
http://www.pinpub.com 1FoxTalk Extended Article: January 1999

FoxTalk
Solutions for Microsoft® FoxPro® and Visual FoxPro® Developers

This is an exclusive supplement for
FoxTalk subscribers. For more

information about FoxTalk, call us at
1-800-788-1900 or visit our Web

site at www.pinpub.com/foxtalk.

Extended Ar ticle

Registering Users’ Interests
Robin Dewson

Figure 1. What the Registry would look like after running the sample application and
exiting with all three forms open.

6.06.0

It’s the bane of all users’ lives—they spend the first part of
their day positioning the forms on the screen where they find
them ideal, and then the system crashes. Then they have to go
through the same process, setting up their system just the
way they want it. Wouldn’t it be nice if, when they start up
their application, the screen displayed just as they had it
arranged when they left? How useful would it be to allow
each user to have their own individual screen set up, so that
they decided what was to be displayed at startup?

GOOD use of the Registry can enable applications to
be user-specific, even if more than one user uses
the same machine. I recently came across a good

example of this in a Fox 2.6 application I’m converting to
VFP. The system is in use most of the day, and it’s
constantly monitoring purchase orders with deliveries
and using this information to analyze how efficient a
supplier is. Deliveries come in to companies 24 hours a
day, and so there’s shift work, which means there’s a great
deal of desk re-utilization.

Through use of saving, retrieving, and manipulating
values in the Registry, and good
placement of these values within the
Registry in HKEY_CURRENT_USER,
you can make your application
customize itself for each user. The
ability to do this requires a small
amount of knowledge on how the
Windows Registry works and which
part of the Registry fits your needs.

The Windows Registry is
composed of five sections, and each
is used for a different function. The
HKEY_CURRENT_USER section will
hold the necessary entries required to
create unique user individuality, and
it’s the section I’ll be concentrating
on. I personally use REGEDT32.EXE,
which can be found in the WINNT\

System32 directory, but the older REGEDIT.EXE also
has its uses if you want to scan all five Registry sections at
once (see Figure 1).

Save me, please
First of all, it was necessary to have the ability to save
necessary information to the Registry, as this would make
testing of the other features possible without having to
manually add keys and values. In the accompanying
file available in the Subscriber Downloads at
www.pinpub.com/foxtalk, I’ve included a sample app
and a single form that I used when building and testing
this class, which is useful for just looking at what needs to
be set up for each function. What goes where is very
important, and I’ve included a button that points things
out along the way. It’s crude but effective, and useful as a
basic Registry editor (see Figure 2).

When a form is closed—either when the application
shuts down or when the user closes the form to move
on—the height, left, top, and width values of the form are
saved to the Registry. Also, don’t forget to save the name

2 http://www.pinpub.comFoxTalk Extended Article: January 1999

property, as this will be used in macro substitution later
on, if the form is to be automatically opened. At this
point, the Registry should be updated to state that the
form is Closed. More manipulation of the form state value
will occur later—specifically, when the application
closes—but for now, let’s just keep it marked as “Closed”.
I placed this code in my form’s baseclass Unload event, so
that the Registry would only be updated when the form
was closing down. The SaveRegistry method from the
Registry class is called for each property—six properties
for each form.

All methods in the Registry class attempt to load the
DLLs that will be required for all functions that could be
used, but of course, this is only completed once per
instantiation. A Registry key must now be open before a
save can take place. The following code demonstrates
how simple it is to open a key . . . if you get it right.

