Playing with the GUI in Visual FoxPro 7

2D/3D Forms and Controls

Predrag Bosnic

Are you interested in running an application using a 2D/3D GUI? Predrag Bosnic shows how it's done.

Back in September 1992, I got a contract job making a database application for a marketing company. I had to make a contact manager, with the addition of a financial module and an external communication feature (automatic fax). As many others did, I was feeling the Windows hurricane and I wanted to make this application under Windows, not DOS.

At the same time, my employer wanted something new and exciting; he wanted to build on the story about the rocket-science technology his company was using. My background was with mainframe computers and PCs. Of course, the only solution was to use a PC, but I first had to find a database that worked under Windows. My software experience included dBase, Clipper, and Fox. At that time, VB didn't work with data; Access wasn't yet born; Fox, dBase, and Clipper had only DOS versions; and all of my work had to be done within three months. The only solution I found was dbFast—the Computer Associates software—an xBase compatible database, which works under Windows. For a blast from the past, see if any of the old texts in Figure 1 look familiar.

I decided to get the dbFast software—as it's the dBase compatible database—learn on the fly, and maybe I'd have a chance to finish the job within the allotted time.

[image: image1.png]d
od
g Startex
Jetting

Get

crence
e

e Rel

guage

Lang

st

dBFa

@

Figure 1. dbFast v 1.7 (1992), MS Access v 1.0 (1993), and MS FoxPro v 2.5 (1993). I hope you can see the discoloring around the edges—somebody was using these books very heavily!

The next morning the dbFast box was on my table. I didn't have the patience to review the readme file. The install.exe must have been on the first disk. After a few minutes the software was installed (the executable was less than 500K, if my memory is correct). I clicked on the dbFast icon to start the program and a whole new world opened up before me. Now I had a dBase-compatible database, and I could make my first database application for Windows.

I wanted to make "classy" three-dimensional (3D) forms with gorgeous 3D controls, but I was very disappointed. All of the available controls were two-dimensional (2D) apart from a command button. My form was so flat and very different from the Windows forms. Maybe this wasn't so bad, but I wanted the 3D look and feel (see Figure 2).

[image: image2.png]Contract Entry and Modlflcaion

Our.ref.no: 02.91.0000.06

fgr.No.

Tsale: w2 wALSH Closer: 06 PARKER

Company I1D: SBAS Country: 81 NETHERLANDS
mpany
Company name: IDEE EN BEELD

Rddress: VILHELWING PRRK 114, TILBURG

TN No. 185 Date sold 17769/92 | [bate paia: 13441792

Ho.of year: 8.50 amount : 2080.08

Currency : BFL

PRICE : 2000.00 Guarantee: 6.00 9960.00
Ex.rate 2.8

bisc.rate Areas: 87
biscount] Comment: ¥ 10v.A5R .o
ToTaL 2398.00

OO0 e Ced (e Co] (e [l
e] TToRy] ([enaemes) [Fo) (G

Figure 2. Form produced with dbFast. In the beginning, nearly everything was 2D.

However, a few months later the application was finished and everyone was happy except for me. I still wanted my 3D forms and controls.

In February 1993, at the London Olympia Windows Show, Microsoft launched Access 1.0 with an introductory price of about £100. I was one of the lucky ones who carried a big box with Access manuals and software diskettes away from the show. I didn't try to hide the box, assuming everyone was jealous of me because I had the brand-new Windows database. What a time that was—buying software and getting all those manuals and diskettes! Of course, I still had to learn how to use the new software, but at last I could make my 3D forms.

In March 1993, I had FoxPro 2.5 for Windows in my hands. Can you believe it? A dBase-compatible database for Windows—and it could make 3D forms. Was I dreaming?

