VfpFrame

Visual FoxPro�Framework

Version 1.1�Date: 7 March 1997

�Table of contents

� INHOPG \o "1-3" �Table of contents	� GANAARBLOKJE _Toc383500165 � PAGVERWZG _Toc383500165 �2��

Installation	� GANAARBLOKJE _Toc383500166 � PAGVERWZG _Toc383500166 �5��

Creating the sample application	� GANAARBLOKJE _Toc383500167 � PAGVERWZG _Toc383500167 �6��

How to create the basic application	� GANAARBLOKJE _Toc383500168 � PAGVERWZG _Toc383500168 �6��

How to create the customer form	� GANAARBLOKJE _Toc383500169 � PAGVERWZG _Toc383500169 �7��

How to enhance the customer form	� GANAARBLOKJE _Toc383500170 � PAGVERWZG _Toc383500170 �8��

How to create the orders form	� GANAARBLOKJE _Toc383500171 � PAGVERWZG _Toc383500171 �9��

How to enhance the orders form	� GANAARBLOKJE _Toc383500172 � PAGVERWZG _Toc383500172 �12��

How to create the printers form	� GANAARBLOKJE _Toc383500173 � PAGVERWZG _Toc383500173 �13��

Forms and Behavior classes	� GANAARBLOKJE _Toc383500174 � PAGVERWZG _Toc383500174 �14��

The BaseBehavior class	� GANAARBLOKJE _Toc383500175 � PAGVERWZG _Toc383500175 �16��

The DataBehavior classes	� GANAARBLOKJE _Toc383500176 � PAGVERWZG _Toc383500176 �17��

The FormBehavior classes	� GANAARBLOKJE _Toc383500177 � PAGVERWZG _Toc383500177 �18��

The MouseBehavior classes	� GANAARBLOKJE _Toc383500178 � PAGVERWZG _Toc383500178 �19��

Application behavior	� GANAARBLOKJE _Toc383500179 � PAGVERWZG _Toc383500179 �19��

The Tools classes	� GANAARBLOKJE _Toc383500180 � PAGVERWZG _Toc383500180 �19��

Builders	� GANAARBLOKJE _Toc383500181 � PAGVERWZG _Toc383500181 �20��

Error handling	� GANAARBLOKJE _Toc383500182 � PAGVERWZG _Toc383500182 �20��

Reports	� GANAARBLOKJE _Toc383500183 � PAGVERWZG _Toc383500183 �21��

Security	� GANAARBLOKJE _Toc383500184 � PAGVERWZG _Toc383500184 �21��

Managers and tools	� GANAARBLOKJE _Toc383500185 � PAGVERWZG _Toc383500185 �22��

Legal issues	� GANAARBLOKJE _Toc383500186 � PAGVERWZG _Toc383500186 �23��

Registration	� GANAARBLOKJE _Toc383500187 � PAGVERWZG _Toc383500187 �23��

DISCLAIMER OF WARRANTY	� GANAARBLOKJE _Toc383500188 � PAGVERWZG _Toc383500188 �23��

Framework classes	� GANAARBLOKJE _Toc383500189 � PAGVERWZG _Toc383500189 �24��

sABehav.vcx	� GANAARBLOKJE _Toc383500190 � PAGVERWZG _Toc383500190 �24��

BaseApplicationBehavior	� GANAARBLOKJE _Toc383500191 � PAGVERWZG _Toc383500191 �24��

BaseSecurityBehavior	� GANAARBLOKJE _Toc383500192 � PAGVERWZG _Toc383500192 �25��

SingleApplication	� GANAARBLOKJE _Toc383500193 � PAGVERWZG _Toc383500193 �26��

sApp.vcx	� GANAARBLOKJE _Toc383500194 � PAGVERWZG _Toc383500194 �27��

BaseApp	� GANAARBLOKJE _Toc383500195 � PAGVERWZG _Toc383500195 �27��

sBuilder.vcx	� GANAARBLOKJE _Toc383500196 � PAGVERWZG _Toc383500196 �29��

VfrmFormBuilder	� GANAARBLOKJE _Toc383500197 � PAGVERWZG _Toc383500197 �29��

sControls.vcx	� GANAARBLOKJE _Toc383500198 � PAGVERWZG _Toc383500198 �30��

cCheckBox	� GANAARBLOKJE _Toc383500199 � PAGVERWZG _Toc383500199 �30��

cComboBox	� GANAARBLOKJE _Toc383500200 � PAGVERWZG _Toc383500200 �30��

cCommandButton	� GANAARBLOKJE _Toc383500201 � PAGVERWZG _Toc383500201 �30��

cContainer	� GANAARBLOKJE _Toc383500202 � PAGVERWZG _Toc383500202 �30��

cCustom	� GANAARBLOKJE _Toc383500203 � PAGVERWZG _Toc383500203 �31��

cGrid	� GANAARBLOKJE _Toc383500204 � PAGVERWZG _Toc383500204 �31��

cLabel	� GANAARBLOKJE _Toc383500205 � PAGVERWZG _Toc383500205 �31��

cListBox	� GANAARBLOKJE _Toc383500206 � PAGVERWZG _Toc383500206 �31��

cOptionGroup	� GANAARBLOKJE _Toc383500207 � PAGVERWZG _Toc383500207 �31��

cPageFrame	� GANAARBLOKJE _Toc383500208 � PAGVERWZG _Toc383500208 �32��

cTextBox	� GANAARBLOKJE _Toc383500209 � PAGVERWZG _Toc383500209 �32��

cToolBar	� GANAARBLOKJE _Toc383500210 � PAGVERWZG _Toc383500210 �32��

MemoryGrid	� GANAARBLOKJE _Toc383500211 � PAGVERWZG _Toc383500211 �32��

MoverContainer	� GANAARBLOKJE _Toc383500212 � PAGVERWZG _Toc383500212 �33��

pgfRefresher	� GANAARBLOKJE _Toc383500213 � PAGVERWZG _Toc383500213 �33��

RefreshPageFrame	� GANAARBLOKJE _Toc383500214 � PAGVERWZG _Toc383500214 �33��

sDBehav.vcx	� GANAARBLOKJE _Toc383500215 � PAGVERWZG _Toc383500215 �34��

ArrayBehavior	� GANAARBLOKJE _Toc383500216 � PAGVERWZG _Toc383500216 �34��

BaseBehavior	� GANAARBLOKJE _Toc383500217 � PAGVERWZG _Toc383500217 �35��

BaseDataBehavior	� GANAARBLOKJE _Toc383500218 � PAGVERWZG _Toc383500218 �36��

DataSettings	� GANAARBLOKJE _Toc383500219 � PAGVERWZG _Toc383500219 �37��

DBCTransactionBehavior	� GANAARBLOKJE _Toc383500220 � PAGVERWZG _Toc383500220 �38��

MultiTableBehavior	� GANAARBLOKJE _Toc383500221 � PAGVERWZG _Toc383500221 �39��

SingleTableBehavior	� GANAARBLOKJE _Toc383500222 � PAGVERWZG _Toc383500222 �40��

StandardDataBehavior	� GANAARBLOKJE _Toc383500223 � PAGVERWZG _Toc383500223 �41��

StartStopEdit	� GANAARBLOKJE _Toc383500224 � PAGVERWZG _Toc383500224 �42��

sError.vcx	� GANAARBLOKJE _Toc383500225 � PAGVERWZG _Toc383500225 �43��

BaseError	� GANAARBLOKJE _Toc383500226 � PAGVERWZG _Toc383500226 �43��

ErrorConnectionBusy	� GANAARBLOKJE _Toc383500227 � PAGVERWZG _Toc383500227 �44��

ErrorHandler	� GANAARBLOKJE _Toc383500228 � PAGVERWZG _Toc383500228 �45��

ErrorIsLocked	� GANAARBLOKJE _Toc383500229 � PAGVERWZG _Toc383500229 �46��

ErrorNoDiskSpace	� GANAARBLOKJE _Toc383500230 � PAGVERWZG _Toc383500230 �47��

ErrorNoMemory	� GANAARBLOKJE _Toc383500231 � PAGVERWZG _Toc383500231 �48��

ErrorPassword	� GANAARBLOKJE _Toc383500232 � PAGVERWZG _Toc383500232 �49��

ErrorPrinter	� GANAARBLOKJE _Toc383500233 � PAGVERWZG _Toc383500233 �50��

ErrorReindexFiles	� GANAARBLOKJE _Toc383500234 � PAGVERWZG _Toc383500234 �51��

ErrorTooManyFiles	� GANAARBLOKJE _Toc383500235 � PAGVERWZG _Toc383500235 �52��

sFBehav.vcx	� GANAARBLOKJE _Toc383500236 � PAGVERWZG _Toc383500236 �53��

BaseFormBehavior	� GANAARBLOKJE _Toc383500237 � PAGVERWZG _Toc383500237 �53��

FormCaptionBehavior	� GANAARBLOKJE _Toc383500238 � PAGVERWZG _Toc383500238 �54��

FormCaptionNoOneBehavior	� GANAARBLOKJE _Toc383500239 � PAGVERWZG _Toc383500239 �55��

FormResizeBehavior	� GANAARBLOKJE _Toc383500240 � PAGVERWZG _Toc383500240 �56��

FormSavePosition	� GANAARBLOKJE _Toc383500241 � PAGVERWZG _Toc383500241 �57��

SavePositionSize	� GANAARBLOKJE _Toc383500242 � PAGVERWZG _Toc383500242 �58��

SingleFormBehavior	� GANAARBLOKJE _Toc383500243 � PAGVERWZG _Toc383500243 �59��

StandardFormBehavior	� GANAARBLOKJE _Toc383500244 � PAGVERWZG _Toc383500244 �60��

WindowsPad	� GANAARBLOKJE _Toc383500245 � PAGVERWZG _Toc383500245 �61��

sForms.vcx	� GANAARBLOKJE _Toc383500246 � PAGVERWZG _Toc383500246 �62��

BaseForm	� GANAARBLOKJE _Toc383500247 � PAGVERWZG _Toc383500247 �62��

ReturnForm	� GANAARBLOKJE _Toc383500248 � PAGVERWZG _Toc383500248 �64��

DbcMaintenance	� GANAARBLOKJE _Toc383500249 � PAGVERWZG _Toc383500249 �65��

LoginForm	� GANAARBLOKJE _Toc383500250 � PAGVERWZG _Toc383500250 �67��

UserMaintenance	� GANAARBLOKJE _Toc383500251 � PAGVERWZG _Toc383500251 �68��

sMBehav.vcx	� GANAARBLOKJE _Toc383500252 � PAGVERWZG _Toc383500252 �69��

BaseMouseBehavior	� GANAARBLOKJE _Toc383500253 � PAGVERWZG _Toc383500253 �69��

FormInspector	� GANAARBLOKJE _Toc383500254 � PAGVERWZG _Toc383500254 �70��

StandardMouseBehavior	� GANAARBLOKJE _Toc383500255 � PAGVERWZG _Toc383500255 �71��

