see, fails because the security component has
been designed following the Singleton pattern.

To reflect the nature of the Singleton pattern, the
security component must only allow a single instance,
and it should have a single, global point of access to its

Figure 1. The security “application” is actually a form that
displays and/or enables specific controls based on the
current security level.

http://www.pinpub.com 13FoxTalk May 1999

interface. Those who know my development style might
well be thinking that I’ve finally flipped my lid and used
the PUBLIC keyword in my code. Not so, my friends:
By instantiating the application object (the form) as a
PRIVATE variable, its interface is accessible to everything
else in the application because the rest of the application
“stems from” the private application object. Whew . . . no
PUBLIC, and I get to maintain my dignity.

First things first—you can run this example (available
in the Subscriber Downloads at www.pinpub.com/
foxtalk) by issuing the following command in the
Command Window:

 DO SECURITY

In the Load() event of the “application,” I populate an
array with the five different security levels that this
application allows. For simplicity’s sake, I’m just using an
array here, but a “real-world” application should use a
“roles” table and a “users” table, mapping each user to a
role and then providing access to various data and
functionality with a roles-based mechanism. Also in the
Load() event, I’m calling the AddSecurity method of the
application, which contains the following code:

LOCAL loSecurity

*-- Add the security component to the "app". Note
*-- that I'm passing an instance of the "app"
*-- form to the security component. This will
*-- let the "Singleton" component verify that only
*-- one instance is being created -- it can check
*-- the application's ".oSecurity" member before
*-- returning .T. from the Init().
loSecurity = CREATEOBJECT("cstSecurity",THISFORM)

IF TYPE("loSecurity") == "O" AND ;
 NOT ISNULL(loSecurity)

 THIS.oSecurity = loSecurity
ENDIF

As the comments make clear, I’m passing a reference
to the “app/form” to the cstSecurity class’s Init event.
This lets the class verify that there’s only one instance
of the security component in the application. You can
verify that this portion of the Singleton pattern’s structure
is working by pressing the “Create New Security
Component” button on the form. This attempts to run the
AddSecurity method again, but the security component’s
Init event catches the second instant and returns .F. so that
the second instance isn’t actually created.

LPARAMETERS toApp

IF TYPE("toApp")<>"O"
 RETURN .F.
ENDIF

*-- If there's already a security object in
*-- place, then the Singleton security component
*-- won't allow multiple instances.
IF TYPE("toApp.oSecurity") == "O" AND ;
 NOT ISNULL(toApp.oSecurity)

 WAIT WINDOW "Only one instance of the " + ;

 "security component is allowed."
 RETURN .F.
ENDIF

RETURN

Once the security component has been instantiated,
it’s stored in the application’s oSecurity property, where
it will always be accessible to the application. As the
security level is changed in the combo box, the new value
is stored to the security component. Whenever an object
or module in the application needs the current setting, it
can get the value with the following method call:

lnSecurityLevel = poApp.oSecurity.GetSecurityLevel()

From there, each control or function is free to respond
or behave according to the current security level of the
application. For example, when the security level is
changed, the form’s ReflectSecurity method is called.
That method, in turn, calls the ReflectSecurity method
of any of its member controls that has that method
(verified via PEMSTATUS()). In this example, each
of the form’s command buttons is an instance of
cmdFormLaunch, which has the following code in its
ReflectSecurity() method:

LOCAL lnSecLevel

*-- If we have a valid security object in place,
*-- use it to determine the current security
*-- level. Then change this instance's Enabled
*-- and Visible properties accordingly.
IF TYPE("poApp.oSecurity") == "O" AND ;
 NOT ISNULL(poApp.oSecurity)

 lnSecLevel = poApp.oSecurity.GetSecurityLevel()
 THIS.Enabled = (lnSecLevel >= THIS.nMinToEnable)
 THIS.Visible = (lnSecLevel >= THIS.nMinToDisplay)

ENDIF

The nMinToEnable and nMinToDisplay properties of
the command buttons indicate the minimum security
level required for the button to be enabled and/or
displayed, respectively. This allows each button to take
care of itself with regard to allowing the current user
access to the functionality that the button represents (see
Figure 2). In the typical application, this sort of “self-
policing” security mechanism might be put into place for
menu bars, toolbar buttons, or even individual rows in list
box or combo box controls.

Additionally, I’ve specified a base form class,
called frmBaseSecure, that has an nSecurityLevel
property defined. That property indicates the minimum
application security level required for that form to open.
In that form’s Init, the following code verifies that the
current user has permissions to open the form subclassed
from frmBaseSecure:

LOCAL lnSecLevel, llRetVal

*-- Get the current security level from the
*-- security component on the application.

14 http://www.pinpub.comFoxTalk May 1999

lnSecLevel = poApp.oSecurity.GetSecurityLevel()
llRetVal = .T.

*-- If the security level is less than the
*-- security level required by the form instance,
*-- let the user know that they don't have the
*-- necessary permissions.
IF lnSecLevel < THIS.nSecurityLevel
 WAIT WINDOW "You don't have the appropriate" + ;
 " permissions to run this form."
 llRetVal = .F.
ENDIF

RETURN llRetVal

If the form is being instantiated when the current
security level falls below the security level required for
that form, then a WAIT WINDOW is presented to the
user. Additionally, the Init event returns .F. so that the
form is never really instantiated.

Using this sort of mechanism, the single security
component stored in the application’s oSecurity property
is providing the same security information to three
different types of “restrictions” in the system: hide
functionality that the current user shouldn’t see, disable
functionality that the user can see but not execute, and
trap functionality during execution based on the current
security level. Obviously, this is a very basic example of
how security might be implemented in an application, but
it demonstrates the utility of a “single point of access” to
the security system resource.

