Web Services Part III

In the first article in this serie I explained what a webservice is what the elements are that are involved in using a webservice and showed a very simple method call to a live webservice. In part two I addressed the issue of debugging a webservice explained the WSDL file and talked about the phenomena called UDDI. In this third and last article in this serie I’ll show you how to reuse a webservice.

The example used here in are based on our own online content management system. With this system you’ll be in charge of when how and why the site’s content changes. Next to easy shop functionality and a sophisticated security system you’ll be able to deploy the content on whatever website you own. This is possible because the tool is designed as a webservice.

As example site I use the site of one of our clients. This is NEDFOX a company specialized in Point of sale systems. When you look at the image of their website here below you might think that you are looking at just another website. However there is a difference here because everything you see here is customizable by themselves instead of contacting (and paying!!) their webdesigner for every change they want to make.

[image: image3.jpg]

The tool that enables them to do the modifications looks like this and if you look closely to the left pane which is called sitestructure you’ll notice the similarity with the menu in the previous image of the result site.

[image: image2.png]rosoft Internet Explorer

=181

Ghack v = - @ [0 | Qearch Gravortes @ivieds (3 |B- S 2 R

Ackiess [) htpi . bizzavenue. com_contentmgr/edtorfBsse. asp

Applicatie Beeld Opties Help

ERTE

Sitestructuur

show_POS4All Kassa Basis

BX0E@E v > FSRE® LA 0 AT am
~ [Startpagina Al [Normal =] [Times New Roman =1 [3 =]| B Z U | X
show_welkom bi NedFox Winks
: Sxem De afrekenfunctie staat centraal in deze uitgebreide module

~ [Produkten

~ [posaall PRO

» [Algemeen
~ [Modules winkel
¥ [Module-overzicht

[Kassa Basis
[statistiek
[Klant Fakturatie
[Logistiek verkooporder
[mailingen
[Kiant Spaarsysteem
[Logistiek voorraad
[Logistiek Inkooporders
[Filiaalbeheer
[Terminal
DO Lokaal
[Labelling
[webshop L
[RF-Handterminal
[koppeling
[interfaces Exchange

¥ [Modules Retail Service or
» [posaall LITE
¥ [NedFox Kassa DOS
» [B-In-zite

al ¥ [Hardware | _'_I

y
y
y
y
y
y
y
y
y
y
y
3
3
3
y
3

In het produktbeheer kunt u produkten invoeren. Het produktbeheer bevat een groot
aantal tabbladen waaronder verkoop, voorraad, inkoop en etiket

In het relatiebeheer kunt u relaties invoeren. Een relatie kan klant, debiteur en/of

leverancier zijn. Het relatiebeheer bevat een groot aantal tabbladen waaronder

communicatie, contactpersonen, debiteur, crediteur, contactregistratie,

leveringsinformatie en mailinggroepen

ikon F-90 Bedy

Sigina 28-200 Ultra

Zockmede: Produkdeode

s

Standanrd

Foltc. Fimgigart Hodorknd BY.

|

100

Tnternet

In the right pane you’ll see the editor that can be used to create content for the website. The question that comes to mind after seeing the result and the designer is how do we translate the content build up in the designer into the result that is show to the visitor of the www.nedfox.nl.

Well as I mentioned earlier the tool is set up as a webservice this means the you can invoke functionality which (in this case) is hosted on a webserver somewhere in your own application. The application we reuse the information in happens to be a website. In fact if a someone is visting the nedfox website the website itself contacts our webservice to gather the information it needs to display to the visitor. The process looks like this.

[image: image1.png]ZiNedFox - Microsoft Internet Explorer -0/ x|

|
ol - > - @ [| Qearch [rovortes @rede BBy & = 2 R
ddress [&) hip:fjwww.nedfox.nlf =] @oo |unis 7

Winkelautomatisering waarop je kunt rekenen!

Startpagina o
NedFon il e | posdall | Posdal iloasza oo
Nieuws Nasm diract vﬁg L SZPALL F‘

met | et complete

e

Combi Vervey in 1953

POS4All PRO iz d
Opleiding Noaro kanea pos Modules Winkel = &
Referenties Modules Retail Service = o o o

=
t\a— verkooporders —
 §
Loumci veomant ot
Lopitink inkaoporders IS
E : By

NedFox bater

Labelling bereikbaar door

[webshon [N

RF-Handterminal

Koppeling Bt - Nedrox
Interfaces Exchange |

EUROS

ETG "De fundering
voor automstizaring is
gelegd”

Ceechet srikel

[[| [®mneme

The visitors browser vistis the website of nedfox as they would visit any other website. The NedFox website however has no content stored on their webserver. The pages and menu choices that are vistied by the various visitors are retrieved from the CMS WebService component which lives on a totally different machine on the internet. In this case the NedFox websites has a few pages installed on their webserver which handle the soap requests and responses between their server and the CMS server another thing that is stored in these pages is the design that is applied to the data that comes back from the CMS server. The visting browser activates the in place webservice interaction between the NedFox server and the CMS-Server by asking for certain information. The vistors browser knows nothing about this and he doesn’t need to know anything about it either. Most webservices examples shown to you up until recently reused functionality of a webservice in a windows application which is fine but this example shows that there is no law against using an webservice from whithin another website.