StandardTools	� GANAARBLOKJE _Toc383500256 � PAGVERWZG _Toc383500256 �72��

sManager.vcx	� GANAARBLOKJE _Toc383500257 � PAGVERWZG _Toc383500257 �73��

BaseMgr	� GANAARBLOKJE _Toc383500258 � PAGVERWZG _Toc383500258 �73��

MgrTimer	� GANAARBLOKJE _Toc383500259 � PAGVERWZG _Toc383500259 �74��

TimedManager	� GANAARBLOKJE _Toc383500260 � PAGVERWZG _Toc383500260 �74��

sSecurit.vcx	� GANAARBLOKJE _Toc383500261 � PAGVERWZG _Toc383500261 �75��

IdSecurityApplication	� GANAARBLOKJE _Toc383500262 � PAGVERWZG _Toc383500262 �75��

IdSecurityData	� GANAARBLOKJE _Toc383500263 � PAGVERWZG _Toc383500263 �75��

sReports.vcx	� GANAARBLOKJE _Toc383500264 � PAGVERWZG _Toc383500264 �76��

BaseReport	� GANAARBLOKJE _Toc383500265 � PAGVERWZG _Toc383500265 �76��

ReportManager	� GANAARBLOKJE _Toc383500266 � PAGVERWZG _Toc383500266 �76��

sSystem.vcx	� GANAARBLOKJE _Toc383500267 � PAGVERWZG _Toc383500267 �77��

BaseSettings	� GANAARBLOKJE _Toc383500268 � PAGVERWZG _Toc383500268 �77��

IniSettings	� GANAARBLOKJE _Toc383500269 � PAGVERWZG _Toc383500269 �78��

RegistrySettings	� GANAARBLOKJE _Toc383500270 � PAGVERWZG _Toc383500270 �79��

sTools.vcx	� GANAARBLOKJE _Toc383500271 � PAGVERWZG _Toc383500271 �80��

BaseTool	� GANAARBLOKJE _Toc383500272 � PAGVERWZG _Toc383500272 �80��

BaseToolBar	� GANAARBLOKJE _Toc383500273 � PAGVERWZG _Toc383500273 �81��

CompleteBar	� GANAARBLOKJE _Toc383500274 � PAGVERWZG _Toc383500274 �82��

CompleteMenu	� GANAARBLOKJE _Toc383500275 � PAGVERWZG _Toc383500275 �83��

DebugMenu	� GANAARBLOKJE _Toc383500276 � PAGVERWZG _Toc383500276 �84��

EditBar	� GANAARBLOKJE _Toc383500277 � PAGVERWZG _Toc383500277 �85��

MainMenu	� GANAARBLOKJE _Toc383500278 � PAGVERWZG _Toc383500278 �86��

MenuTool	� GANAARBLOKJE _Toc383500279 � PAGVERWZG _Toc383500279 �87��

NavMenu	� GANAARBLOKJE _Toc383500280 � PAGVERWZG _Toc383500280 �88��

OrderList	� GANAARBLOKJE _Toc383500281 � PAGVERWZG _Toc383500281 �89��

SkipBar	� GANAARBLOKJE _Toc383500282 � PAGVERWZG _Toc383500282 �90��

SkipTableBar	� GANAARBLOKJE _Toc383500283 � PAGVERWZG _Toc383500283 �91��

ToolBarButton	� GANAARBLOKJE _Toc383500284 � PAGVERWZG _Toc383500284 �92��

Modifications	� GANAARBLOKJE _Toc383500285 � PAGVERWZG _Toc383500285 �93��

Version 1.1	� GANAARBLOKJE _Toc383500286 � PAGVERWZG _Toc383500286 �93��

Version 1.01	� GANAARBLOKJE _Toc383500287 � PAGVERWZG _Toc383500287 �95��

�

�Installation� XG "Installation" �

Create a directory \VfpFrame.�

Unzip the file containing the framework into this directory. Use the directories (-D) option to create all subdirectories.�

If you want to use a different directory, this is no problem. It requires only a few changes to two application specific files:

In the file Setup.prg, change the SET PATH statement to reflect the proper home directory for the framework.

In the file AppInc.h, change the #INCLUDE statement to reflect the proper home directory for the framework.�

The framework assumes that you use the directory \VFP\ as the Visual FoxPro home directory. If you use another directory, you will need to change the #INCLUDE statement in the Frame.h file.�

Set the read only attribute of all the framework files. It is best not to make any changes to the framework itself as I intend to upload new versions as they become available. If you want to enhance the framework classes, it would be best to create a subclass in another class library and use this class instead of the standard one.�

Register the VfrmFormBuilder in the builders table. This can be done automatically by creating an object from the class. �

If you intend to keep using this framework, you will need to register it. See the chapter on registration to see how this can be done. Upon registration a copy off the framework with full source code will be provided.

If you have any questions about this framework, its concepts or how to use them, you can ask me, the author, or anyone else on the Compuserve FoxUser forum 3rd Party section. If you prefix your questions with VFRM:, it will be easier for me to spot them if they are not addressed to me personally.

If you want to send them to me, the address is:

Maurice de Beijer

CIS: 100325,1536

Internet: 100325.1536@COMPUSERVE.COM

�Creating the sample application� XG "sample application" �

How to create the basic application

Create a new application by copying the application template to a new directory. The application template is the directory NewApp and its subdirectories located in the Framework main directory. Alternatively, the new application can be set up with the following steps:�

Create a new main directory for the new application.�

Add subdirectories for the database, the forms, the include file, the libraries, the menus and the programs. The directories I use are: .\Data, .\Forms, .\Include, .\Libs, .\Menus and .\Progs. There is no problem with another setup, but a change to the SET PATH command in Setup.prg will be needed.�

Copy Setup.prg from the framework to the .\Progs directory.�

Copy AppInc.h from the framework to the .\Include directory.�

Start Visual FoxPro and go to the new main directory by using the CD command.�

Create a new project.�

Add the program Main.prg to the application and make this the main program.�

Add the program Setup.prg to the application and run this program to set the path.�

Build the project. This will add all the required class libraries to the project.�

Create a new application class, Application, in the new class library .\Libs\aApp.vcx. The base class for this class should be BaseApp from sApp.vcx or one of its subclasses.�

Change the Application.cTitle property to the application title.�

Copy the files from VFP\SAMPLES\DATA to the Data directory and add the TestData database to the project.�

Build the application.

�How to create the customer form� XG "customer form" �

The customers form is a simple form that allows the user to navigate through a single table or view.

Start the application in development mode with DO <application name> WITH .T. This will set the environment and create the application and related objects, but will leave the standard Visual FoxPro look and feel.

In the menu, choose Tools/Options.�

Choose the Forms page and set the Form in Template Classes to BaseForm (C:\VfpFrame\Libs\sForms.vcx).�

Click on Set as Default and then OK.�

Create a new form.�

Add the customer table to the DataEnvironment.�

Drag the required fields from the DataEnvironment to the Form.�

Arrange the controls to the required position.�

Add the labels and size the controls or use Doug Hennig's AutoSize builder to do so.�

Change the Form.Name property to Customer.�

Run the form.

If the application was running in development mode, the form will appear with the related Navigation menu and toolbars. If the application was not run in development mode but the Path and ClassLib statements where set using Setup.prg, the form will appear without the Navigation menu and toolbars.

This is all that is required to create a simple form. No code is needed but all data entry issues are handled.

�How to enhance the customer form� XG "customer form" �

Change the Form.Caption to 'Customer'�

To be able to open multiple copies of the same form and give them unique captions, change the Form.cFormBehavior to 'FormCaptionBehavior'. This will give the captions a number and will stack the forms.�

To add the form's caption to the windows menu, open the form and add ', WindowsPad' to the Form.cFormBehavior property. This is all that is needed to add the form's caption to the Window pad, allowing the user to select it from the menu.�

To save the form's position between sessions of the form or the application, open the form and add 'FormSavePosition, ' to the front of the Form.cFormBehavior property. The reason this needs to go at the front is because FormCaptionBehavior will modify the Top and Left properties for the second and subsequent form instances.�

To allow the end user to resize the form and have all contained controls resized as well, open the form and add ', FormResizeBehavior' to the Form.cFormBehaviorProperty. To make sure the form’s labels resize properly, it is best to change the Label.AutoSize property to .T. and to align the labels on their left side.�

To change the form so that the user must press an edit button before modifying a record, open the form and add 'StartStopEdit,' to the front of the Form.cDataBehavior property. This will enable and disable the form’s controls when the user starts an edit session. This will also require the form to be used with a toolbar and a menu containing an edit option, so we will need to change the defaults. To use these, we need to change the Form.cTools property. Delete the default tools and change them to 'CompleteBar, CompleteMenu'. Then run the form.

This is how easy it is to create a simple form. We can completely change the behavior of a form by simply changing the behavior objects that are used. It is possible to create completely new behavior objects to allow the form to behave in new ways without having to add a lot of code to the BaseForm class. This prevents slowing every form to add functionality that may be required by only a few.

�How to create the orders form� XG "orders form" �

The order form is a more complicated form that allows the user to navigate through the orders of a specific customer. In this form, the user is allowed to pick a specific customer to view. When the user skips through the orders, the detail lines of the order are automatically displayed. When the user alters an order line, the total order amount is automatically recalculated and displayed.