Portable patterns
For those of you who are working with other object-
oriented languages, I hope you’re finding these patterns
discussions useful. I’ve been working with Java a bit
lately, and it’s rewarding to be able to put all of these
concepts into practice with another language. While
there are times when I really long for the good old

Command Window in my Java tools, it’s great to be
able to solve design problems there with patterns-based
solutions that I’ve successfully used in VFP. If you
can find the time, I encourage you to look into other
object-oriented environments. You might find that the
varying environments and capabilities bring a deeper
understanding or fresh perspective to the design issues
you face in VFP. Now if someone would just invent the
48-hour day.

Next month, I’ll take a look at the “Iterator” pattern.
Like other “behavioral” patterns we’ve discussed, such
as the Chain of Responsibility, Mediator, Observer,
and Strategy patterns, the Iterator pattern describes a
component’s responsibilities and collaborations with
other components. In the meantime, don’t hesitate to
send me e-mail if you have any ideas, suggestions, or
questions about the Best Practices column. ▲

05DONNIC.ZIP at www.pinpub.com/foxtalk

Jefferey A. Donnici is the senior Internet developer at Resource Data

International, Inc., in Boulder, CO. While it was much more humorous, he

had to delete the initial draft of this column when he learned that

“simpleton” and “singleton” weren’t synonymous. Jeff is a Microsoft

Certified Professional and a four-time Microsoft Developer Most

Valuable Professional. 303-444-7788, fax 303-928-6605,

jdonnici@compuserve.com, or jdonnici@resdata.com.

Figure 2. As the current security level of the application is
changed (via the combo box), various controls that represent
different functionality are made visible or enabled.

http://www.pinpub.com 15FoxTalk May 1999

Driving the Data Bus FFFoooxxxTalk

Matchmaker, Mitchmoker . . .
Is That a Match? Or
De-mystifying De-duplication
Andrew Coates 6.06.0

Finding duplicate entries in your data or matching records
from different tables is a problem that has plagued database
designers since databases began (and even earlier). In this
article, Andrew demonstrates some of the techniques you can
use to match records.

YOU know the story—two of the departments in the
company have each maintained records about their
customers, and now the IT manager has decided

that the databases need to be merged. The only problem
is, how do you decide whether a record from the first
database matches one from the other? In this article, I’ll
explore some options for matching these records (or for
detecting duplicates in a data set, which is essentially the
same thing). I’ll discuss some concepts about what you’re
trying to achieve, talk about what you can match, and
delve briefly into name and address standardization.
Next, I’ll talk about automating the matching process and
a couple of algorithms you can use for matching the
sounds, not the spelling, of words. By the end of this
article, you should at least be able to plan a matching
strategy that fits your needs best.

Matching/de-duping
Matching and de-duplication are essentially the same
process—that of finding records that refer to the same
entity, either in two (or more) separate tables, which I call
matching, or in one table, which I call de-duplication. If
you’re working with a single table, then you’ve probably
at least got the advantage of having the information
you’re examining in the same format for each side of the
comparison. When you’re matching, you often need to do
some pre-processing to get the information from the first
table into the same format as the information in the
second table. On occasion, it’s also useful to do some
standardization before attempting to de-duplicate.

Name and address standardization
How do you do this pre-processing? Well, to make sure
you’re comparing apples to apples, you need to carry out
some form of standardization. To standardize names, you

might need to break apart names that are stored as one
string into their component parts. For example, the single
field ContactName containing “Mr Andrew C Coates BE”
can be broken down into the following:

ContactTitle “Mr”
ContactFirstname “Andrew”
ContactInitials “C”
ContactSurname “Coates”
ContactPostNom “BE”

Doing this will allow you to much more easily
find a match with “A.C. Coates,” which you’d
standardize as follows:

ContactTitle ““
ContactFirstname “A”
ContactInitials “C”
ContactSurname “Coates”
ContactPostNom ““

Break data down into the smallest units you have.
For example, split names into their components, and
addresses into number, street name, city, state, and
postal code.

Use standard abbreviations for common components.
For example, the USPS has a comprehensive list of
street types (“Street,” “Lane,” and so forth), common
variations (“St,” “Str,” “Ln,” “Lne,” and so on), and their
preferred abbreviation. Use either the standard full title or
the standard abbreviation.

Time spent on standardization is rarely wasted.
Extract a set of data from your target to develop your
standardization algorithm. Extract another (completely
separate) set of data from your target to test the algorithm
after you’re satisfied with the algorithm. Having this
second set will often reveal exceptions or expose
inaccuracies that you might not have considered. It’s
important to have this verification set of data as well as
a development set.

For anything but the most trivial data sets,
standardization is a computationally intensive task. Be
prepared for the standardization processing to take a
significant amount of time. Standardization routines I’ve

16 http://www.pinpub.comFoxTalk May 1999

developed have turned into 100+ case statements and
have taken in the order of one quarter of a second per
record to process. While this isn’t a lot if you’re only
processing a thousand or so records (although there’s still
time to make a cup of coffee), 250,000 records will take
more than 17 hours.

As a final standardization remark, I should note that
there are commercially available standardization
packages, as well as mailing houses that will take your
data and return it appropriately compartmentalized. You
might consider using these services if you have a single
job and can’t justify developing your own routine or if
you have so much data that you just don’t have the
resources to handle it.

What to match
Once you’ve got your data in a standard format, you need
to decide what constitutes a match. Is the A. Coates living
in Sydney the same as the Anthony Coats from Maroubra
in New South Wales? The answer to that question is
“possibly.” What the probability is of a match is
something you need to determine.