Nearly 10 years later in March 2002, in London, dbFast doesn't exist anymore (as far as I'm concerned), MS Access is in version XP, Fox in version 7, VB became "VB.NET," but for some reason my forms are still 2D. No, it isn't a mistake. All controls are in 2D, forms are 2D, MS Office XP is 2D (flat). What's going on? Well, the GUI is like fashion. It goes around. My daughter wears 1960s jeans. And my forms have to be 2D if I want to be fashionable (in other words, if I want to survive).

However, today is different. If we accept the fact that the GUI is very important and the tool we're using (Visual FoxPro) has enormous possibilities, then it's up to us as developers to make our applications modern and attractive (I'm talking purely about the GUI, not about functionality). Thanks to the technology (first of all OOP) Visual FoxPro has built in, I can say: "Only the sky is the limit!"

2D/3D forms and controls (the prototype)

Look at the MS Office XP suite, particularly Word XP. It's now flat. The Task PANE window is flat and contains, in most cases, flat controls (occasionally one or two controls inside are 3D; for example, the "Reveal Formatting" pane or "Translate" pane—it seems Microsoft had some problems with a list box control). I would like to see something like that in Fox; again, I'm talking about the GUI, not about the functionality (see Figure 3).

[image: image3.png]4 4 Basic Search v x

Search for:

Search text:

[aivetat

(2) Search Tips.

Other Search Options:

Search i

[Setected locations

Results should be:

[sstected i types &

Fast searching is currently disabled
Search options,

See also
& advanced Search
44 Find n this document.

Figure 3. MS Word XP, Task Pane—simplicity is the name of the game with this beauty.

I'd like to build a prototype to see whether I can make 2D/3D forms and controls in Visual FoxPro. I'd also like my code to be as flexible as possible. The user has the possibility of choosing the application GUI style or to change the style at any point—meaning that for the same application, I can have a 2D setting and a 3D setting at the same time. This can work in the same way as the Windows color scheme. (Hopefully, if 3D becomes the trend again in 10 years, users of my application won't have any problems.)

First, my form needs a light-grey color when 2D style is active. How do you find the Red/Green/Blue (RGB) values for this color? Well, I use following steps:

1.
Capture the screen (use the PrintScreen key on the keyboard).

2.
Activate the MS Paint application.

3.
Paste from the clipboard (Ctrl-V).

4.
Select the Pick Color tool on the toolbox and click on an area where you want to scan the color.

5.
You can see that on the color toolbar, the forecolor is automatically selected to the color you've already clicked.

6.
Now click on the Colors menu and choose the Edit Colors... option. The Edit Color screen appears.

7.
Click on the Define Custom Colors button. The Edit Color screen extends.

8.
On the right side, you can read the RGB value for the selected color.

In my case, I have the settings as RGB(246,246,246). What about the controls? At this stage, I don't see any problems. Each control has a property "SpecialEffect." This property can have the following values:

•
0 – 3D

•
1 – Plain (2D)

•
2 – Hot Tracking

Depending on this property setting, Fox will display any control applying 3D or Plain, and Hot Tracking effects.

Unfortunately, not all controls support the Plain and Hot Tracking effect. The biggest problems are the Grid and PageFrame control.

I can create a property on the application level to keep the value of the SpecialEffect setting, or simply use a global variable gnAppStyle to do the same.

The Init method of the control contains the following code:

IF type('gnAppStyle') = 'N' and gnAppStyle >=0 ;

 and gnAppStyle < 3

this.SpecialEffect = gnAppStyle

ENDIF

Look again at the Word XP pane picture (Figure 3); you'll notice that all of the controls have a dark-grey color for the border. Fox controls, on the other hand, have a black border color when the control has the SpecialEffect property set to "Plain." However, I can easily change that:

IF type('gnAppStyle') = 'N' and gnAppStyle >=0 and;

 gnAppStyle < 3

 this.SpecialEffect = gnAppStyle

 IF gnAppStyle = 1 OR gnAppStyle = 2

 this.BorderColor = rgb(128,128,128)

 endif

ENDIF

If I put this snippet of code in the Init method of all of the controls on my test form, then my example looks like Figure 4 and Figure 5.