Create a new form based on BaseForm in sForms.vcx�

Change the form’s Name property to 'Orders'.�

Add the following cursors and views to the DataEnvironment: lv_CustPick, Orders, OrdItems and Products.�

Change the BufferModeOverride property to '5 - Optimistic table buffering' for the OrdItems table.�

Change the Name property for each cursor to the appropriate alias name.�

Create the relations between Orders and OrdItems (Order_Id to Order_Id) and between OrdItems and Products (Product_Id to _Product_I).�

Change the DataEnvironment.InitialSelectedAlias property to 'Orders'. This will be the primary alias used to skip through the records with the toolbars or menu.�

Add a ComboBox to the top of the form to select the customer.�Change the ComboBox.Style property to '2 - Dropdown List'.�Change the ComboBox.Name property to 'cboCustomer'.�Change the RowSourceType to '2 - Alias'.�Change the RowSource to 'lv_CustPick'.�

Add the following code to the ComboBox InteractiveChange method :�ThisForm.DataEnvironment.Orders.Filter = 'Orders.Cust_Id = lv_CustPick.Cust_Id'�ThisForm.SkipTop()�

Add the following code to the ComboBox Init method �THIS.ListItemId = 1�THIS.InteractiveChange()�

Add controls to the form for the Order Id, Order Date, Order Amount, Order Discount and Order Net fields.�

Arrange and resize the controls and add the labels.�

Add a grid to the form by dragging the OrdItems cursor from the DataEnvironment to the form and resize it to fit the available space.�

To enable the form to handle multiple cursors in the DataEnvironment, change the Form.cDataBehavior property to 'MultiTableBehavior'.�

At this point, you can run the form to ensure that everything appears as expected.�

Change the Order line grid as follows:�Grid.Name to 'grdOrderLines'.�grdOrderLines.RowHeight to 22.�grdOrderLines.ColumnCount to 4.�Add a ComboBox to grdOrderLines.Column1 and delete the TextBox.�grdOrderLines.Column1.Bound to .F.�grdOrderLines.Column1.ControlSource to 'Products.Eng_Name'.�grdOrderLines.Column1.Combo1.ControlSource to 'OrdItems.Product_Id'.�grdOrderLines.Column1.Combo1.RowSourceType to '3 - SQL Statement'.�grdOrderLines.Column1.Combo1.RowSource to:� 'SELECT Eng_Name, Product_Id FROM Products ORDER BY 1 INTO CURSOR cProduct'.�grdOrderLines.Column1.Combo1.Style to '2 - Dropdown List'.�grdOrderLines.Column1.Combo1.SpecialEffect to '1 - Plain'.�grdOrderLines.Column1.Combo1.BoundColumn to 2.�grdOrderLines.Column2.ControlSource to 'OrdItems.Quantity'.�grdOrderLines.Column3.ControlSource to 'OrdItems.Unit_Price'.�grdOrderLines.Column3.ReadOnly to .T.�grdOrderLines.Column4.ControlSource to 'OrdItems.Quantity * OrdItems.Unit_Price'.�grdOrderLines.Column header caption properties to reflect the column contents.�

Add the following code to the Column1.Combo1.InteractiveChange method:�REPLACE (THIS.ControlSource) WITH THIS.Value�GOTO RECNO('OrdItems') IN OrdItems�REPLACE OrdItems.Unit_Price WITH Products.Unit_Price�ThisForm.Refresh()��

Add the following code to the Column2.Text1.InteractiveChange method:�REPLACE (THIS.ControlSource) WITH THIS.Value�ThisForm.CalculateSum()�ThisForm.Refresh()��

To calculate the order total, we need to add a custom method, CalculateSum, to the form. Add the following code to the method:�LOCAL lnPrice, lnOrderNet, lnRecNo��SELECT OrdItems�lnRecNo = RECNO()��CALCULATE SUM(Quantity * Unit_Price) 		;� FOR Order_Id = Orders.Order_Id 			;� TO lnPrice��GOTO (lnRecNo)��SELECT Orders�REPLACE Order_Amt WITH lnPrice��lnOrderNet = (1 - Order_Dsc/100) * Order_Amt�REPLACE Order_Net WITH lnOrderNet��

Add the following code to the Form.spnOrder_Dsc.InteractiveChange method:�REPLACE (THIS.ControlSource) WITH THIS.Value�ThisForm.CalculateSum()�ThisForm.Refresh()��

At this point, you can run the form to ensure that everything appears as expected. You should now be able to change the product in an order line by choosing from the Dropdown list. Choosing another product should change the unit price and recalculate the total per line. Changing the quantity ordered should also recalculate the total per line. Any changes to a line will result in the recalculation of the total order amount.�

Add a button to the form to add new order lines and add the following code to the button’s Click method:�LOCAL lnMaxLine��SELECT OrdItems�CALCULATE MAX(Line_No) TO lnMaxLine��APPEND BLANK�REPLACE Order_Id 	WITH Orders.Order_Id,			;� Line_No 		WITH lnMaxLine + 1��ThisForm.Grid1.Column1.Combo1.InteractiveChange() �ThisForm.Grid1.SetFocus()��

Add another button to the form to delete order lines and add the following code to the Click method:�LOCAL lnMaxLine��#INCLUDE Include\AppInc.h��IF Messagebox('Do you want to delete this line item?', 			;� MB_YESNO + MB_ICONQUESTION,				;� _SCREEN.Caption) = IDYES�� SELECT OrdItems� DELETE� IF BOF()� GO TOP� ELSE� SKIP -1� ENDIF�� ThisForm.RefreshForm()�ENDIF��

To ensure that key fields will contain the correct value, add the following code to the Form.DataNew method:��BaseForm::DataNew()�REPLACE 									;� Order_Id WITH NewPk('ORDERS'),						;� Cust_Id WITH lv_custpick.Cust_Id IN Orders

�How to enhance the orders form� XG "orders form" �

Change the form’s Caption property to 'Orders'.�

Set the Form.cFormBehavior property to 'FormCaptionBehavior, WindowsPad, FormSavePosition'�

Add the following code to the Form.Load method:�BaseForm::Load()��loTemp = THIS.DataDoIt� XG "DataDoIt" �("GetReference� XG "GetReference" �('MultiTableBehavior')")�DIMENSION loTemp.aCursors[2]�loTemp.aCursors[1] = 'Orders'�loTemp.aCursors[2] = 'OrdItems'��The DataDoIt method will return the value of the GetReference method of the MultiTableBehavior object. The value is a reference to this object which enables us to alter properties outside the normal interface. The aCursors array is the array containing the names of cursors to update, defaulting to all open cursors in the private DataEnvironment. To improve performance, we will only update the two tables that can be updated.��For an in-depth explanation of how to use of the DoIt and GetReference methods, see the explanation of the BaseBehavior class in the chapter that discusses the Form and Behavior classes �

Set the ReadOnly property of the following TextBox controls to .T.:�txtOrder_Id, TxtOrderAmount and txtOrderNet

Note that, during the creation of these two forms, it was not necessary to rebuild the application at all but it was still possible to build and run the forms.

�How to create the printers form� XG "printers form" �

The printers form is completely different from the two previous forms. If you run the sample application, it may appear that this form behaves in the same way as the other forms. However, in this form, the user navigates through an array of data rather than through a table or view. Because all data-related behavior is not stored in the form but in a separate DataBehavior object instead, it is possible to do this with a minimum of effort.

Create a new form based on BaseForm in sForms.vcx�

Change the form’s Name and caption properties to 'Printers'.�

Change the form’s cDataBehavior property to 'PrintersBehavior'.�

Change the form’s cTools property to 'SkipTableBar'.�

Add two text boxes and two labels to the form. Name the first text box 'txtPrinter' and change the caption of the associated label to 'Printer'. Name the second text box 'txtPort' and change the caption of the associated label to 'Port'. Change the ReadOnly property to .T. for both textbox controls.�

Create a new DataBehavior class, PrintersBehavior, based on the class ArrayBehavior� XG "ArrayBehavior" � in the class library 'aDBehav.vcx'. The starting 'a' signifies that this is an application-specific class. 'DBehav' signifies that these are DataBehavior classes.�

Add the following code to the Init method:�LPARAMETERS toForm�RETURN APRINTERS(THIS.aArrayData) > 0 AND ArrayBehavior::Init()��

Add the following code to the DisplayData method:�LPARAMETERS toForm��toForm.txtPrinter.Value = THIS.aArrayData[THIS.nThisItem, 1]�toForm.txtPort.Value = THIS.aArrayData[THIS.nThisItem, 2]��

Add 'aDBehav' to the SET CLASSLIB statement in the Setup.prg.�

Build the application and run it to test the new form.

�Forms and Behavior classes

The behavior of all forms in the framework is defined by three linked lists of behavior objects. There are different lists for DataBehavior� XG "DataBehavior" �, FormBehavior� XG "FormBehavior" � and MouseBehavior� XG "MouseBehavior" �. The DataBehavior linked list is responsible for navigation through the data,� XG "navigation trough the data" � saving changes� XG "saving changes" �, deleting records and adding new data� XG "adding new data" �. The FormBehavior linked list� XG "linked list" � is responsible for handling form related items such as the form’s caption� XG "forms caption" �, saving and restoring the form’s display position� XG "forms position" � and resizing� XG "resizing" � the form with all contained controls. The MouseBehavior linked list is responsible for handling right mouse clicks� XG "right mouse click" � for popup menus,� XG "popup menus" � etc.

The general idea behind the three linked lists comes from the Strategy� XG "Strategy" � and the Chain of Responsibility� XG "Chain of Responsibility" � patterns discussed in the book Design Patterns� XG "Design Patterns" �. I have combined the two patterns into one for this framework. These pattern allows the behavior to be varied according with the needs and circumstances, without having to alter the visible front end (the form in this case).

The approach of a separate object handling these operations has quite a few benefits:�

Very flat class hierarchy�In frameworks that use inheritance to provide several methods of data access, you quickly have a large number of classes with quite a bit of code duplication. While it is impossible to prevent all code duplication, most of it can be avoided in this way.�

Low overhead�As we can add behavior to a form by adding a single class, we don’t need to add all possible code to our base forms. If you use inheritance to alter the form behavior, it is very tempting to add all the utility code you have to it. This means that it is included in your application even if you don’t use it. By utility code, I mean operations like saving and restoring form positions in the registry or adding the form’s caption to the application menu. By allowing the developer to add the class providing this behavior only when needed, there is less overhead.�

Flexibility�Inheritance is decided at compile time and cannot be changed at runtime. This means that, once a base class for a form is chosen, it is impossible to alter it at runtime. If we want to provide the user with a list of options of the possible behavior, this would mean long CASE statements in the event code. When we use the strategy pattern, we can decide at run time whether a certain object is created or not, thus changing the behavior.�

Multiple chances�By combining the strategy pattern with the chain of responsibility pattern, an even more flexible system is created. This means that more than one object gets a change to handle an event. The default behavior is to send the event to the next object in the list. If a class wants to handle a certain event completely, it can process it and return without calling the next object in the list. Alternatively, a class can add to the behavior of another class in the list. For example the DBCTransactionBehavior class adds transactions to the save event but doesn’t know how the actual saving is performed. All it knows is that some other object will handle this and return a status of success or failure.