* Opens a Registry key
LOCAL nSubKey,nErrorNumber
nSubKey = 0

* Ensure that we have already run method
* SetUserKeyNumber. If not, then set the
* UserKeyNumber to HKEY_CURRENT_USER.
IF TYPE("This.UserKeyNumber") <> "N" ;
 OR EMPTY(This.UserKeyNumber)
 This.UserKeyNumber = -2147483647
ENDIF

* If a key has to be created, then do so.
IF THIS.lCreateKey
 * Create a Registry key.
 * Multiple keys won't be created.
 nErrorNumber = RegCreateKey(This.UserKeyNumber, ;
 This.KeyPath,@nSubKey)
ELSE
 * Try to open Registry key.
 nErrorNumber = RegOpenKey(This.UserKeyNumber, ;
 This.KeyPath,@nSubKey)
ENDIF

IF nErrorNumber <> SUCCESS
 RETURN nErrorNumber
ENDIF

* A unique key number will be returned, so we
* need to store this for later use.
THIS.nCurrentKey = nSubKey

RETURN SUCCESS

As you can see, RegCreateKey and RegOpenKey
use the same parameters. The first parameter is the
numeric equivalent of the Registry hive, in this instance
HKEY_CURRENT_USER. The KeyPath is the point at
which you wish to open the key. KeyValues are then
placed below this level. To clarify the issue, think of the
Registry as a form: The KeyPath is the actual form
container and the KeyValues are the properties. Once the
key is open, the application is now able to save the
property and its value to the Registry.

LOCAL nValueSize,nErrorNumber,sOptionValue

DO CASE
CASE TYPE("THIS.nCurrentKey")<>'N';
 OR THIS.nCurrentKey = 0

 RETURN 1
CASE TYPE("This.OptionName") <>"C"
 RETURN 2
CASE EMPTY(This.OptionName) ;
 OR EMPTY(This.OptionValue)
 RETURN 2
ENDCASE

IF TYPE("This.OptionValue") = "C"
 sOptionValue = This.OptionValue+CHR(0)
ELSE
 sOptionValue = ALLTRIM(STR(This.OptionValue));
 +CHR(0)
ENDIF

nValueSize = LEN(sOptionValue)
nErrorNumber = RegSetValueEx(THIS.nCurrentKey, ;
 This.OptionName,0, REG_SZ,sOptionValue, ;
 nValueSize)

* Check for error
IF nErrorNumber <> SUCCESS

RETURN nErrorNumber
ENDIF

RETURN SUCCESS

Hurdling the fences
The first part of the code is the validation that the right
parameters have been set and passed to the class. Once
everything is well, you’ll see that CHR(0) is added to the
end of the value to be written to the Registry. This is
because the Registry expects values to be null-terminated.
And this is where the first problem comes up when
writing to the Registry using Visual FoxPro.

If a property is numeric, as most are with the
properties that need to be saved, adding a CHR(0) to the
end gives an Operator/Operand type mismatch error.
This means that to use VFP and the Registry, all values
have to be stored as strings. If you desperately wish the
Registry class to return the correct type, then you’d have
to prefix the string by a unique set of characters (perhaps

Figure 2. The form used for testing out the Registry class, but it
can also be used as a crude Registry editor.

http://www.pinpub.com 3FoxTalk Extended Article: January 1999

a tilde) and then the type of string. You could then
manipulate the string to return the right value. I feel that
this is a lot of extra work when the calling program to the
Registry class knows that it will always have a string
returned and therefore knows when to use a VAL.

Once the value is null-terminated, the length of
the string is calculated and passed as a parameter to
RegSetValueEx. REG_SZ defines that a string is being
passed to the DLL call, and so it should deal with the
parameter in as a string.

The OptionName parameter contains the property
name to save—in this case, it would have Height, Top,
Left, Width, FormName, and FormState all passed
individually so that each can save the necessary value.

Get back
Now that the class saves values to the Registry, it has to
get them back. Again, the key is opened, which then
allows the key to be retrieved.