If you have a match on a unique identifying number
like the U.S. social security number, then the probability
of a match is quite high. If you don’t have the “smoking
gun,” then you need to use other means to make the case
for a match or otherwise. Possible fields for matching are:

• Address (but don’t forget that families often live in
the same house and have pretty similar names)

• Date of birth/age

• Name

• Geographical location

• Company name

• Phone numbers

Phonetic matching
One common matching option is to compare the phonetic
values of strings such as people’s names or street names.
There are several algorithms available that assign a
value to a string based on how it sounds. Using these
techniques, you’ll be able to find duplicates that might
not be spelled exactly the same way, such as “Smith”
and “Smythe.” The algorithms I’ve used to a greater or
lesser extent are SOUNDEX and NYSIIS. Each of these
has its pros and cons. FoxPro also includes an algorithm
called DIFFERENCE() that compares two strings.
Another algorithm I found while researching this article
is called Metaphone. I’ve never used it in anger, and I’ve
not been able to find the source for it, but it appears to
produce a code that’s similar, but not identical, to the
NYSIIS algorithm.

Phonetic algorithms basically work by suppressing

the vowel information (because it’s unreliable) and giving
the same code to letters or groups of letters that sound the
same (for example, “PH” sounds like “F,” so you give
them both the same code). You can use the code generated
to find matching names in a table; for example, the
following will display a browse window with all records
with surnames including SMITH, SMYTHE, SCHMIDT,
SMYTH, and SCHMIT:

BROWSE FOR SOUNDEX(surname) = SOUNDEX("SMITH")

SOUNDEX
SOUNDEX is a phonetic coding algorithm that ignores
many of the unreliable components of names, but by
doing so reports more matches. The rules for coding a
name are (from Newcombe):

1. The first letter of the name is used in its un-coded
form to serve as the prefix character of the code.
(The rest of the code is numerical.)

2. Thereafter, W and H are ignored entirely.

3. A, E, I, O, U, and Y aren’t assigned a code number,
but they do serve as “separators” (see Step 5).

4. Other letters of the name are converted to a
numerical equivalent:

1 B, P, F, V
3 D, T
4 L
5 M, N
6 R
2 All other consonants (C, G, J, K, Q, S, X, Z)

5. There are two exceptions: a) letters that follow prefix
letters that would, if coded, have the same numerical
code, are ignored in all cases unless a “separator” (see
Step 3) precedes them; and b) the second letter of any
pair of consonants having the same code number is
likewise ignored (unless there’s a “separator”
between them in the name).

6. The final SOUNDEX code consists of the prefix letter
plus three numerical characters. Longer codes are
truncated to this length, and shorter codes are
extended to it by adding zeros.

Examples of names with the same SOUNDEX code
are shown in Table 1.

Table 1. Names with the same SOUNDEX code.

Name Code
ANDERSON, ANDERSEN A 536
BERGMANS, BRIGHAM B 625
BIRK, BERQUE, BIRCK B 620
FISHER, FISCHER F 260
LAVOIE, LEVOY L 100
LLWELLYN L 450

http://www.pinpub.com 17FoxTalk May 1999

SOUNDEX has an immediate attraction for FoxPro
(and SQL Server) developers. It’s implemented as a
native language function. Issuing the following from the
command window will display the code S530—no further
programming is necessary:

? SOUNDEX('SCHMIDT')

Compare this with the monstrosity that’s
NYSIIS.PRG (see this month’s Subscriber Downloads at
www.pinpub.com/foxtalk). Having the function built-in
also has significant speed advantages.

NYSIIS
NYSIIS differs from SOUNDEX in that it retains
information about the position of vowels in the encoded
word by converting all vowels to the letter A. It also
returns a purely alpha code (no numeric components).
NYSIIS isn’t part of the native FoxPro command set, nor
does it seem to have been implemented by any third-
party utility developers. I’ve coded the algorithm in the
FoxPro procedure shown in and included in this month’s
Subscriber Downloads, but the high-level pseudo-code for
this algorithm is shown in Listing 1.

Listing 1. High-level pseudo-code for the NYSIIS algorithm.

* Program....: NYSIIS.PRG
* Version....: 1.0
* Author.....: Andrew Coates
* Date.......: March 1, 1999
* Notice.....:
* Compiler...: Visual FoxPro 6 for Windows
* Abstract...: NYSIIS phonetic encoding algorithm
* Taken from Newcombe 1988 pp182-183
* rule number and lettering as per Newcombe
* Changes....:

! 1. Change the first letter(s) of the name
! 2. Change the last letter(s) of the name
! 3. First character of the NYSIIS code is the
! first character of the name
! 4. Set the pointer to the second letter
! of the name
! 5. Change the current letter(s) of the name
! 6. Add a letter to the code
! 7. Change the last character of the NYSIIS code
! 8. Change the first character of the NYSIIS code

NYSIIS has a disadvantage in our rapidly shrinking,
multicultural world of being fairly Anglo in its phonetic
coding. If the names you’re matching have non-Anglo
origins, it would probably be better to use a different
algorithm—for example, SOUNDEX.

Phonetic matching example
To demonstrate the use of phonetic matching, I’ve
used the customer table in the testdata database in
the sample data that comes with VFP. The code is
shown in Listing 2.

Listing 2. Phonetic matching example.