Of course, there are also some drawbacks with this combination of classes:

More method calls�As the form is no longer able to handle most of the events that occur, it must call another object to handle the event (which in turn may need to call other objects). It is possible that, for an event, a number of objects executes a method but that no object is able to handle the event.�

Memory use�As a number of separate objects get loaded with each form, more memory will be consumed.�

Form initialization time�As the form has to create a number of additional objects at form load time, there will be a slight delay.

Comparing the advantages with the disadvantages I believe these to be good tradeoffs.

This approach resulted in only two base form classes, BaseForm� XG "BaseForm" � and ReturnForm� XG "ReturnForm" �. Although I left ReturnForm in the framework, it is not actually necessary. The additions that need to be made to BaseForm to create ReturnForm are so minimal that they easily could be done as needed.

The flexibility achieved by this approach is quite remarkable as there is little that cannot be done with a combination of one or more standard classes and/or subclasses of standard classes You could, for example, create a custom DataBehavior� XG "DataBehavior" � class that lets the user choose between different copies of identical tables or between local views� XG "local views" � and client server data� XG "client server data" � through remote views� XG "remote views" �. If you want to experiment with this, try the following:�

Create a subclass of BaseDataBehavior� XG "BaseDataBehavior" �.�

In the Init method of the class, close the data with:�	toForm.DataEnvironment� XG "DataEnvironment" �.CloseTables� XG "CloseTables" �()�or set the AutoOpenTables� XG "AutoOpenTables" � property to .F. in the form designer.�

Change the Name property for a cursor object in the data environment to:�	toForm.DataEnvironment.v_orders.CursorSource� XG "CursorSource" � = IIF(glLocal, ‘l’, ‘r’) + ‘v_Orders’�This will allow the form to use remote or local data, depending on the variable glLocal.�

Open the data with a call to:�	toForm.DataEnvironment.OpenTables()���

The BaseBehavior� XG "BaseBehavior" � class

All of the behavior objects have a single baseclass, BaseBehavior. This BaseBehavior class keeps a reference to the next object in the list through a property called oLinked� XG "oLinked" �. It also handles the addition of new Behavior objects to the end of the list through the AddBehavior� XG "AddBehavior" � method.

The BaseBehavior class also allows a non-standard approach to referencing a method or property with two methods; the DoIt� XG "DoIt" � method and the GetReference� XG "GetReference" � method.

The DoIt method allows the developer to call a method in a class and receive that method's return value. DoIt also may be used to query a property, even when this is outside the normal behavior interface. It does so by examining every class in the linked list to check for the presence of the requested service (method or property). If the service exists, it is evaluated and the result is returned. If the service does not exist, the request is passed on to the next object in the chain. If none of the objects in the chain can handle the request, the NULL value is returned to indicate the failure.

For an example of the DoIt method, examine the FormCaptionBehavior� XG "FormCaptionBehavior" � class. This class adds a number to the caption to signify the difference between multiple instances� XG "multiple instances" � of the same form. The class stores the number used for each form in a property called nFormNumber� XG "nFormNumber" �. Normally it would be very difficult to check the value of this property in other objects linked to similar forms. You would need to loop through the linked list of behavior objects and check each one to retrieve the value. To perform this function, you can use the DoIt method. You can request the value from the property specified in the parameter. In this case it would be something like:�

	lnThisNumber = NVL(FormDoIt� XG "FormDoIt" �(‘nFormNumber’), 0)�

I use the FormDoIt method in this case because I want to check the linked list of form behavior objects. You also could use the DataDoIt� XG "DataDoIt" � or MouseDoIt� XG "MouseDoIt" � methods instead. The reason I use the NVL� XG "NVL" � function is that, if the property is not found in any of the objects, a NULL value is returned to indicate the failure.

The GetReference� XG "GetReference" � method allows the developer to get a pointer to the object by specifying the class name. The GetReference method returns a pointer to the class with the class name that was requested. If the class name is not found in the linked list, the NULL value is returned to indicate the failure.

For an example of the use of the GetReference method, examine the Orders form� XG "Orders form" �. In this form, we use the MultiTableBehavior� XG "MultiTableBehavior" � class to update multiple data sources in the DataEnvironment. The MultiTableBehavior object stores the names of all tables and views to update in an array property named aCursors. The default action is to fill the aCursors� XG "aCursors" � array with all open tables and views in the private data environment. When several tables are used only for lookup purposes, this can be a bit slow.� XG "private data environment" � To improve performance, we want to change the aCursors array to contain only the tables that will be updated. To do this, we need to get a reference to the object containing the array which is where the GetReference method comes in. We supply the GetReference method with a parameter of the class name of the object we want to access.�

	loObject = DataDoIt� XG "DataDoIt" �(“GetReference� XG "GetReference" �(‘MultiTableBehavior’)”)�

We use the DataDoIt method here because we want to check the linked list of data behavior objects. The result should be that loObject contains a reference to the object we need and will let us do the following:�

	DIMENSION loObject.aCursors[2]��	loObject.aCursors[1] = ‘Orders’�	loObject.aCursors[2] = 'OrdItems'�

Should the requested class not be found, the loObject will contain the NULL value.

�

�

The DataBehavior� XG "DataBehavior" � classes

The DataBehavior classes are probably the most important group of classes from a programmer’s point of view. These classes control how a form works with the underlying data. This data can be a table or view from a database, both Visual FoxPro and Client Server� XG "Client Server" �, or something completely different like an array or a flat file of data.

To see a demonstration of how a form can work with an array of data, examine the Printers form� XG "Printers form" � in the Demo application. In this form, an array is loaded with all the available printers that Windows reports. The user the can navigate through the printers array as if it were a table.

One or more DataBehavior classes can be combined to supplement each other. For example, the MultiTableBehavior� XG "MultiTableBehavior" � class allows the developer to create a form with more than one table or view that needs to be updated. This kind of form usually needs to make sure that either all tables are updated or none at all. As it is possible that a validation in the second table fails, this means that the whole saving of the data is to be wrapped in a transaction� XG "transaction" �. When you use the Visual FoxPro database container, this is done using a START TRANSACTION together with a COMMIT� XG "COMMIT" � or ROLLBACK� XG "ROLLBACK" �. However if you use a client server database this will not work and you need to issue a SQLSETPROP()� XG "SQLSETPROP()" � in combination with a SQLCOMMIT()� XG "SQLCOMMIT()" � or a SQLROLLBACK().� XG "SQLROLLBACK()." �

This means that it would be a bad idea to combine the transaction handling in the same class as the saving of the data. To separate this, the DataBehavior classes can be used to supplement each other. For example, the class DBCTransactionBehavior handles the START TRANSACTION, calls the next DataBehavior object to actually save the data and, depending on the return value of the Save method, either does a COMMIT or a ROLLBACK. This means that this class is not aware of how the data is actually saved. It only knows that some other object further down the linked list is supposed to be able to handle this. The class that actually is doing the saving of data doesn't need to know whether it is working on a client server database or on a Visual FoxPro database since the only difference is the transaction processing that is handled by another class.

This supplementing of behavior can be useful in many different circumstances. For example, in one application, the developer might want to let the user switch between view mode and edit mode. But in another application, the developer might let the users edit whenever they wish. This would require only a small modification to the DataBehavior by adding a class that keeps track of the state and lets the toolbars and menus enable and disable itself whenever needed.

�

The FormBehavior� XG "FormBehavior" � classes

The FormBehavior classes are similar to the DataBehavior classes in the way they operate, but they are concerned with the way a form looks and feels to the user. The FormBehavior classes are used to accomplish things like numbering form captions if multiple copies of a form are allowed, saving and restoring the form’s position in the registry or adding the form to the Window pad� XG "windows pad" � of the application menu� XG "application menu" �.

A special case of the FormBehavior classes is the class FormResizeBehavior� XG "FormResizeBehavior" �. The default action of Visual FoxPro is to allow the user to resize a form but to leave all contained controls as they where. This hardly is the kind of behavior a developer would want in his or her application. Adding the FormResizeBehavior class to the form's cFormBehavior property will allow the user to resize a form with the effect that all the contained controls are scaled when the form is resized. This class will also change the form’s BorderStyle to '3 Sizable Border' from the default of '1 - Single line border'.

Another use of the FormBehavior classes is to alter some basic form properties like BorderStyle or BackColor without having to create a lot of different base forms. Just create an application-specific FormBehavior class and add these changes to the Init method. Then add this class to all the forms used in the application. This way, it is easy to ensure that all forms will appear the same to the user.

Just as is the case with the DataBehavior classes, it is possible to mix several behaviors together to create the desired effect. If a class doesn't know how to handle a request, it just passes it on to the next object which might handle it or might also pass it further down the list.

�

The MouseBehavior� XG "MouseBehavior" � classes

The last behavior class is MouseBehavior. The tasks MouseBehavior is intended to solve involve the interactions between the user and the form. This means that you can, for example, create standard classes to react to a right click event on a form. This could be used to add a context menu ,as is becoming a standard feature in many windows applications.

Another area where these classes come in handy is debugging. I have created a class that will call an object inspector� XG "object inspector" � when a form is double clicked. Using this object inspector, it is quite easy to debug a form.

Other possible uses could be for context sensitive help or for a self-running demonstration version of the software using MOUSE or KEYBOARD command in a MouseBehavior class.

Application behavior� XG "Application behavior" �

The application behavior is similar to the form behavior. It is created when the application is created and remains in memory until the application is destroyed. The application Init method calls the Application Behavior ApplicationInit method. If the ApplicationInit method return FALSE the application is not created. This can be used for security purposes or some other check if an application is allowed to be created. At the other end of the application, when it is destroyed the OnShutdown method is called. If this OnShutdown method returns FALSE the application will not be terminated. To use one or more Application Behavior object fill the application class cBehavior property with a comma separated list of Application Behavior classes to load at startup time.