* Obtains a value from a Registry key

LOCAL lpReserved, lpType, lpData, lpcbData, nErrorNumber
lpReserved = 0
lpType = 0
lpData = SPACE(256)
lpcbData = LEN(lpData)

DO CASE
CASE TYPE("THIS.nCurrentKey")<>'N' ;
 OR THIS.nCurrentKey = 0
 RETURN ERROR_BADKEY
CASE TYPE("This.OptionName") <>"C"
 RETURN ERROR_BADPARM
ENDCASE

nErrorNumber=RegQueryValueEx(THIS.nCurrentKey,;
 This.OptionName, lpReserved, @lpType,;
 @lpData, @lpcbData)

* Check for error
DO CASE
CASE nErrorNumber = SUCCESS
 * Make sure this is a string data type
 IF lpType <> REG_SZ
 RETURN 5
 ENDIF

 * Remove the Null at the end
 This.OptionValue = LEFT(lpData,lpcbData-1)
 RETURN SUCCESS
* Oh no! No key found. Is a key to be created
* or must an error code be returned?
CASE nErrorNumber = NO_KEY_FOUND
 IF This.lCreateValue
 RETURN This.SetKeyValue()
 ELSE
 RETURN NO_KEY_FOUND
 ENDIF

OTHERWISE
 RETURN m.nErrorNumber

ENDCASE

As you can see, there’s a bit more to retrieving a
value, compared to saving one. However, it’s not as bad
as it looks. Again, the Registry DLL call is a very fussy
animal, and the Registry class has to cater to its fussiness.
LpData will hold the returned string. So, to avoid errors,

it has to be pre-loaded with spaces, so that the value can
be placed in safely. Don’t forget that the string will be
null-terminated on a successful return from the DLL call,
so this has to be removed from the end of the string. If no
key is found, and the option of creating the key when no
key is found is set, then, of course, this will be called. The
bulk of the Registry class is now complete. However, this
is only provides a tool that I need with respect to the
bigger picture of what I’m trying to achieve.

Opening up for the day
Opening forms when a user first starts the system is
theoretically relatively easy, but it does involve some
work and traversing of the Registry. The code for
retrieving the values should be placed just before READ
EVENTS is issued. When a form is initially opened from
the menu, the FormState of Open is saved in to the
Registry. If a user closes the form, the FormState is altered
to Closed. As you’ll see a bit later, when the application is
closed, the FormState is altered from OPEN and set to
KEEP. The FormState needs to be altered from Open to
Keep due to the two different ways a form is Unloaded. If
a user closes the form voluntarily, for example, when
they’ve finished with it, the form Unload event fires. In
this method, there’s code to alter the FormState from
Open to Closed.

However, when the user decides to close the
application before the form is unloaded, the Registry is
traversed, and all forms that have a FormState of Open
are altered to Keep. Then, when the form unloads when
the application is in its final stages of closing and
destroying itself and all objects, there will be a point when
the form’s Unload event fires. To keep those closed by the
application and those closed by the user separate, the
Unload won’t find a state of Open and so the FormState
will remain as Keep.

This task uses the Registry class’s GlobalReplace
function. The sole purpose of this function is to search a
key path and look for a key’s value. If it finds this value,
then alter it to the value you wish. The GlobalReplace
function, first of all, after opening up the Key, calls a
hidden method called GetAllKeys. This method calls the
RegEnumKeyEx DLL continuously, until an end-of-file
situation occurs. It does this by starting at the root key
of the opened KeyPath, knowing that the first key
immediately below the root has an alias key number of 0.
Each subsequent key will be incremental of the previous
key number. So, by performing a loop and incrementing
the key number, this method can keep going until a
number isn’t found. One thing to remember is that these
numbers are relative and not static. Therefore, if you
delete key number 4, key number 5 then becomes 4, and
so forth, so there will never be any gaps.

Now that all the keys have been created and placed

4 http://www.pinpub.comFoxTalk Extended Article: January 1999

into an array, a similar scenario can be completed to
return all the key values. As each key value is returned,
don’t forget that the value is null-terminated, and a
substring is required to remove that null. GlobalReplace
then performs a simple loop comparing what’s in each
key value with the value to be tested, and when there’s a
match, a simple Save to the Registry is performed. In the
sample application’s case, this is where FormState of
Open is altered to Keep.