* Program....: PHONETICS.PRG
* Version....: 1.0
* Author.....: Andrew Coates
* Date.......: March 1, 1999
* Notice.....:
* Compiler...: Visual FoxPro 6
* Abstract...: Extracts surnames from
* the testdata!customer table and does
* phonetic comparisons.
* NB - assumes that NYSIIS.PRG is in the path
* Changes....:

clos data all
open data (home(2) + 'data\testdata.dbc')

* break the contacts' names apart
select cust_id, ;
 padr(substr(contact, at(' ',contact) + 1), 30) ;
 as Surname ;
 from customer ;
 into cursor names

* get the codes for each contact
select *, ;
 nysiis(surname) as NYSIIS, ;
 soundex(surname) as SNDX ;
 from names ;
 into cursor codes

* get a list of all the nysiis codes that appear
* more than once
select nysiis, count(*) as tot ;
 from codes ;
 group by nysiis ;
 having tot > 1 ;
 into cursor multinysiis

* get a list of all the soundex codes that appear
* more than once
select sndx, count(*) as tot ;
 from codes ;
 group by sndx ;
 having tot > 1 ;
 into cursor multisndx

* generate a list of customers with phonetically
* matching surnames
select names.surname, codes.sndx ;
 from names ;
 inner join codes on ;
 names.cust_id = codes.cust_id ;
 inner join multisndx on ;
 codes.sndx = multisndx.sndx ;
 order by codes.sndx ;
 into cursor sndx

select names.surname, codes.nysiis ;
 from names ;
 inner join codes on ;
 names.cust_id = codes.cust_id ;
 inner join multinysiis on ;
 codes.nysiis = multinysiis.nysiis ;
 order by codes.nysiis ;
 into cursor nysiis

First, I extract the surnames from the customer name
field using the assumption that the surname starts
immediately after the first space character in the name
field. Note that this assumption isn’t valid for all cases—
like the names “José Pedro Freyre” and “Isabel de
Castro”—but I’ve ignored that problem here.

Next, I calculate the NYSIIS and SOUNDEX codes for
the surnames and store them with the customer ID. Then I

18 http://www.pinpub.comFoxTalk May 1999

find all of the codes that appear more than once
(potential matches), and finally I generate a cursor with
the surname and code for each potential match. The
results for SOUNDEX and NYSIIS are shown in Table 2
and Table 3, respectively.

Table 2. Potential SOUNDEX matches from the customer table.

Surname SOUNDEX
Ashworth A263
Accorti A263
Berglund B624
Bergulfsen B624
Crowther C636
Cartrain C636
Moreno M650
Moroni M650
Pereira P660
Perrier P660
Wilson W425
Wang W520
Wong W520

Table 3. Potential NYSIIS matches from the customer table.

Surname NYSIIS
Moreno MARAN
Moroni MARAN
Pereira PARAR
Perrier PARAR
Wilson WALSAN
Wang WANG
Wong WANG

By comparing Tables 2 and 3, you’ll notice that
SOUNDEX seems to match more names than does
NYSIIS. The additional matches generated by SOUNDEX

another—say, 100—below which you’re sure you haven’t
(the actual numbers you use will depend on your data).
The question is what to do with the middle range.
Generally, they have to be reviewed by a human.

Another problem you might come across with
this system is multiple possible matches. You need to
decide how to handle these. Perhaps present the top n
possible matches, or perhaps present all of them. You
could decide to present any match with a rank of at least
50 percent of the highest possible match. What happens
if you have a definite match and a possible match? In
this case, there’s a possibility that there’s a duplicate in
the table you’re matching. It’s worth de-duplicating
before you match to try to reduce this problem as much
as possible.

You can write a program to automate the matching
process. Listing 3 shows some pseudo-code for such
a program.

Listing 3. Pseudo-code for automatic matching process.

Open Tables
For each record in table1
 For each record in table2
 Get matching rank for this record combination
 Do case
 Case matching rank < lower threshold
 No match, just go to next record
 Case matching rank > upper threshold
 Definite match - write IDs to matched record
 table
 Otherwise
 Possible match - write IDs and rank to possible
 match table
 End case
 End for && table2
End for && table1
Deal with the possibility of multiple possible matches

Table 4. Sample “matching rank” system.

Field Match Rank
Address All fields identical 100

Street name SOUNDEX match and Suburb and State match 80
Suburb and State match 60
Address 1 within 50 km of address 2 30
Country doesn’t match -20
Any other address configuration 0

Name All Fields identical 100
Surname identical, first letter of first name matches 50
Surname SOUNDEX matches, first name matches 40
No match on any field -100

Date of Birth Identical 80
Any 1 component (day, month, or year) +/-1 30
Within 18 months 10
Difference between 5 and 10 years -30
Difference > 10 years -80
Any date of birth configuration 0

Gender Matches 0
No Match -100

in this case don’t seem to be good
matches, but that’s not always the
case. You need to assess your data
(perhaps by pulling a sample of 100
or so matches and calculating the hit
rate).

Automating matching
It’s possible to assign a value based
on a match on some or all of the
fields in your table and then use the
“matching rank” to automatically
determine whether records match.
You could set up a system like the
one shown in Table 4.

Using this system, you could
calculate a matching rank for each
record compared with each other
record. You could set a threshold
value—say, 200—above which you’re
sure that you’ve got a match, and

http://www.pinpub.com 19FoxTalk May 1999

Avoiding duplicates during data entry
Prevention is better than cure, and if you have control of
the data capture phase of your operation, you can apply
the matching algorithms suggested previously to the data
as it’s being keyed. Tell the user if you think they’re
entering duplicate data, and you’ll eliminate the need for
costly and time-consuming de-duplication later.

Conclusion
This month, I’ve probably presented more questions
than answers, but that’s often the way when describing
a fuzzy operation such as matching. I hope that I’ve
been able to point out some of the things you can do to
find matching records and avoid duplication in your
data sets. Matching is an art, and one you need to practice
to perfect. Criteria for determining matches change
depending on the data set, and you need to tweak your
matching processes accordingly.

Next month, I’ll deviate a little from the Data Bus
concept and introduce a “cool tool” you can use for

References
I got the SOUNDEX and NYSIIS algorithms and several other

concepts from the Handbook of Record Linkage, Howard B.