�The Tools� XG "Tools" � classes

It is very nice to be able to define how a form will behave at runtime, but we must also provide a way for the user to interact with the form. To let the users do so, we have a number of tool objects available. A tool is a toolbar, a menu or something similar. At present, there are examples of both toolbars� XG "toolbars" � and menus� XG "menus" � in the framework. It also is quite easy to add your own tools.

Each form has a property, cTools,� XG "cTools" � which contains a comma-separated list of the tools this form uses. When the form is initiated, the related tools are created by a tools manager which is responsible for all tools. If multiple forms use copies of the same tool, the tool manager� XG "tool manager" � will make sure that there is actually only a single copy of the tool and that it gets enabled and disabled appropriately.

All tools interact with the active form through the _SCREEN.ActiveForm� XG "_SCREEN.ActiveForm" � property. As all related tools are disabled when a form loses focus, it is impossible for a tool to send a message to _SCREEN.ActiveForm when there is no active form.

�Builders� XG "Builders" �

The class library sBuilder contains a form builder for use with the framework. This builder lets the programmer choose from the available DataBehavior, FormBehavior, MouseBehavior and Tools classes to define the behavior and appearance of the form. It also lets the programmer change the text properties that contain the error messages in case of a trigger violation and the text that is used to query the end user for confirmation when he wants to delete a record.

The behavior classes are stored in a table VfrmBldr.dbf that should be located in the same directory as the sBuilder.vcx class library. This table contains three fields :

Name�The actual class name.

Cat�The class category. SDB indicates a DataBehavior class, SDF indicates a FormBehavior class, SDM indicates a MouseBehavior class and STL indicates a Tools class.

Descript�A memo field containing a short description of the class.

If you have created your own behavior classes and want to be able to add them to a form with the builder it ca be done simply by adding them to the VfrmBldr.dbf table and next time you run the builder they will be available.

Error handling� XG "Error handling" �

Error handling is implemented as an Application Behavior class. This means that you need to add the ErrorHandler or its subclass to the applications cBehavior property. The ErrorHandler class creates a global memory variable goErrorHandler pointing to itself and registers the OnError.prg as the ON ERROR procedure. The reason for the extra procedure file is that a RETRY from an error object causes a GPF or similar error to occur.

When an error occurs the OnError procedure calls the ErrorHandler object. This object creates an error object and calls the error object handle it method. It this method returns a value of TRUE a retry will be issued, otherwise the error will be ignored. Most errors are fatal and in that case the error object is responsible for terminating the application.

To help the developer track runtime errors a log file is updated every time an error occurs. The action is to always log the current date and time, the current user and the contents of the array created by the AERROR function. Depending on three properties in the error handler a LIST STATUS, LIST MEMORY and a LIST OBJECTS is also stored in the log file. The default is to save the LIST STATUS and LIST MEMORY but not the LIST OBJECTS.

Some errors, like a lock by another user, can be retried by the user when they occur. If this happens the error is not written to the log file.

To enhance the error handler create a subclass and override the method CreateErrorObject to return an error object for you errors. For all other errors call the default method to create one of the standard error objects.

When an application is run in debug mode the error handler will not be activated leaving you with either your own or the default Visual FoxPro error handler.

�Reports� XG "Reports" �

Reports are implemented in the form of a report manager and a number of subclasses of the abstract BaseReport class. The report manager contains a listbox with two columns. The first column is visible and contains a description of the report for the user. The second column is invisible and contains the class name to create.

When the user selects a report and chooses one of the Print, Preview or To File buttons an object is created of the specified class name. If the user runs the same report multiple times the same object is reused. When the report object is created the appropriate method in it is called to handle the users request. The first step in this process is to call the GetParameters method. If a specific report requires any parameters they can be requested here otherwise it can be left as default. When a FALSE is returned from the GetParameters method the report action is canceled. The second step is calling the LoadData method. In this method a check is preformed is the data needs to be loaded and if so this is done. If the same report is run multiple times after each other with the same parameters the data environment will still be up to date so it is recreated. After this is done the specified report is called to create the output.

The reports data environment is not used in this system as this is difficult to control. Running the same request multiple times would force the report to do the same thing multiple times. In this case a lot of time can be saved.

Because a toolbar class is used as the base class for the report it runs in a private data environment. The result of this approach is that no cleanup code is needed to remove relations and temporary cursors. Then the report object is released the data environment is destroyed thus handling the cleanup action.

To make the report system data driven create a table to hold the description and the class name that the report manager holds in the listbox and change it to load itself from the table.

Security� XG "Security" �

The security module is also implemented as IdSecurityApplication which is an Application Behavior class. In the ApplicationInit method the user is required to log in. The default procedure is to call a form called Login.scx asking the user to provide a user name and password. Other approaches could be to override the login method to retrieve the Windows or Novell user name and using that instead.

To check is the user is allowed to use the application a file Users.dbf is maintained with all users and passwords.

To enable security on a form level several steps need to be done.

The DataBehavior class IdSecurityData needs to be added to the forms cDataBehavior property. This needs to be placed before the other classes so it can prevent the user form saving data if he lacks the required permission.

The forms cSecurityId property is filled with a security id for the form.

The table SecId.dbf is filled with the security identifiers and the groups they belong to. A security identifier can be added to several security groups and a security group can consist of one or more security identifiers.

The table UserGrp.dbf is filled with the user, the security group and the permissions for that group.

When the permission for a specific action needs to be checked the application objects IsAllowed method is called. This method requires two parameters, the security identifier and the required permission. The method returns TRUE if permission is granted or FALSE otherwise.

When a security check is done all permissions for that security identifier are selected from the UserGrp.dbf tables. If one of the permissions includes the complete requested permission it is granted.

For example :

The security is checked for security identifier CUSTOMER which is in group ADMIN and SUPPORT. The requested permission is READ and WRITE and ADD. If the ADMIN group has READ and WRITE and the SUPPORT group has READ and ADD the request would be rejected as no group contains the complete privilege. If either group has READ and WRITE and ADD and DELETE permission the request would have been approved as this is a superset of the requested.

The IdSecurityApplication class contains a method CreateTables. This method is never called but the contents can be used to create the three required tables.

Managers and tools� XG "Managers and tools" �

With each form used a number of tools can be used. These tools can consist of toolbars and extra popup menus that are added to the main menubar but also of completely different things like status windows. As a tool can be associated with multiple forms it is not left to the form itself to manage them but instead this task is delegated to a specific tools manager. This tools manager is created by the application object during the setup phase of the application.

It is possible to use a different tools or tools managers manager than the one that are provided with the framework. To use a different tools manager create a subclass of BaseMgr (sManager.vcx) or one of its subclasses and specify the required behavior. There are two different tools managers provided with the framework. The first is BaseMgr which is the default. This is a simple manager with very little overhead. The main disadvantage of this manager is that when a user switches between two forms every tool associated with the old from is disabled and then every tool associated with the new form is enabled. This can result in a tool getting disabled and enabled in rapid succession. The other tools manager that is provided is TimedManager. This tools manager is a little more sophisticated in that it will buffer the enable and disable requests and only performs the last. This means that tools don’t get disabled and enabled in rapid succession. The main drawback of this tools manager is that it uses a timer so it does cause a limited overhead.

Normal tools can be split into toolbars and menus. To create a new toolbar just subclass BaseToolBar (sTools.vcx) and implement the necessary methods. With menus there are more options. If you want to use the default Visual FoxPro menu generator you can subclass MenuTool and fill in three properties, cMenuName, cPadName and cPopupName. If you want to use an object oriented menu system create a new subclass of BaseTool to implement the necessary code.

�Legal issues� XG "Legal issues" �

This framework is a shareware� XG "shareware" � product. You are free to try it for a trial period of 30 days, providing that you don’t develop any commercial applications� XG "commercial applications" � with it. If you want to use this product after the 30-day trial period, you need to obtain a license. If you do not want to continue using this framework, you must remove all copies of the source code from your computer and any removable media.

Once you have obtained a license, you may use this framework to develop end-user applications for yourself or for your clients. If you want to develop applications using the framework with multiple developers,� XG "multiple developers" � each developer must have a separate licensed copy.

You are not allowed to use this product for the development of another application framework, application generator or any similar tool intended to be used to develop other programs. If you are unsure whether this applies to your development or you want to create an application like this, contact the author.

You are free to distribute copies of this framework to other people provided that there is no charge for doing so and that there are no modifications to any part of the framework or accompanying files.

Registration

Upon registration a copy off the framework with full source code will be provided.

On Compuserve��GO SWREG��You can search for VFP Frame or use the registration ID which is 12925. �Note that the total charge is $ 75.00.�

Otherwise��Send an email to me at the address :�Maurice de Beijer�CIS: 100325,1536�Internet: 100325.1536@COMPUSERVE.COM

DISCLAIMER OF WARRANTY

THIS FRAMEWORK AND THE ACCOMPANYING FILES ARE SOLD AS IS AND WITHOUT WARRANTIES OF ANY KIND WHETHER EXPRESSED OR IMPLIED. NO WARRANTY OR FITNESS FOR A PARTICULAR PURPOSE IS OFFERED.

BECAUSE OF THE VARIOUS HARDWARE AND SOFTWARE ENVIRONMENTS INTO WHICH THIS PROGRAM MAY BE PUT, NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE IS OFFERED.

GOOD DATA PROCESSING PROCEDURE DICTATES THAT ANY PROGRAM BE THOROUGHLY TESTED WITH NON-CRITICAL DATA BEFORE RELYING ON IT. THE USER MUST ASSUME THE ENTIRE RISK OF USING THIS PRODUCT.

ANY LIABILITY OF THE SELLER WILL BE LIMITED EXCLUSIVELY TO PRODUCT REPLACEMENT OR REFUND OF PURCHASE PRICE.

�Framework classes� XG "Framework classes" �

sABehav.vcx� XG "sABehav.vcx" �

The class library sABehav contains the classes that can be used to specify the behavior of the application. Use these classes to indicate how the application works.