QUOTE: There os no law against using a webservice from within another website.

To get the information displayed in the webpage as shown in the result page above. Since the data is stored on the CMS machine we need to invoke SOAP calls from within the asp pages in order to retrieve the data. The data is retrieved on demand this means that not the whole site and all documents are downloaded as soon as a client visits the website. The Site structure will be downloaded for the whole site right away for performance reasons.

The Web service exposes different functions to retrieve the various kinds of data sets you might need a certain point in time. Let’s start to take a look how to retrieve the site structure.

The default asp is the page that runs it coordinates it all supported by two include files one with java script functions and one with wrapper functions to create send an deal with soap responses.

function fGetSiteStructure()

{

var loSiteStructure
= null;

var lcReturn

= _oContentMgr.Site_GetSiteStructure(_cSessionGuid, false);

loSessionGUID_Xml = fLoadXml(lcReturn);

if(loSessionGUID_Xml != null)

{

loSiteStructure = _oXmlParser.selectSingleNode('//sitestructure');

if(loSiteStructure == null)

fErrorExit("Er is een fout opgetreden bij het opbouwen van het menu.");

}

else

fErrorExit("Er is een fout opgetreden bij het opbouwen van het menu.");

return loSiteStructure;

}

This function calls a function on an instantiated object the object that is instantiated here is in fact the include file with the wrapper functions. As you probably know you can create functions in java script and instantiate them as an object or call them as a function. You’ll notice that when you study the code that this piece of code:

_oContentMgr.Site_GetSiteStructure(_cSessionGuid, false) does the real Site_GetSiteStructure call returning an XML string containing the site structure. The code also has some error handling code for this specific function in place and warnings the user can understand when an error occurs.

What is the point in having wrapper functions you might ask yourself? Well there is a good reason for having these functions in a separate file. The functions in that file handle everything there is to handle for sending and receiving the soap requests and answers as well as dealing with possible soap errors. So by using the functions in the file for every interaction with the CMS server all that SOAP handling complexity is written once end used many times. A function like fGetSitestructure shown here this function can be written for a different web site doing different things with the retrieved result but in that fGetSiteStructure function this call: _oContentMgr.Site_GetSiteStructure(_cSessionGuid, false) will be executed to actually get the site structure from the CMS server. As you take a look at the downloadable files you’ll see that in this case the XML data will be stored in an array which is used to build the menu structure client side. The choice to use java script and an array to build the menu client side has to do with being able to show this site in more browsers than IE only.

Lets take a closer look at the functions that are used in the include file which is holds the wrapper functions. The function to get the actual site structure uses some data from the clients session and the passed through parameters to pass it on to the function that does the actual soap request handling.

function BizCmtServer_Site_GetSiteStructure(tcSessionGUID,tbIncludeContent)

{

return BizCmt_GetSoapResponse(this.cSoapServer,

 "Site_GetSiteStructure",

 "tcSessionGUID",tcSessionGUID,

 "tbIncludeContent",tbIncludeContent);

}

The function that does the actual SOAP handling request is listed here below. There are a few things you should notice about this code. The SOAP envelope that is created is the same for every call to the CMS –server at least the header and the footer are the same. The body is the part that changes because it depends on which function is called on the CMS- Server and how many parameters it should send. As you look through the code you’ll notice that it is just some simple java script creating the body part and using the XMLHTTP control to send it over the wire. After the request has come back the result will be parsed and returned back up into the call stack.