Newcombe, Oxford University Press, 1988.

sending messages between applications or instances
of the same application across a TCP/IP network. I’ll
show you how to build a simple license manager and
a chat server. ▲

05COATSC.ZIP at www.pinpub.com/foxtalk

Andrew Coates is a director of Civil Solutions, a PC development

consultancy in the Olympic City, Sydney, Australia. Andrew specializes in

PC database applications, particularly integrating components and

visualizing spatial data. a.coates@civilsolutions.com.au.

 .SetAll("Enabled", .F., "textbox")
 .SetAll("Enabled", .F., "_commandbutton")
 .txtCustomerID.Enabled = .T.
 .txtCustomerID.Setfocus()
 ELSE && In find mode, so Retrieve
 .SetAll("Enabled", .T., "textbox")
 .SetAll("Enabled", .T., "_commandbutton")
 this.Caption = "\<Find"
 .txtCustomerID.Enabled = .F.
 cCustomerID = .txtCustomerID.Value
 Requery()
 thisform.lFindMode = .F.
 ENDIF
 .cmdfind.Enabled = .T.
 .txtOrderID.Enabled = .F.
 .Refresh()
 .Lockscreen = .F.
 ENDWITH
ENDIF
ENDPROC

Acknowledgments
I’ve leaned on a lot of people during this VFP to SQL
Server migration—you will, too. So I’d like to thank the
following for their contributions: Brent Vollrath and Terry
Weiss of Micro Endeavors; Richard Berry, Phu Luong, and
the rest of the Visual Garpac Development Team; Roger
Nettler and Stan York of Programmed Solutions, Inc.; and
Bill Martiner, an independent consultant and a SQL
Server guru.

Conclusion
I hope you won’t let all of these issues deter you from
migrating to SQL Server. Yes, it’s a lot of work. But it’s
more tedious than it is complicated. I hope this article
saves you a lot of time by making you aware of many of

the issues before you even begin.
As far as having one set of code access a VFP

database as well as client/server databases, I don’t
recommend it for the long term. There’s a little too much
conditional code required and duplication of tools that
must be written to warrant it. In the end, you’ll probably
end up with a system that’s inefficient against all back
ends, although you might get away with it if you throw
enough hardware at the situation. I’d use local views only
if I were definitely planning to upsize to SQL Server,
Oracle, and so on. After the prototyping stage, I
recommend that you gradually migrate your code to
work remotely only.

SQL Server 7.0’s ability to work on Windows 95/98
and NT and a host of new features make moving from
VFP a much more seamless process. It can easily serve as
your only back end, while using the VFP data engine for
crunching data brought from the server. Together, they
make a perfect team.

I welcome hearing from you about your experiences,
trials, workarounds, and successes. Good luck. ▲

05FALINO.ZIP at www.pinpub.com/foxtalk

Jim Falino has been happily developing in the Fox products since 1991,

beginning with FoxBASE+. He’s a Microsoft Certified Professional in Visual

FoxPro and the vice president of the Professional Association of

Database Developers (PADD) of the New York Metro Area. For the past

three years he has been a project manager, leading the development of a

very large client/server apparel-manufacturing application for the

GARPAC Corporation using Visual FoxPro as a front end to any ODBC-

compliant SQL back end. jim@garpac.com.

12-Step Program . . .
Continued from page 8

20 http://www.pinpub.comFoxTalk May 1999

The Kit Box FFFoooxxxTalk

VLT on Rye, Hold the Mustard
Paul Maskens and Andy Kramek 6.06.0

Very Large Tables are possible in Visual FoxPro. Here’s one
approach to handling the problem of explosive growth in
data volumes . . .

Paul: As you know, Andy, we’ve been experiencing a 50
percent growth per month in data volumes recently.
Compound growth, of course. Not surprisingly, we’re
running into the 2GB per table limitation in VFP. Of
course, the ideal answer to that is to move to a client/
server system and store the large data sets on a back-end
system. But that means rewriting large portions of the
existing code. Plus, we’d have to set up the database
server and learn how to administrate it, how to write
queries for its dialect of SQL, and just what limitations
there are in the server.

Andy: Well, you’re certainly right about setting up a back-
end server. It’s not just a question of “upsizing” your
data—there’s a whole raft of issues to be investigated and
addressed. It’s much more complex than moving FP data
from your local machine to a file server. The other
restrictions are because of deadlines, right? Can you just
use views to get manageable subsets?

Paul: Does a remote view suffer from the 2GB limit?

Andy: Actually, I don’t know, but I’d think so. The 2GB
limit is a by-product of the way locks are applied (VFP
uses memory addresses beginning at 2GB to lock
records—if your file exceeds 2GB, this would corrupt the
locking mechanism). Since a view will create a disk file
(albeit a temporary one), I’d expect the limit to apply.

Paul: Exactly! Anyway, the existing programs are written
to use the FoxPro tables—for example, production of
billing data requires a SCAN so that every invoice line can
be processed. This system has just grown from a small
app that used to deal with a few thousand—not
millions—of records! While the server DBA experts are
setting up the back-end system, we need to carry on.

Andy: Okay, then, I guess you have stay with a FoxPro
solution to the problem. What are you thinking?

Paul: Well, I’m thinking of partitioning the data. That
should be simple. For example, take a billing system with
BillHeader and BillDetail tables. Just add an extra column
to the header table, indicating which detail file contains
the records for that bill. Then you can use multiple tables
for the bill details, so long as the detail lines for one

header line aren’t split across more than one table.

Andy: It’s a little more than “just” adding a column, isn’t
it? For example, a SQL select couldn’t just join BillHeader
and BillDetail anymore; and, yes, you really would be in
trouble if your header file exceeded 2GB!

Paul: But if you take a typical enquiry screen, you’ll first
look up the header information and then extract a subset
of detail information. For example, you might want all of
the bills for a customer to be displayed, showing just the
header information. Then you can drill down and view a
particular bill, or print it. That can use the header table for
summary information, then the particular bill detail table
necessary for the line item retrieval.

