Web Services Part II

Recommendation: Read the first article on web services before this one

In my first article on this phenomenon I addressed what it is and what you need to do to build and activate a web-service, from the different environments and two different ways to do so. In this article I’ll show you how to debug your web service because if you are like me writing 30 lines of code without an error is impossible. Further more I’ll explain the WSDL file of the previous article in more detail
and will tell you something about UDDI.

Debugging a web service

Along with the soap toolkit an extra utility is installed called the soap tracer. This tool allows you to visually view the outgoing SOAP request and the incoming SOAP-response. The tool is handy when a service does not respond as you expect or when you want to watch what is being send back and forth. I’ll show you how to activate and use the soap trace utility here:

[image: image2.jpg]

As you can see in the image right above the left pane displays the calls placed, in the upper right pane you’ll see the message send (by the client), the right lower panel you’ll find the answer send (by the server). Next to finding out what went wrong you can also use the trace utility to find out how the envelopes are being constructed. This might help you when you move away from the soap toolkit and start sending messages your self for reasons I pointed out in the earlier article about web services.

To activate the trace utility there are two options:

1- server side

2- client side

The sample in this article is done server side and viewed using terminal server. How to activate either one of them is explained right her below:

Using the Trace Utility on the Server
To see all of a service's messages received from and sent to all clients, perform the following steps on the server.

1. On the server, open the Web Services Description Language (WSDL) file.

2. In the WSDL file, locate the <soap:address> element that corresponds to the service and change the location attribute for this element to port 8080. For example, if the location attribute specifies <http://10.0.100.107/_services/bizmgr.wsdl> change this attribute to <http://10.0.100.107:8080/_services/bizmgr.wsdl.

3. Start the trace utility from the programs menu

4. On the File menu, point to New, and either click Formatted Trace or unformatted Trace

5. In the Trace Setup dialog box, click OK to accept the default values.

Notice: Formatted trace shows request without http headers unformatted shows the http headers as part of the request. The print screen is a formatted trace.

Using the Trace Utility on the Client
To see all messages sent to and received from a service, do the following steps on the client.

1. Copy the WSDL file from the server to the client.

2. Modify location attribute of the <soap:address> element in the local copy of the WSDL document to direct the client to localhost:8080 and make a note of the current host and port. For example, if the WSDL contains <http://10.0.100.107/_services/bizmgr.wsdl>, change it to <http://localhost:8080/_services/bizmgr.wsdl >

3. Start the trace utility on the client.

4. On the File menu, point to New, and either click Formatted Trace or unformatted Trace
5. In the Destination host box, enter the host specified in Step 2.

6. In the Destination port box, enter the port specified in Step 2.

7. Click OK.

This will show you the same result as the print screen in this article but then the trace utility will run on the client.

Another way of knowing something went wrong with your SOAP request is when you get back the following SOAP-response:

<soap:Fault>

<faultcode>soap:Server</faultcode>

<faultstring>SOMETHING IS WRONG</faultstring>

<detail>

<stacktrace>EXCUTIONSTACK HERE</stacktrace>

</detail>

</soap:Fault>

Atanomy of the fault message

<faultcode>

A code that indicates the type of the fault. The valid values are:

· soap:Client (Incorrectly formed message)

· soap:Server (Delivery problem)

· soap:VersionMismatch (invalid namespace for envelope element)

· soap:MustUnderstand (error processing header content)

<faultstring>

Human readable description of the fault

<faultfactor>

An optional field that indicates the url of the source of the fault

<detail>

An application specific xml document that contains detailed information about the fault.

Anatomy of a WSDL file

Underneath I’ve printed the WSDL file of the previous article again, but this time I marked the key elements of this file bold. The bold marked tags will be explained to you in more detail right below the WSDL snippet. If you look at it closely you’ll get the impression that is not intended for a human audience. Although it looks quite complex at first glance it’s actually fairly straight forward. The WSDL generator will do all the work for you but if you are like me you’ll want to know what all of this means.

<definitions name ='ContentMgr' targetNamespace = 'http://bizzview.com/wsdl/'

 xmlns:wsdlns='http://bizzview.com/wsdl/'

 xmlns:typens='http://bizzview.com/type/'

 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'

 xmlns:stk='http://schemas.microsoft.com/soap-toolkit/wsdl-extension'

 xmlns='http://schemas.xmlsoap.org/wsdl/'>

 <types>

 <schema targetNamespace='http://bizzview.com/type/'

 xmlns='http://www.w3.org/2001/XMLSchema'

 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'

 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'>

 </schema>

 </types>

 <message name='ContentMgr.EchoString'>

 <part name='cString' type='xsd:string'/>

 </message>

 <message name='ContentMgr.EchoStringResponse'>

 <part name='Result' type='xsd:string'/>

 </message>

 <portType name='ContentMgrSoapPort'>

 <operation name='EchoString' parameterOrder='cString'>

 <input message='wsdlns:ContentMgr.EchoString' />

 <output message='wsdlns:ContentMgr.EchoStringResponse' />

 </operation>

 </portType>

 <binding name='ContentMgrSoapBinding' type='wsdlns:ContentMgrSoapPort' >

 <stk:binding preferredEncoding='UTF-8'/>

 <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http' />

 <operation name='EchoString' >

 <soap:operation soapAction='http://bizzview.com/action/ContentMgr.EchoString' />

 <input>

 <soap:body use='encoded' namespace='http://bizzview.com/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </input>