BaseApplicationBehavior� XG "BaseApplicationBehavior" ����Description�Abstract base class for all application behavior classes. Use this class as the baseclass for new application behavior classes you want to define.��BaseClass�BaseBehavior�����Properties���oLinked�Inherited from BaseBehavior�����Methods���ApplicationInit�Override this method to perform an action when the application is started. If the methods returns FALSE the application object is not created.��Init�Receives one parameter, a reference to the application object.��OnShutdown�Override this method to perform an action when the application is stopped. If the method returns FALSE the application will not be terminated.��

�

BaseSecurityBehavior� XG "BaseSecurityBehavior" ����Description�Abstract base class for all security managers. Use this class as the baseclass for new security managers classes you want to define.��BaseClass�BaseApplicationBehavior�����Properties���cUserId�The user identifier of the current user.��oLinked�Inherited from BaseBehavior�����Methods���ApplicationInit�Calls the Login method to let the user login. If the user is allowed to login the method return TRUE otherwise it returns FALSE to prevent the application object from being created.��GetUserId�Returns the current users identifier.��Init�Add a reference to itself to the application object in the oSecurity property.��IsAllowed�Override this method to check if permission is granted for an action.��Login�Override this method to retrieve the users user identifier. Return TRUE is the user has permission, returns FALSE to stop the user.��

�

SingleApplication� XG "SingleApplication" ����Description�Application behavior class to stop the user from activating the current application twice on the same workstation.

***** WARNING *****

The function SetForgroundWindow is not supported by WIN32S according

 to the WIN 32 API documentation. However testing this on Windows 3.11

seems to produce the required result. No guarantees given though.��BaseClass�BaseApplicationBehavior�����Properties���cCaption�The application title to search for in windows.��oLinked�Inherited from BaseBehavior�����Methods���ApplicationInit�Uses the application cTitle property to check if there is an application running with the same title. If there is that application will be activated and the current application will be prevented from starting.��

�

sApp.vcx� XG "sApp.vcx" �

The class library sApp contains the application class. You can use this class to create a subclass named Application which will actually get loaded as the main application object goApp.

BaseApp� XG "BaseApp" ����Description�Abstract base class for the application class� XG "application class" � that will be used in the application. This class or a subclass of it will be subclassed to form the Application main class that is used to create the goApp object.��BaseClass�Custom�����Properties���cApplication� XG "cApplication" ��Application name. Used when storing and retrieving data from the registry.��cBehavior�Comma separated list of behavior classes to load at application startup. ��cCompany� XG "cCompany" ��Company name. Used when storing and retrieving data from the registry.��cDataBehavior�The default DataBehavior� XG "DataBehavior" � classes to use when the StandardDataBehavior� XG "StandardDataBehavior" � class is used.��cDataSettings� XG "cDataSettings" ��Class name to be used for issuing the SET commands for a local data session.��cFormBehavior�The default FormBehavior� XG "FormBehavior" � classes to use when the StandardFormBehavior� XG "StandardFormBehavior" � class is used.��cMainMenu� XG "cMainMenu" ��Class name for class to load the main application menu.��cMouseBehavior�The default MouseBehavior� XG "MouseBehavior" � classes to use when the StandardMouseBehavior� XG "StandardMouseBehavior" � class is used.��cOldCaption� XG "cOldCaption" ��Used to store the old _SCREEN.Caption.��cRegistry� XG "cRegistry" ��Class name of the registry class to use. If left empty (the default) the registry� XG "registry" � class that will be used depends upon the operating system used. See also the LoadRegistry method.��cSplashForm� XG "cSplashForm" ��Splash form� XG "Splash form" � to display at startup.��cTitle� XG "cTitle" ��Application title to use as _SCREEN.Caption.��cTools�The default Tools classes to use when the StandardTools� XG "StandardTools" � class is used. Note : The StandardTools� XG "StandardTools" � class is part of the MouseBehavior objects instead of the Tools.��cToolsMgr� XG "cToolsMgr" ��Class name of the tools manager to use.��cVersion� XG "cVersion" ��Program version. Can be used in combination with the GenMenuX *:AutoVersion feature. See also the SetVersion method.��lDebugMode� XG "lDebugMode" ��True if the application is run in debug mode. The application is in debug mode if the file DEBUG.TXT is in the current directory and the application is not run as a standalone executable.��lDevelopMode� XG "lDevelopMode" ��True if the application is run in development mode� XG "developers mode" �. The application is run in development mode when it is run with a parameter of .T. When the application is run in development mode, the application and tools manager objects are created, but the main application menu is not displayed and no READ EVENTS is issued. This mode facilitates development and debugging without having to build and run the application each time.��oBehavior�Linked list of application behavior objects.��oSecurity�Object to handle security requests.��oRegistry� XG "oRegistry" ��Reference to the object used to manipulate the registry.��oSplashForm� XG "oSplashForm" ��Reference to the splash form.�����Methods���AppSetup�Setup the application. Set the environment, the version number, the application caption, the registry object, the tools manager and the menus.��CreateMenu�Load the application main menu if the application is not run in development mode. Add the debug menu if the application is run in debug mode.��CreateToolsMgr�Creates the tools manager specified in the cToolsMgr property.��Destroy�Releases the tools manager, resets the application caption and the ON SHUTDOWN setting.��Do�Calls the AppSetup method to initialize the application and the ReadEvent method to start the event handler.��GetRegistry�Read a value from the registry or INI file. Uses the oRegistry object to perform the actual read action. If no registry object is available, the default value is returned.��GetUserId�Returns the current users identifier if security is used. Return an empty string if no security is used.��HideSplash�Removes the splash form after 5 seconds or when the user presses a key or mouse button.��Init�Sets the lDevelopMode property if the application is run in development mode.��IsAllowed�Checks if the current user has the requested rights.��LoadBehavior�Load the application behavior classes.��LoadRegistry�Loads the registry object into memory. If the cRegistry property is specified, this class will be used. Otherwise, the operating system will determine the class used.��OnShutdown�Registered as the ON SHUTDOWN method. Checks whether all forms can be unloaded and, if so, stops the event handler and releases the application object.��OpenTables�Opens tables in the default data session environment at the application startup. This will allow individual form to load faster as the tables are opened with a USE AGAIN.��ReadEvent�If the application is not run in development mode, the event loop is started.��SetCaption�Sets the _SCREEN.Caption to the cTitle property. Saves the old caption to restore at the end of the application.��SetRegistry�Stores a value in the registry. The oRegistry object is used to do the actual storing.��SetSettings�Sets the application’s SET commands that are not scoped to a private data session. It loads the class specified in the cDataSettings property to set the settings that are scoped to a private data session. Sets the lDebugMode property if the file DEBUG.TXT is in the current directory and the application is not run as a standalone executable.��SetVersion�Can be used to set the version number with the GenMenuX *:AutoVersion command. Not used by default.��ShowSplash�Create the splash screen specified in the cSplashForm property. The splash screen is not displayed if the application is run in development mode.��

�

sBuilder.vcx� XG "sBuilder.vcx" �

The class library sBuilder contains the frameworks builders and supporting classes.

VfrmFormBuilder� XG " VfrmFormBuilder " ����Description�A builder to help the developer change the behavior of a form. A table VfrmBldr.dbf� XG "VfrmBldr.dbf" � is used to store the available behavior and tool classes. The table consists of three fields : Name the actual class name, Cat the class category (SDB is DataBehavior, SDF is FormBehavior, SDM is MouseBehavior and STL is Tools) and Descript a memo field containing a description.��BaseClass�Form�����Properties���cDeleteMessage�Contains a copy of the forms cDeleteMessage property.��cErrorTriggerDelete�Contains a copy of the forms cErrorTriggerDelete property.��cErrorTriggerInsert�Contains a copy of the forms cErrorTriggerInsert property.��cErrorTriggerUniqueKey�Contains a copy of the forms cErrorTriggerUniqueKey property.��cErrorTriggerUpdate�Contains a copy of the forms cErrorTriggerUpdate property.��oForm�Contains a reference to the form the builder is operating on.�����Methods���Destroy�Releases the VfrmBldr.dbf table from the data environment��Init�Adds the builder to the Builders.dbf table if it isn’t in there yet.��Load�Fills the oForm property.��LoadProperties�Loads the forms properties into the builders form for editing.��SaveProperties�Saves the properties from the builders form to the original form.��

�

sControls� XG "sControls" �.vcx

The class library sControls contains the classes that can be used to create forms. You can use these classes instead of the Visual FoxPro bases classes if you want to. The framework doesn’t depend on any code in these classes for its operations

cCheckBox� XG "cCheckBox" ����Description�Base checkbox class.��BaseClass�checkbox�����Properties������Methods���Release�Releases the object.�����

cComboBox� XG "cComboBox" ����Description�Base ComboBox class.��BaseClass�ComboBox�����Properties������Methods���Release�Releases the object.�����

cCommandButton� XG "cCommandButton" ����Description�Base class.��BaseClass�CommandButton�����Properties������Methods���Release�Releases the object.�����

cContainer� XG "cContainer" ����Description�Base class.��BaseClass�Container�����Properties������Methods���Release�Releases the object.�����

cCustom� XG "cCustom" ����Description�Base class.��BaseClass�Custom�����Properties������Methods���Release�Releases the object.�����

cGrid� XG "cGrid" ����Description�Base class.��BaseClass�Grid�����Properties������Methods���Release�Releases the object.�����

cLabel� XG "cLabel" ����Description�Base class.��BaseClass�Label�����Properties������Methods���Release�Releases the object.�����

cListBox� XG "cListBox" ����Description�Base class.��BaseClass�ListBox�����Properties������Methods���Release�Releases the object.�����

cOptionGroup� XG "cOptionGroup" ����Description�Base class.��BaseClass�OptionGroup�����Properties������Methods���Release�Releases the object.�����

cPageFrame� XG "cPageFrame" ����Description�Base class.��BaseClass�PageFrame�����Properties������Methods���Release�Releases the object.�����

cTextBox� XG "cTextBox" ����Description�Base class.��BaseClass�TextBox�����Properties������Methods���Release�Releases the object.�����

cToolBar� XG "cToolBar" ����Description�Base class.��BaseClass�ToolBar�����Properties������Methods���Release�Releases the object.�����

MemoryGrid� XG "MemoryGrid" ����Description�Grid with a memory. Every time it is deactivated it will store its layout in the registry. When the grid is loaded next time it will retrieve these settings so it reappears the same way for the user.��BaseClass�cGrid�����Properties������Methods���Release�Releases the object.�����

MoverContainer� XG "MoverContainer" ����Description�Container with two listboxes to select and deselect items. The user can select item through the buttons. The data is stored in the listbox List array and uses the ColumnCount to check on the number of columns. Use the columnWidth property to create invisible columns if required. ��BaseClass�cContainer�����Properties������Methods���Release�Releases the object.�����

pgfRefresher� XG "pgfRefresher" ����Description�Base class.��BaseClass�cTextBox�����Properties���TabStop�FALSE to prevent the user from tabbing to it.��Visible�FALSE to prevent the user from seeing it.�����Methods���Init�Moves itself outside the form to prevent any interaction with the user.��Refresh�Sets the aPageFresh indicator to TRUE to indicate that the page is fresh.��Release�Releases the object.��UIEnabled�When the page receives focus the aPageFresh indicator is checked to see if the current page needs to be refreshed.��

RefreshPageFrame� XG "RefreshPageFrame" ����Description�A pageframe that remembers when it was refreshed. For each page a status is maintained to indicated if it needs to be refreshed. When a page is activated it refreshes itself if it is out of date. This class add a copy of the pgfRefresher class to each page to check when it is activated.��BaseClass�cPageFrame�����Properties���aPageFresh�Array of indicators to hold a status for each page. If a page is up to date it will be TRUE otherwise FALSE. The pgfRefresher object on each page checks and sets there indicators as required.�����Methods���Init�Initializes the aPageFresh array to hold an indicator for each page and adds a copy of pgfRefresher to each page.��Refresh�Sets all indicators in the aPageFresh array to FALSE indicating they need to be refreshed.��Release�Inherited from cPageFrame��

�sDBehav.vcx� XG "sDBehav.vcx" �

The class library sDBehav contains the classes that can be used to specify the data behavior of a form. Use these classes to indicate how a form works with its underlying data.