Andy: So how are you going to partition the data? How do
you decide what range of keys you’re going to assign to
each table?

Paul: Well, in this particular case, the requirement is
simple—size alone. There’s no easy way of partitioning
the data by customer number yet ensuring that each
partition won’t exceed 2GB. The partition boundaries
would potentially need to be adjusted monthly.

Andy: True. Don’t forget that this is also a problem in both
Oracle and SQL Server, where your overall database size
is pre-defined and therefore limited. When your total data
store exceeds that limit, you have to stop, back up, extend
the database, and then import your data from the backup.
This isn’t a trivial operation, especially when you need
the system up and running at all times.

Paul: Well, remember, for now I’m just looking for
a way to handle very large tables in FoxPro. Not
necessarily the best way—just one that can be
implemented in the minimum time to meet this one
specific need. I’m not interested in partitioning in the
same way as Oracle implements it, with set boundaries
for each partition.

Andy: In which case, partitioning on physical size sounds
like the way to go. Do you have a strategy for doing that
already, or do I have to exercise my brain?

Paul: I’ve already put together some basic requirements—
here they are:

• Store more than 2GB of data partitioned among
VFP tables.

http://www.pinpub.com 21FoxTalk May 1999

• Provide an interface to ensure a number of records
can fit in one physical file.

• Provide a single alias no matter which partition
is in use.

• Allow insert or append/replace into the
underlying table.

• Provide interface to return partition number.

Remember, all I’m interested in is writing blocks of
detail records to the very large table and knowing which
partition they went into so that I can store that in the
header file.

Andy: First, can I assume that you’re looking to create a
class to do this? In which case, I also assume that by
“interface” you’re referring to the Public Interface rather
than to a UI?

Paul: Yes, I expected you to assume we were going to
define a class because we always (well, almost always)
end up talking about class definitions. I should have
been clearer.

Andy: So we’re looking at a non-visual class, and we need
to define the responsibilities to fulfill that specification.
Then we can go on to look at the methods and properties
to implement them.

Paul: Okay, then—you start <g>.

Andy: Let’s start by considering writing data. What does
this class need to do in order to write data? It needs to:
1) Ensure that the specified table is open; 2) Ensure that
the data to be written doesn’t cause the currently selected
partition to exceed 2GB; 3) Write the data; and 4) Close
the table.

Paul: Hang on a minute, those responsibilities
could be implemented in many different ways! They
don’t necessarily result in functionality that meets
my requirements.

Andy: No, but they do define the responsibilities of a
Very Large Table root class that’s generic and could
provide the basis for a range of subclasses, giving you
much more functionality than you need right now—your
requirements will change, you can be sure of that <g>.

Paul: I think I’m expecting your high-level (head in
the clouds) responsibilities to meet my specific
implementation. I can think of quite a few lower-level
responsibilities that appear to be missing. How about:
5) Open the first partition; 6) Open the next partition;
7) Calculate the size of the data to be written; 8) Calculate
the size of the current partition; and 9) Provide the
number of currently open partitions.

Andy: I’d say that those are certainly key methods that

are needed to implement the responsibilities that we’ve
defined. I’m not sure that they’re responsibilities of
the class.

Paul: Well, I think I’m talking about responsibilities—they
may well be methods in this implementation, but I’m
still thinking of responsibilities and not methods at this
point. For example, these could easily be delegated to
another class (like your data classes), and they might well
not be responsibilities of this class at all. But they’re
responsibilities that are required by the higher-level
responsibilities and might well be implemented by
collaborations between classes.

Andy: Okay, in that case, I absolutely agree with you. As
we always say, this lower level is where you should be
applying the must/should/could tests.

Paul: Go on, then . . .

Andy: Let’s take opening the file. At the generic level, we
have to make a decision. It has to be given the stub of the
tablename (for example, BillDetail) and the alias under
which the partitions should be opened. That’s an absolute
must. It must then check to see whether that alias name is
already in use. It could fail because it’s in use, or it could
succeed because the alias is already open.

Paul: We need to define the behavior that we want, then;
otherwise, we’ll have an infinite number of subclasses
that all do different things. It’ll be unusable and
unmaintainable—which never stopped anybody from
doing it, right?

I decree that the behavior I want is that the alias must
not already be in use. If it’s in use, there’s an error and we
can’t proceed. Raise an error 9000, “It ain’t worked, pal.”

Andy: Gasp! A design decision! It must open the first
partition using the stub table name plus however we
identify the individual partition tables—by the way, can
we call these individual tables “extents,” please?

Paul: Yes, you identify an extent by
LTRIM(STR(extent_number)), so “BillDetail Extent 1”
would be in BillDetail1.dbf and Extent 25 in
BillDetail25.dbf. I don’t think making it fixed-width
leading 0 padded makes any kind of sense.

I assume that we’re going to handle “normal” errors
like file not found, memo file missing, index doesn’t
match table, and so on as a matter of course—one’s error
handler handles those things.

Andy: The next thing, I suppose, is to write some data.
That raises another design decision (you really didn’t
specify this clearly, did you?)—namely, should we have to
specify which extent the data is placed into, or do we
allow the class to decide? Or do we care?

Paul: Hmm, tricky. My hidden assumption is to use the

22 http://www.pinpub.comFoxTalk May 1999

extents in order, starting at extent 1 and working through.
Many extents might exist already and some could be
empty, or only extent 1 might exist.

Andy: So shouldn’t it open at the last logical (highest
numbered) extent that contains data and can accept more
data? If there are no extents that can accept more data,
should it create a new one?

Paul: You bet; yes, it should. I reverse that previous
decision, and the requirement that it start at the
first partition!

Andy: <lol> I thought getting a decision was too good
to be true.