//

//

// FUNCTION : GetSoapResponse

//

// PARAMETERS : tcMethod - name of soap request method

// as string

// comma separated list of parameters and

// parameter values

//

// RETURNS : soap result

//

///

function BizCmt_GetSoapResponse(tcSoapServer, tcMethod)

{

var lcReturn
= ""

var loXmlHttp
= new ActiveXObject("MSXML2.ServerXMLHTTP");

loXmlHttp
= new ActiveXObject("MSXML2.ServerXMLHTTP");

loXmlHttp.open("POST", tcSoapServer, false);

// CREATE SOAP REQUEST

cSoapRequest = '<?xml version="1.0" encoding="UTF-8" standalone="no"?>'

cSoapRequest += '<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">'

cSoapRequest += '<SOAP-ENV:Body>'

cSoapRequest += '<Method:' + tcMethod + ' xmlns:Method="http://tempuri.org/message/">'

// add method parameters

var lnParam = 2;

while(lnParam < arguments.length && arguments.length > 1)

{

cSoapRequest += '<' + arguments[lnParam] + '>' + arguments[lnParam + 1] + '</' + arguments[lnParam] + '>'

lnParam += 2;

}

cSoapRequest += '</Method:' + tcMethod + '>'

cSoapRequest += '</SOAP-ENV:Body>'

cSoapRequest += '</SOAP-ENV:Envelope>'

// send soap request

loXmlHttp.setRequestHeader('Content-Type:','text/xml')

loXmlHttp.setRequestHeader('SOAPAction:','http://tempuri.org/action/Application.' + tcMethod)

loXmlHttp.send(cSoapRequest);

// HANDLE SOAP RESPONSE

if(loXmlHttp.status == 200);

{

var loReturnXml = loXmlHttp.responseXML ;

var loResponse = loReturnXml.selectSingleNode("//SOAPSDK1:" + tcMethod + "Response");

if(loResponse != null)

{

lcReturn = loResponse.text;

}

}

return lcReturn;

}

After these functions are executed and the result is returned to the NedFox server the XML is turned into an array which is used to build the menu with.

So now we’ve got a part of the users ui build up and ready to go. The second part is the page data which we need to retrieve based on the menu choice made by the visitor of the site.

///

//

// Show a document

//

///

function fWriteDocument(pcDocID)

{

var lcDocXml = _oContentMgr.HTML_GetFragment(_cSessionGuid,Request.QueryString('docid').Item,false);

var loDocXml = fLoadXml(lcDocXml);

if(loDocXml != null)

{

lcTitle
= loDocXml.selectSingleNode("//content/title").text

if(lcTitle.substr(0,5) == "show_")

lcTitle = lcTitle.substr(5)

else

lcTitle
= " "

var lcDate = loDocXml.selectSingleNode("//content/modified").text;

lcDate = lcDate.substr(0,10);

Response.Write("<table class='contentitem' border='0' cellpadding='2' cellspacing='0'><tr><td class='contenttitle'>");

Response.Write(lcTitle);

Response.Write("</td><td class='contentdate' nowrap>");

Response.Write(lcDate);

Response.Write("</td></tr><tr><td class='contenttext' colspan='2'>");

Response.Write(loDocXml.selectSingleNode("//content/text").text);

Response.Write("</td></tr></table>
");

}

else

fErrorExit("Er is een fout opgetreden bij het ophalen van een document.");

}

As you can see in the code here I just use another function in the object to get to the actual documents content. _oContentMgr.HTML_GetFragment(_cSessionGuid,Request.QueryString('docid').Item,false). For this function the same argumentation can be used as for the sitestructure. By wrapping it the function it self and its action may vary per implementation but the main part of it actually retrieving the necessary data will stay the same and hidden in that object.

You won’t be surprised when you take a look at the code of the _oContentMgr.HTML_GetFragment function.

function BizCmtServer_HTML_GetFragment(tcSessionGUID,tcID,tbShort)

{

return BizCmt_GetSoapResponse(this.cSoapServer,

 "HTML_GetFragment",

 "tcSessionGUID",tcSessionGUID,

 "tcID",tcID,

 "tbShort",tbShort);

}

Yes it is practically the same as for retrieving the sitestructure. This function calls the soap handler but with different parameters as you can see.

Well this article brings me to the end of the series on web services. We’ve seen what they are how to debug them and analyze their and in this part we’ve seen how to invoke them in your application or website. I hope this series has helped you to understand this phenomenon a little better and that you see the power of it. Rethink system architectures and build your systems in a way that the use web services as building blocks if you create smart web services these services will give you the opportunity to expose data for many platforms or build business objects once for many applications.

Remi Caron

About the author

Remi is CTO at Wantit BV which is located in Haarlem the netherlands. He is active in the information industry since 1989 and started with FoxBase as his first programming language. Has been working with all versions of FoxPro since then. With the .Net revolution he added C# to his toolset which also holds SQL-Server, XML, XSLT and ASP.Net. Remi can be reached at remi.caron@wantit.nl. He is a regular speaker at developer conferences and publisher of articles in the various magazines.
Nedfox website

Vistors browser

CMS Webservice