 <output>

 <soap:body use='encoded' namespace='http://bizzview.com/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </output>

 </operation>

 </binding>

 <service name='ContentMgr' >

 <port name='ContentMgrSoapPort' binding='wsdlns:ContentMgrSoapBinding' >

 <soap:address location='http://test.bizzview.com/_contentmgr/ContentMgr.wsdl' />

 </port>

 </service>

</definitions>

<description>

This is the top-level section, and contains the definition of one or more services. The tag is followed by several attributes, including the target namespace that indicates the xml namespace into which all WSDL definitions are placed.

<types>

This optional section contains declarations for all of the non-built-in data types that the service uses, such as arrays and structures.

<message>

A message corresponds to a single piece of information moving between the invoker and the service. A regular round trip method call is modeled as two messages, one for the request and one for the response. Each message can have zero or more parts, and each part can have a name and an optional type. If a method returns void, the response is an empty message.

<portType>

A portType corresponds to a set of one or more operations, where an operation defines a specific input / output must correspond to the name of a message that was defined earlier in the wsdl document. If an operation specifies just an input, it is a one-way operation. An output followed by an input is a solicit-response operation, and a single input is a notification.

<binding>

A binding corresponds to a portType implemented using a particular protocol such as SOAP or CORBA. The type attribute of the binding must correspond to the name of a portType that was defined earlier in the WSDL document. If the service supports more than one protocol, the wsdl includes a binding for each.

<service>

A service is modeled as a collection of ports, where a port represents the availability of a particular binding at a specified endpoint. The binding attribute of a port must correspond to the name of a binding that was defined earlier in the WSDL document.

UDDI Universal Description, Discovery and Integration

Once you’ve build your web service tested it and used it with a few real lfe customers you’ll want to sell this product to “new” customers but how? Advertisement is an option the same goes for a sales representive. The most common way to sell a web service product these these is trough talking about it with people whi might be interested in using your service. But there is a way to get the service published to a bigger audience than the people you know and meet. The mechanism is called UUDI in the following paragraph I’ll explain its purpose and how and where to find more information about this service.

UDDI allows information about a web service, such as its location, WSDL, and owner to be published for use by other web services. The UDDI’s main purpose is to provide an API for publishing and retrieving information about web services. The operations can be invoked by a correct SOAP call to the exposed methods of a certain web service. A UDDI can be used in several ways I’ll describe the most common uses for a UDDI.

· Public
A replicated UDDI hosted by companies like MicorSoft, IBM. Anyone can get an account on these servers and look for a web service they want to invoke in their own development efforts. Companies that have build web services most likely use these public services.

· Protected
Some industries probably expose their own UDDI servers for performance or security reasons. Think of chemical sector or finance institutes.

· Private
Some large companies may choose to run a UDDI server on their intranet. So that generic building blocks for corporate applications can be exposed throughout the company using this technology.

For detailed information on how to get involved in a UDDI server take a look at the following URL: http://uddi.microsoft.com . If you want to see an UDDI in action goto http://www.xmethods.com. If you have an web service which you want to expose trough a public UDDI server goto http://test.uddi.microsoft.com the inquiry url is http://test.uddi.microsoft.com/inquire the publish url is http://test.uddi.microsoft.com/publish .

When you look closely at the UDDI mechanism you will discover that it is a web service it self. So here we have a web service exposing information on other web services available to possible customers.

Remi Caron
About the author

[image: image1.png]MsSoapT

g Hle vew Window e T
10010029 =
<7uml version="1.0" encoding="UTF-8" standalone="no" 7>
- <SOAP-ENV:Envelope SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xrins: S04P-
ENv="http://schemas.xmlsoap.org/soap/envelope/">
- <SOAP-ENV:Body>
- <SOAPSDKL:EchoString xrmins: SOAPSDK1="http://tempuri.org/message/">
<tcEchoString>SDGN Magazine # 71</tcEchoString>
</SOAPSDK1:EchoString>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
=
=

<7uml version="1.0" encoding="UTF-8" standalone="no" 7>
- <SOAP-ENV:Envelope SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xrins: S04P-
ENv="http://schemas.xmlsoap.org/soap/envelope/">
- <SOAP-ENV:Body>
- <SOAPSDKL:EchoStringResponse
srilns: SOAPSDK1="http:/ /tempuri.org/message/">
<Result>SDGN Magazine # 71</Result>
</SOAPSDK1:EchoStringResponses
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Bstart || @) @ & || Syservices |[33Ms50apT - [Listening .. 10:27 01
T e B

cilcomponents|CantentMary3)

[adtess

Remi is CTO at Wantit BV which is located in Haarlem the netherlands. He is active in the information industry since 1989 and started with FoxBase as his first programming language. Has been working with all versions of FoxPro since then. With the .Net revolution he added C# to his toolset which also holds SQL-Server, XML, XSLT and ASP.Net. Remi can be reached at remi.caron@wantit.nl. He is a regular speaker at developer conferences and publisher of articles in the various magazines.