Paul: Oh, and if no extent is available, create a new
one <sulk>.

Andy: Right. That’s the responsibilities for opening the
table taken care of—we have:

1. Check that the specified alias isn’t already in use
(raise error if it is).

2. Open, as the specified alias, the highest numbered
extent that contains data and that’s less than 2GB.
Create a new extent if none is available.

How do we know how much data we want to add?

Paul: I suppose it depends on how we’re going to pass
the data to be inserted to the VLT class. All you need to
know is the number of rows to be inserted, since you can
calculate RECSIZE()*nROWS to find the size of the data.
So we need to decide how to pass the rows—in an array,
a named cursor, a source table and a WHERE clause . . .
there are so many ways to skin the Fox. I think we should
place the data to be inserted into a special cursor.

Andy: Remember that this cursor can’t be the result of a
SELECT statement that produces a filtered view. You’d
have to use the NOFILTER clause.

Paul: Of course! More importantly, the “transfer” cursor
can’t exceed 2GB, either! Then we simply pass the name
of the cursor.

Andy: Good! We get the number of rows from the cursor
and calculate the amount of space required by
multiplying by the RECSIZE() of the extent. To actually
determine whether there’s enough room, we need the true
extent size, which is HEADER() +1 + (RECCOUNT() *
RECSIZE()). If this value plus the amount of data is more
than 2GB, then we need to open (or create) the next logical
extent and use that instead.

Of course, if some fool uses a transfer cursor with a
smaller record size and has enough records to exceed 2GB
in the extent, then this is also an error and we shouldn’t
go into an infinite loop. Filling the hard disk with empty

extents isn’t a good idea!

Paul: Oh, by the way, I want to make the maximum
extent size configurable, so we’ll just add a property.
Then, if for performance reasons I want to use 10x 1G
files or 20x 0.5G files, I can make the class do what I want.
Now, having gotten the size of the data and determined
that we can write it, we need a method to know where it
was written to.

Andy: How about if the method that writes the data
returned the extent number it wrote to, and -1 if it failed?

Paul: Yeah, that’d work! You’ve combined what I had as
two requirements into one implementation.

Andy: Just as an aside, I assume that the write method will
test for BufferMode and handle the TableUpdate
appropriately.

Paul: Of course, either we use your data classes and call
TryUpdate(), or, well, it’s an exercise for the reader, isn’t
it? So our third responsibility can be defined as
determining the size of the data to be written and adding
it to the current extent if there’s room, or using the next
logical extent (creating one if necessary) if there isn’t. The
return value must be either the extent number that was
written to, or -1 if the write failed.

The fourth, and last, responsibility is to close the
table—which is really easy—USE IN aliasname because the
extent is always opened in the same alias name.

Andy: So we only have four responsibilities in the class
after all. However, all this does is write data. How do you
propose to get the data back out of these tables?

Paul: Actually, I’d already thought of a few more useful
things—which means more requirements:

• An exposed interface like SKIP to move to the
next record, crossing partition boundaries
transparently.

• An exposed interface like GO TOP | BOTTOM across
all partitions.

• An interface to execute a SQL statement across all
partitions, returning a union of results.

Andy: I told you your requirements would change <g>.
We haven’t even finished defining the class, and you’re
extending it!

Paul: Well, if you want to get really fancy:

• Given a Very Large Table name (for
example, “Customer”)

• Hold control data for partitioning in a special
associated table (for example, named
“CustomerVLT”)

http://www.pinpub.com 23FoxTalk May 1999

• Extent Tables “Customer1” through
“Customer9999” hold the actual data

• Provide an interface to define the column used for
partitioning and values per partition

Andy: I’m not sure I see what you’re driving at here.

Paul: Well, you can optimize a select for a partition
column value (or range)—for example, selecting only
from the associated table. You can define value-based
or space-based partition criteria, making it all the
more flexible.

Andy: That’s a good thought. I like the idea, though
implementing it could prove to be a bigger job than we
can comfortably manage within the confines of the
column. What we do have here isn’t a complete solution
to partitioning, but it hits enough of the high points, so
that could form the basis of a real solution.

Paul: If any readers decide to produce their own VLT

class, please let us know, or even better, why not share it
on CompuServe? Post it (in ZIP file format, please) in GO
VFOX Library Section 3, prefix the description with “FH:”
so it sits with the “FreeHelp” files.

[Paul: I’d like to acknowledge the assistance of Des Bandoo in
producing this; not only did he comment on the finished article,
but he also developed the production version of our VLT classes
(sorry, we can’t share those). Just like Andy, he had to work
with my changes of mind, and he produced a great solution that
was the spur for writing this article. There you are, Des—your
name’s in print now!] ▲

Paul Maskens is a VFP specialist and FoxPro MVP who works as

programming manager for Euphony Communications Ltd. He’s based

in Oxford, England. pmaskens@compuserve.com.

Andy Kramek is an old FoxPro developer, FoxPro MVP, independent

contractor, and occasional author, currently of no fixed abode, working in

Buffalo, NY. andykr@compuserve.com.

Downloads May Subscriber Downloads
• 05FALINO.ZIP—Source code described in Jim Falino’s

article, “Turn Your VFP App Client/Server: A 12-Step
Program, Part 2.”

• 05DONNIC.ZIP—Source code described in Jeff Donnici’s
article, “Best Practices: Seeing Patterns: The Singleton.”

• 05COATSC.ZIP—Source code described in Andrew Coates’
article, “Matchmaker, Mitchmoker . . . Is That a Match? Or
De-mystifying De-duplication.”

Extended Articles

• 05BAKER.HTM—“Supercharged Date Entry!“ Are both you
and your clients tiring of the same old date entry blues—
month-month slash day-day slash year-year? It’s 1999, and
our programming language of choice is Visual FoxPro, not
COBOL. Maybe there’s a newer, better way for date entry—a
Visual way. Jeff Baker explains.