[image: image4.png]2d3d - Example 1

-[ofx]

[Testtex iCheekt [combo-optiont =
Editboxtest e =] [Cstontont =
Listoption2
Listoption3
Header Header Colum
 Optiont
€ optian2

i

{300

Hat

Figure 4. 3D form style.

[image: image5.png]2d3d - Example 1 =[ofx]

[t [Combwamon 7] | a0
Edtboxestion =] [Getaptiont B o
Listoption2
Listoption3
] [Header ... [Header Colum
@ optiont
© Option2

Figure 5. 2D form style.

It's important to mention that in this prototype, I don't use the Fox Grid control, I use MS ListView, which has both 3D and Plain styles.

From my point of view, this small prototype proved that I could build a form that can change its appearance on the fly. I have to consider problems with Grid and PageFrame controls, but the rest looks fine. Now I can create my final solution.

The final solution

In order to support standard Windows color schemes, borders for all controls have to be set to the appropriate color. How do you find the color number? Well, this is a good opportunity to introduce a small, but useful, Windows API function: GetSysColor. This function accepts only one parameter: the display element whose color is to be retrieved. Inside the Download file, you'll find SysColors.scx, which demonstrates the use of this function. The display elements that I'm interested in are:

•
3 = COLOR_INACTIVECAPTION

•
4 = COLOR_MENU

•
16 = COLOR_BTNSHADOW

•
15 = COLOR_BTNFACE

•
20 = COLOR_BTNHIGHLIGHT

Now, I can create a class library with important visual controls. For this job, I use the Tamar Granor Class Browser add-in: NewLib (see www.universalthread.com, under downloads). This utility will make a copy of any class library. In this case, I want to copy the Visual FoxPro library _Base.vcx to a new library called 2d__base.vcx.

The following code is in the Init method of every visual control:

IF type('gnAppStyle') = 'N' and gnAppStyle >=0 and;

 gnAppStyle < 3

 this.SpecialEffect = gnAppStyle

 IF PemStatus(this,'BorderColor',5)

 IF gnAppStyle = 1 OR gnAppStyle = 2

 this.BorderColor = getSysColor(16)

 endif

 endif

ENDIF

The Grid control doesn't have the SpecialEffect property, but you know it's a 3D control (see Figure 6). However, I want to try a few ideas. Maybe I can simulate a 2D appearance. First of all, look at the Grid control.

[image: image6.png]] Fname | Lname

t[dohn Doe
2[dohn Smith
3]dohn [Willams

Ll_l—_d

Figure 6. VFP Grid control—the Grid doesn't have a SpecialEffect property.

Headers, record marks, and scroll bars are all 3D. If I can change them, then I have a solution. Record marks aren't useful and I can set them off. I can use the keyboard instead of the scroll bars, or at least the horizontal one can be switched off. The header object has a property: BackColor. I can set that property and override the 3D appearance. If I use the "Windows Classic" color scheme, then RGB(230,230,230) is a good choice, or for all other schemes I can use GetSysColor(20). The last setting is for a property GridLineColor. I use GetSysColor(4) to smarten up the grid. Having completed this, my grid now looks like that shown in Figure 7.

[image: image7.png][Header1 [Headert _neadert [<]
oo [ooe
2lsom —Jomin

T oo [witars |
oator1 [Hoater1 [Hoadert
oo [ooe
2lsom—Jomitn

Slaom —[wilams

Figure 7. Visual FoxPro flat Grid—setting a few properties and writing a few lines of code makes a big difference.

The following is code from the Init method of the grid:

DoDefault()

If Type('gnAppStyle') = 'N' And gnAppStyle >= 0 ;

 And gnAppStyle < 3

 If gnAppStyle = 0 && 3D

 For Each oColumn In This.Columns

 oColumn.Header1.BackColor = GetSysColor(15)

 oColumn.Header1.FontBold = .F.