Once this is complete, the application can now move
on and open up the forms. You’ll notice that I let the
developer choose when to Reset the arrays in the Registry
to give greater flexibility.

LOCAL nPos,nRet

* If the app crashed out from our application, there
* would be forms that were open at the time,
* POSSIBLY (depends on whether it was a clean crash
* or not) set to Open. Let's move them to Keep to
* keep things simple...

* The following procedure enumerates around the
* Registry and alters FormState of Open to Keep.
* This will then mean that the application is only
* looking for one Registry value.
This.ChangeOpenToKeep

* OReg is Registry class placed on the baseclass form
* Reset the arrays first of all.
This.OReg.Reset

* Look down Registry to the following KeyPath,
* and details
This.OReg.KeyPath = "Software\FoxTalk\forms"
This.OReg.lCreateKey = .F.
This.OReg.OptionName = 'FormState'
This.OReg.OptionValue = "Keep"
This.OReg.OptionValueToReturn = "FormName"

* Let's bring back all Key entries that match the
* above search criteria.
nRet = This.oReg.ReturnMatch()

* Providing we have a match, then let's display them...
* Check the array created and the Macro substitute.
IF !EMPTY(This.oReg.aMatchedEntries[1])
 FOR nPos = 1 to ALEN(This.oReg.aMatchedEntries,1)
 * Of course, if you create your forms as objects,

* then alter the DO FORMS to CREATEOBJECT statements.
 DO FORM (This.oReg.aMatchedEntries(nPos))
 NEXT
ENDIF

Returning a match
The ReturnMatch function is similar to the
GlobalReplace, but instead of replacing values, when
a match is found, a value of a property is returned.
OptionName will contain the Key you’re looking at
and comparing (in the application’s case, this will be
FormState); OptionValue is the value you’re wishing to
find—in this case, Keep. OptionValueToReturn will
contain the name of the key in the Registry that the

Registry class has to look for, and return the value of
when a match is found—in this case, FormName.
GetAllKeys and GetAllKeyValues methods are still used
to return the necessary values for comparison. The array
created in GetAllKeyValues is searched for a match on
OptionName and OptionValue, and when found, the
value of OptionValueToReturn is used to populate the
array, aMatchedEntries. The class then returns to the
application with this array populated with the form
names that have to be automatically started. Loop
around this array, and then just macro substitute. When
saving the FormName to the Registry, an assumption is
made that the Name property on the form is exactly the
same as the filename saved on your drive. If this isn’t
the case and you save forms to your drive named
differently than the expression in the Name property,
then there has to be another property where the disk
name is stored. This will then allow macro substitution
of the returned matched value to be performed in the
DO FORM statement.

Conclusion
This just shows one use of the Registry class. Used as I’ve
just shown, this technique makes your application easier
for your users to use. You can extend this further for them
by saving record positioning information in the Registry
for each form, so that if the form is auto loaded as just
described, it can also go to the most recently used record.
This would be impressive, especially after a crash (unless
your network is as infallible as you are and it never has a
crash!). You can even use this class to save details to the
Registry if you’re shipping a demo version of an
application, and then modify the Registry when a
purchase is made. Finally, every time a form is moved or
resized, you could update the Registry so that if your
application does crash, when it starts up, everything will
be exactly where it was just before the crash.

The Registry is a powerful database, and when used
wisely and correctly, it can be used to give an application
an expert look and feel. ▲

01DEWSON.ZIP at www.pinpub.com/foxtalk

Robin Dewson is a consultant for Stable Computers Ltd. He is

currently converting a supplier analysis system for Rohbe Inc. from

FoxPro 2.6 to Visual FoxPro 6.0. He has worked on a number of

projects, including converting FoxPro systems to Visual Basic 5, and is

experienced in Sybase, SQL Server 6.5, and Sybase SQL Anywhere.

wonderbison@cix.compulink.co.uk, R_Dewson@Rohbe.com.