• 05BAKER.ZIP—Source code described in Jeff Baker’s article,
“Supercharged Date Entry!“

• 05BOOTH1.HTM—“Where is That Control?“ Containership:
We’ve all heard the word. “Visual FoxPro has a very good
containership model.” What is containership, and why do we
care about it? Using containership to our advantage will
allow us to create classes that are reusable
and flexible. Jim Booth shows you how.

• 05BOOTH2.HTM—“Buffering, the Vampire Slayer: The
Continuing Story.“ Last month, you saw an introductory
discussion of the buffering technology in Visual FoxPro. Jim
Booth reviewed the various buffer modes and presented a
comparison of the FoxPro 2.x methodology of indirect edits
and VFP buffering. This month, he discusses the TableUpdate
and TableRevert functions and explains how they’re used
with data buffering.

• 05ZIMMEL.HTM—“Help Eliminate DBF Corruption
with a Posting Engine.” Steve Zimmelman describes a long-
term solution to problems with the DBF file—forcing the
multi-user application to behave like a single-user system by
developing what’s become known as a posting engine.

• 05ZIMMEL.ZIP—Source code described in Steve
Zimmelman’s article, “Help Eliminate DBF Corruption
with a Posting Engine.”

• 05HENTZE.HTM—“Visual Basic for Dataheads: Creating the
User Interface: VB Forms and Controls.” Now that Whil
Hentzen has covered the language, you should have a good
foundation under your belt. It’s time to look at the tools that
we’ll use to create the most interesting part of the
application—from the user’s perspective, that is. Much like
an automobile and an 18-wheeler, some of the tools and
techniques will be familiar to experienced VFP developers,
but other techniques and components are either brand new
or just simply different. Let’s explore.

24 http://www.pinpub.comFoxTalk May 1999

UUUser nameser nameser name

PPPasswasswassworororddd

imagine

jolly

The Subscriber Downloads portion of the FoxTalk Web site is available to paid
subscribers only. To access the files, go to www.pinpub.com/foxtalk, click on
“Subscriber Downloads,” select the file(s) you want from this issue, and enter the
user name and password at right when prompted.

FoxTalk (ISSN 1042-6302) is published monthly (12 times per year)
by Pinnacle Publishing, Inc., 1503 Johnson Ferry Road, Suite 100,
Marietta, GA 30062. The subscription price of domestic
subscriptions is: 12 issues, $179; 24 issues, $259. POSTMASTER: Send
address changes to FoxTalk, PO Box 72255, Marietta, GA 30007-2255.

Copyright © 1999 by Pinnacle Publishing, Inc. All rights reserved. No
part of this periodical may be used or reproduced in any fashion
whatsoever (except in the case of brief quotations embodied in
critical articles and reviews) without the prior written consent of
Pinnacle Publishing, Inc. Printed in the United States of America.

Brand and product names are trademarks or registered trademarks
of their respective holders. Microsoft is a registered trademark of
Microsoft Corporation. The Fox Head logo, FoxBASE+, FoxPro, and
Visual FoxPro are registered trademarks of Microsoft Corporation.
FoxTalk is an independent publication not affiliated with Microsoft
Corporation. Microsoft Corporation is not responsible in any way for
the editorial policy or other contents of the publication.

This publication is intended as a general guide. It covers a highly
technical and complex subject and should not be used for making
decisions concerning specific products or applications. This

publication is sold as is, without warranty of any kind, either express
or implied, respecting the contents of this publication, including
but not limited to implied warranties for the publication,
performance, quality, merchantability, or fitness for any particular
purpose. Pinnacle Publishing, Inc., shall not be liable to the
purchaser or any other person or entity with respect to any liability,
loss, or damage caused or alleged to be caused directly or indirectly
by this publication. Articles published in FoxTalk reflect the views of
their authors; they may or may not reflect the view of Pinnacle
Publishing, Inc. Inclusion of advertising inserts does not constitute
an endorsement by Pinnacle Publishing, Inc. or FoxTalk.

Direct all editorial, advertising, or subscription-
related questions to Pinnacle Publishing, Inc.:

1-800-788-1900 or 770-565-1763
Fax: 770-565-8232

Pinnacle Publishing, Inc.
PO Box 72255

Marietta, GA 30007-2255

E-mail: foxtalk@pinpub.com

Pinnacle Web Site: http://www.pinpub.com

FoxPro technical support:
Call Microsoft at 425-635-7191 (Windows)

or 425-635-7192 (Macintosh)

Subscription rates:
United States: One year (12 issues): $179; two years (24 issues): $259

Canada:* One year: $194; two years: $289
Other:* One year: $199; two years: $299

Single issue rate: $17.50 ($20 in Canada; $22.50 outside North America)*

Editor Whil Hentzen; Publisher Robert Williford;

Vice President/General Manager Connie Austin;

Managing Editor Heidi Frost; Copy Editor Farion Grove

European newsletter orders:
Tomalin Associates, Unit 22, The Bardfield Centre,

Braintree Road, Great Bardfield,
Essex CM7 4SL, United Kingdom.

Phone: +44 1371 811299. Fax: +44 1371 811283.
E-mail: 100126.1003@compuserve.com.

Australian newsletter orders:
Ashpoint Pty., Ltd., 9 Arthur Street,

Dover Heights, N.S.W. 2030, Australia.
Phone: +61 2-9371-7399. Fax: +61 2-9371-0180.

E-mail: sales@ashpoint.com.au
Internet: http://www.ashpoint.com.au

* Funds must be in U.S. currency.

FoxTalk Subscription Information:
1-800-788-1900 or http://www.pinpub.com