 Next

 Else

 For Each oColumn In This.Columns

 LOCAL jnColor as Integer

 jnColor = GetSysColor(20)

 If jnColor = 16777215

 oColumn.Header1.BackColor = ;

 Rgb(230,230,230)

 Else

 oColumn.Header1.BackColor = ;

 GetSysColor(20)

 Endif

 oColumn.Header1.FontBold = .T.

 Next

 This.GridLineColor = GetSysColor(4)

 Endif

Endif

The last problem I have to solve is the PageFrame control. It has the SpecialEffect property, but the property applies only if the Tabs are off. In this particular case, the goal is to make every Page BackColor to be the same as a form BackColor. If you remember, I used RGB(246,246,246) for the form BackColor. If I apply this color to the PageFrame control, I have what's shown in Figure 8.

[image: image8.png]Page1 Page2

Figure 8. Visual FoxPro flat PageFrame—only one property was set and a few lines of code were written.

I think it looks quite flat. The only problem is the border line on the top and the left side. I can live without these lines, but I have a funny idea. Imagine a shaped object behind the PageFrame with the border color set to GetSysColor(16). The shape's top and left coordinates are one less than the PageFrame's. Now, I have a border around the PageFrame control. In order to manage this behavior automatically, the PageFrame control needs a user-defined property: cBackBorder. This property keeps a name of the shape object used to produce the border effect.

The Init method of the PageFrame control contains the following code, and the result is shown in Figure 9.

[image: image9.png]Page1 Page2

Figure 9. PageFrame 2D plus border—with optional lines and border on the top and on the left side.

DoDefault()

If Type('gnAppStyle') = 'N' And gnAppStyle >= 0 ;

 And gnAppStyle < 3

 LOCAL jcName as String, jn1 as Integer

 If gnAppStyle = 0 && 3D

 For jn1 = 1 To This.PageCount

 This.Pages(jn1).BackColor = GetSysColor(15)

 Next

 jcName = This.cBackBorder

 This.Parent.&jcName..Visible = .F.

 Else

 For jn1 = 1 To This.PageCount

 This.Pages(jn1).BackColor =Rgb(246,246,246)

 Next

 jcName = This.cBackBorder

 With This.Parent.&jcName

 .Left = This.Left - 1

 .Top = This.Top - 1

 .Width = This.Width - 1

 .Height = This.Height

 .BorderColor = GetSysColor(15)

 .BackStyle = 0

 .Visible = .T.

 .ZOrder(1)

 Endwith

 Endif

Endif

As a finale, I made the screen Test_2dClass.scx to test 2D/3D features. As you can see in Figure 10 and Figure 11, the PageFrame control has a border.

[image: image10.png]2D3D - Example 2

T~ Checkt

Command1

-[ofx]

€ option1

Command1

Command2

ik

b |

Pagez

& optiont
2| & opton:

1 -

[Frame
3 John

Lname |~
Willams

Figure 10. Test form—3D style.

[image: image11.png]2D3D - Example 2 =[ofx]

| E =
DOcheckt 52
Cormmand1 © option1
= | @ option
Cormmand1 © optionz
Cormmand
2 o]
Page1 Page2 [Fname | Lname |4
3 .John Williarns

212D

Figure 11. Test form—2D style.

Conclusion

In the end, I have a class library with all of the basic visual controls and I can easily switch between 2D and 3D styles. If you analyze what I've done, you can clearly see that there wasn't much code involved at all. The solution is quite simple. I've set just a few properties and used only a bit of code to manage these settings. This is what I call "The power of Visual FoxPro." Next time, I'll show you how to create forms and Edit boxes with gradient background color.

Download 09BOSNIC.ZIP
Predrag Bosnic is a senior developer for London's Westwood Forster Ltd. mbosnic@westwood-forster.co.uk.