ArrayBehavior� XG "ArrayBehavior" �

���Description�Abstract base class to use for DataBehavior classes that need to navigate through an array of data instead of a cursor. Use this class as a base class if you need a DataBehavior class that will let the user navigate through an array of data.��BaseClass�BaseDataBehavior� XG "BaseDataBehavior" ������Properties���aArrayData�Data to manipulate on the form. This array should be loaded by the subclass that is actually used.��nThisItem�The currently displayed row from the array on the form.�����oLinked�Inherited from BaseBehavior�����Methods���AddBehavior�Inherited.��DataCancel�To be implemented by the actual subclass if needed.��DataDelete�To be implemented by the actual subclass if needed.��DataEdit�To be implemented by the actual subclass if needed.��DataNew�To be implemented by the actual subclass if needed.��DataSave�To be implemented by the actual subclass if needed.��DisplayData�To be implemented by the actual subclass if needed.��DoIt�Inherited.��FormInit�Only load the form if there is data to display.��FormQueryUnload�Inherited..��GetReference�Inherited��IsChanged�To be implemented by the actual subclass if needed.��SkipBottom�Display last row.��SkipNext�Display next row.��SkipPrevious�Display previous row.��SkipTop�Display first row��

�

BaseBehavior� XG "BaseBehavior" ����Description�Abstract base class of all behavior classes. This class is used as a base class for every Behavior class. You should never need to create a subclass from this class. All behavior classes are either of type DataBehavior, FormBehavior or MouseBehavior and these should be used as the base classes.��BaseClass�Custom�����Properties���oLinked�Reference to the next linked behavior object�����Methods���AddBehavior�Add a new behavior object of the class that is passed as parameter to the chain.��DoIt�Send a message to a method returning its result or the value of a property if it exists. If the method or property is not found, sent to the next behavior object in the chain. Returns .NULL. if no object can handle the message.��FormInit�Evaluated at the form’s Init event. If it returns FALSE, the form is not created.��FormQueryUnload�Evaluated at the form’s QueryUnload event. If it returns FALSE, the form is not released.��GetReference�Returns a reference to the current object if the class name equals the parameter. Returns .NULL. if the class is not found��

�

BaseDataBehavior� XG "BaseDataBehavior" ����Description�Base class of all DataBehavior classes. Use this as the base class for any new DataBehavior classes you want to create. For examples of how to do so, see the chapter on Form and Behavior classes.��BaseClass�BaseBehavior� XG "BaseBehavior" ������Properties���oLinked�Inherited from BaseBehavior.�����Methods���AddBehavior�Inherited from BaseBehavior.��DataCancel�To be implemented by the actual subclass if needed. The action is supposed to cancel the current modifications to the data.��DataDelete�To be implemented by the actual subclass if needed. The action is supposed to delete the current data.��DataEdit�To be implemented by the actual subclass if needed. The action is supposed to allow the user to modify the current data��DataNew�To be implemented by the actual subclass if needed. The action is supposed to add a record to the current table or view.��DataSave�To be implemented by the actual subclass if needed. The action is supposed to save the current modifications to the data.��DoIt�Inherited from BaseBehavior.��FormInit�Inherited from BaseBehavior.��FormQueryUnload�Inherited from BaseBehavior.��GetReference�Inherited from BaseBehavior.��IsChanged�To be implemented by the actual subclass if needed. The action is supposed to indicate a change in the current data.��SkipBottom�To be implemented by the actual subclass if needed. The action is supposed to skip to the last record in the table or view.��SkipNext�To be implemented by the actual subclass if needed. The action is supposed to skip to the next record in the table or view.��SkipPrevious�To be implemented by the actual subclass if needed. The action is supposed to skip to the previous record in the table or view.��SkipTop�To be implemented by the actual subclass if needed. The action is supposed to skip to the first record in the table or view.��

�

DataSettings� XG "DataSettings" ����Description�Issues all SET commands for a private data session. This class is used to set all private DataEnvironment related settings. The default is to use the Windows settings so a form will use the user’s definitions for currency signs and decimal points. If you want to use a custom DataSettings class, you can either subclass it from this class or create it from scratch by subclassing it from BaseDataBehavior. Change the Application.cDataSettings property to indicate to the framework that your class should be used instead of the default DataSettings class.��BaseClass�BaseDataBehavior�����Properties���oLinked�Inherited from BaseDataBehavior�����Methods���Init�Sets all the environment settings for a private data session. Returns FALSE because it doesn't need to stay in memory.��

�

DBCTransactionBehavior� XG "DBCTransactionBehavior" ����Description�Wraps a START TRANSACTION and a COMMIT or ROLLBACK around the save action of a form. This forms a good example of how you can enhance another DataBehavior class. This class has no idea how the data is saved or what table or buffering mode is used. It does know how to handle transactions and simply lets another class handle the actual saving of the data.��BaseClass�BaseDataBehavior� XG "BaseDataBehavior" ������Properties���oLinked�Inherited from BaseBehavior.�����Methods���DataSave�Issues a BEGIN TRANSACTION and then class the next DataBehavior object to handle the actual saving of data. If the next object's DataSave returns TRUE, signaling success, an END TRANSACTION is issued otherwise a ROLLBACK is performed��

�

MultiTableBehavior� XG "MultiTableBehavior" ����Description�Data behavior class to enable a form to handle multiple tables or views in the data environment. You can use this class when you use a form with multiple tables or views. It always first selects the workarea specified in the property DataEnvironment.InitialSelectedAlias before skipping. In the case of checking for an update, saving the data or canceling an update, it uses the workareas listed in the aCursors array property. By default, this is filled with all open workareas. You can control the order that the tables get updated by ordering the aCursors array. It is always parsed from element one to the last element.��BaseClass�SingleTableBehavior� XG "SingleTableBehavior" ������Properties���aCursors�Array of all the cursors to update. By default, this is filled with all the open cursors in the form’s private data environment.��cModifiedMessage�Message to ask the user to save their modifications. The text is stored in the Frame.h file and is loaded into this property in the SingleTableBehavior Init event.��oLinked�Inherited from SingleTableBehavior�����Methods���Init�Calls the SingleTableBehavior Init method and the LoadCursors method.��AddBehavior�Inherited from SingleTableBehavior.��AskToSaveData�Inherited from SingleTableBehavior��DataCancel�Calls the SingleTableBehavior DataCancel method for all tables in the aCursors array.��DataDelete�Selects the main working alias and calls the SingleTableBehavior method��DataEdit�Inherited from SingleTableBehavior��DataNew�Selects the main working alias and calls the SingleTableBehavior method.��DataSave�Calls the SingleTableBehavior DataSave method for all tables in the aCursors array.��DoIt�Inherited from SingleTableBehavior��FormInit�Selects the main working alias and calls the SingleTableBehavior method.��FormQueryUnload�Selects the main working alias and calls the SingleTableBehavior method.��GetReference�Inherited from SingleTableBehavior��IsChanged�Calls the SingleTableBehavior DataSave method for all tables in the aCursors array.��LoadCursors�Loads the aCursors property with all open work areas for the form’s private data session.��SaveTable�Inherited from SingleTableBehavior��SaveTableError�Inherited from SingleTableBehavior��SelectAlias�Selects the work area indicated in the form’s DataEnvironment InitialSelectedAlias property.��SkipBottom�Selects the main working alias and calls the SingleTableBehavior method.��SkipNext�Selects the main working alias and calls the SingleTableBehavior method.��SkipPrevious�Selects the main working alias and calls the SingleTableBehavior method.��SkipTop�Selects the main working alias and calls the SingleTableBehavior method��

�

SingleTableBehavior� XG "SingleTableBehavior" ����Description�Data behavior class for a form that is to work with one single table or view. This is the default class for DataBehavior. It is geared towards a form with only a single open table or view. If you use multiple tables or view in a form you should use the MultiTableBehavior class instead.��BaseClass�BaseDataBehavior� XG "BaseDataBehavior" ������Properties���cModifiedMessage�Message to ask the user to save its modifications. The text is stored in the Frame.h file and is loaded into this property in the Init event��oLinked�Inherited from BaseDataBehavior�����Methods���Init�Loads the cModifiedMessage property.��AddBehavior�Inherited from BaseDataBehavior.��AskToSaveData�Asks the user to save their changes. The user gets the choice between saving the changes, reverting the changes or remaining in the current state��DataCancel�Cancels the current changes by issuing a TableRevert().��DataDelete�Deletes the current record.��DataEdit�Empty method to be used for forms where the user has to press an edit button before being able to make any changes to the data.��DataNew�Append a new record to the cursor.��DataSave�Checks whether the current record is changed and, if so, calls the SaveTable method to save the changes.��DoIt�Inherited from BaseDataBehavior��FormInit�Sets the Database to the Database of the currently active alias.��FormQueryUnload�Checks to see if there are any uncommitted changes. If there are, the AskToSaveData method is called.��GetReference�Inherited from BaseDataBehavior.��IsChanged�Checks if there are any uncommitted changes in the database. If there is a new record without any changes, the record is removed. If the active control contains any changes, its SetFocus method is called.��SaveTable�Issues a TableUpdate(.T., .T.) to save all changes. If an error occurs, the SaveTableError method is called.��SaveTableError�Displays the relevant error message to the user. If the error was a failed trigger, the message text is retrieved from the active form. If the error was a field or record rule, the error text is retrieved from the database. In the case of a unique index violation, a standard message text is displayed��SkipBottom�Skips to the last record��SkipNext�Skips to the next record.��SkipPrevious�Skips to the previous record��SkipTop�Skips to the first record��

�

StandardDataBehavior� XG " StandardDataBehavior " ����Description�This class adds the standard DataBehavior from the application object and adds it to the current form. It can be combined with other DataBehavior classes to create the behavior for the current form.��BaseClass�BaseDataBehavior� XG "BaseDataBehavior" ������Properties���oLinked�Inherited from BaseDataBehavior.�����Methods���Init�Adds the contents of goApp.cDataBehavior to the current form��AddBehavior�Inherited from BaseDataBehavior��AskToSaveData�Inherited from BaseDataBehavior��DataCancel�Inherited from BaseDataBehavior��DataDelete�Inherited from BaseDataBehavior��DataEdit�Inherited from BaseDataBehavior��DataNew�Inherited from BaseDataBehavior��DataSave�Inherited from BaseDataBehavior��DoIt�Inherited from BaseDataBehavior��FormInit�Inherited from BaseDataBehavior��FormQueryUnload�Inherited from BaseDataBehavior��GetReference�Inherited from BaseDataBehavior��IsChanged�Inherited from BaseDataBehavior��SaveTable�Inherited from BaseDataBehavior��SaveTableError�Inherited from BaseDataBehavior��SkipBottom�Inherited from BaseDataBehavior��SkipNext�Inherited from BaseDataBehavior��SkipPrevious�Inherited from BaseDataBehavior��SkipTop�Inherited from BaseDataBehavior��

�

StartStopEdit� XG "StartStopEdit" ����Description�Data behavior class that will disable the form’s objects during view mode and enable them when the form is in edit mode. This class needs to work with a menu or toolbar that contains an Edit option. See CompleteBar and CompleteMenu for examples.��BaseClass�BaseDataBehavior� XG "BaseDataBehavior" ������Properties���lIsEditing�TRUE if the form is in edit mode, FALSE if the form is in view mode and NULL if the current state is unknown.��oLinked�Inherited from BaseDataBehavior.�����Methods���Init�Inherited from BaseDataBehavior��AddBehavior�Inherited from BaseDataBehavior��AskToSaveData�Inherited from BaseDataBehavior��DataCancel�Inherited from BaseDataBehavior��DataDelete�Inherited from BaseDataBehavior��DataEdit�Inherited from BaseDataBehavior��DataNew�Inherited from BaseDataBehavior��DataSave�Inherited from BaseDataBehavior��DoIt�Inherited from BaseDataBehavior��FormInit�Inherited from BaseDataBehavior��FormQueryUnload�Inherited from BaseDataBehavior��GetReference�Inherited from BaseDataBehavior��IsChanged�Inherited from BaseDataBehavior��SaveTable�Inherited from BaseDataBehavior��SaveTableError�Inherited from BaseDataBehavior��SkipBottom�Inherited from BaseDataBehavior��SkipNext�Inherited from BaseDataBehavior��SkipPrevious�Inherited from BaseDataBehavior��SkipTop�Inherited from BaseDataBehavior��

�

sError.vcx� XG "sError.vcx" �

The class library sError contains the error handler and supporting classes.

BaseError� XG "BaseError" ����Description�Base class to handle all errors that are not handled by a specific class.��BaseClass�Custom�����Properties���aErrors�Array with the information returned by the AERROR() function.��cErrorFile�Name of the log file for the error information.��cMessage�Message to display the user in a message box.��lNoLogging�If TRUE this type of error will not be written to the log file. This is used to prevent additional errors when the disk if full.��nButtons�Buttons to display with the message box. Default it is the OK button.��nIcon�Icon to display with the message box. Default it is the STOP icon.�����Methods���CancelApplication�Kills the application.��HandleIt�Method that is called by the Error Handler to handle this particular error.��Init�Stores a copy of the AERROR() function information in the aErrors property.��LogError�Write information about the current state to the log file.��WarnUser�Display a message box for the user and return the button chosen. The error number is placed before the message text as extra information for the developer.��

�

ErrorConnectionBusy� XG "ErrorConnectionBusy" ����Description�Handle the error when a client server connection is busy. The user is given the choice of retrying or quitting the application��BaseClass�BaseError�����Properties���aErrors�Inherited from BaseError��cErrorFile�Inherited from BaseError��cMessage�Inherited from BaseError��lNoLogging�Inherited from BaseError��nButtons�Display the RETRY and CANCEL buttons��nIcon�Display the question mark icon.�����Methods���CancelApplication�Inherited from BaseError��HandleIt�Inherited from BaseError��Init�Inherited from BaseError��LogError�Inherited from BaseError��WarnUser�Inherited from BaseError��

�

ErrorHandler� XG "ErrorHandler" ����Description�Controls how the error is handled by creating an error object and sending the error message to that object.��BaseClass�BaseApplicationBehavior�����Properties���lDontHandle�Create the error object but don’t call its HandleIt method. This gives the developer the option of handling the error in some custom way.��lLogMemory�Dump a LIST MEMORY to the log file. Default TRUE.��lLogObjects�Dump a LIST OBJECTS to the log file. Default FALSE.��lLogStatus�Dump a LIST STATUS to the log file. Default TRUE.��oErrorObject�Reference to the error object created to handle the error.��oLinked�Inherited from BaseApplicationBehavior.�����Methods���AddBehavior�Inherited from BaseApplicationBehavior.��ApplicationInit�Inherited from BaseApplicationBehavior.��CreateErrorObject�Creates an error object to handle the specific error. It returns a reference to the error object created. To enhance the error handler override this method returning additional error objects.��Init�Create a public variable goErrorHandler holding a reference to this object. Register the OnError procedure as the ON ERROR procedure.��OnError�Call the CreateErrorObject method to populate the oErrorObject property and call its HandleIt method.��OnShutdown�Remove the ON ERROR procedure and the public goErrorHandler object��

�

ErrorIsLocked� XG "ErrorIsLocked" ����Description�Handles the error when a locking conflict occurs. The user can retry or cancel the application.��BaseClass�BaseError�����Properties���aErrors�Inherited from BaseError��cErrorFile�Inherited from BaseError��cMessage�Inherited from BaseError��lNoLogging�Inherited from BaseError��nButtons�Display the RETRY and CANCEL buttons��nIcon�Display the question mark icon.�����Methods���CancelApplication�Inherited from BaseError��HandleIt�Inherited from BaseError��Init�Inherited from BaseError��LogError�Inherited from BaseError��WarnUser�Inherited from BaseError��

�

ErrorNoDiskSpace� XG "ErrorNoDiskSpace" ����Description�The user is informed about the lack of disk space. Due to the nature of the error this error is not logged.��BaseClass�BaseError�����Properties���aErrors�Inherited from BaseError��cErrorFile�Inherited from BaseError��cMessage�Inherited from BaseError��lNoLogging�Inherited from BaseError��nButtons�Inherited from BaseError��nIcon�Inherited from BaseError�����Methods���CancelApplication�Inherited from BaseError��HandleIt�Inherited from BaseError��Init�Inherited from BaseError��LogError�Inherited from BaseError��WarnUser�Inherited from BaseError��

�

ErrorNoMemory� XG "ErrorNoMemory" ����Description�The user is informed of the shortage of memory.��BaseClass�BaseError�����Properties���aErrors�Inherited from BaseError��cErrorFile�Inherited from BaseError��cMessage�Inherited from BaseError��lNoLogging�Inherited from BaseError��nButtons�Inherited from BaseError��nIcon�Inherited from BaseError�����Methods���CancelApplication�Inherited from BaseError��HandleIt�Inherited from BaseError��Init�Inherited from BaseError��LogError�Inherited from BaseError��WarnUser�Inherited from BaseError��

�

ErrorPassword� XG "ErrorPassword" ����Description�The user is informed he tried to read a password protected file. He is given the option to retry after removing the password protection.��BaseClass�BaseError�����Properties���aErrors�Inherited from BaseError��cErrorFile�Inherited from BaseError��cMessage�Inherited from BaseError��lNoLogging�Inherited from BaseError��nButtons�Display the RETRY and CANCEL buttons��nIcon�Display the question mark icon.�����Methods���CancelApplication�Inherited from BaseError��HandleIt�Inherited from BaseError��Init�Inherited from BaseError��LogError�Inherited from BaseError��WarnUser�Inherited from BaseError��

�

ErrorPrinter� XG "ErrorPrinter" ����Description�The user is informed that an error occurred while printing. The user is given the option of retrying after fixing the printer problem.��BaseClass�BaseError�����Properties���aErrors�Inherited from BaseError��cErrorFile�Inherited from BaseError��cMessage�Inherited from BaseError��lNoLogging�Inherited from BaseError��nButtons�Display the RETRY and CANCEL buttons��nIcon�Display the question mark icon.�����Methods���CancelApplication�Inherited from BaseError��HandleIt�Inherited from BaseError��Init�Inherited from BaseError��LogError�Inherited from BaseError��WarnUser�Inherited from BaseError��

�

ErrorReindexFiles� XG "ErrorReindexFiles" ����Description�The user is informed that the index files are out of date. He has to restart the application and reindex all files.��BaseClass�BaseError�����Properties���aErrors�Inherited from BaseError��cErrorFile�Inherited from BaseError��cMessage�Inherited from BaseError��lNoLogging�Inherited from BaseError��nButtons�Inherited from BaseError��nIcon�Inherited from BaseError�����Methods���CancelApplication�Inherited from BaseError��HandleIt�Inherited from BaseError��Init�Inherited from BaseError��LogError�Inherited from BaseError��WarnUser�Inherited from BaseError��

�

ErrorTooManyFiles� XG "ErrorTooManyFiles" ����Description�The user is informed that no file handles are available.��BaseClass�BaseError�����Properties���aErrors�Inherited from BaseError��cErrorFile�Inherited from BaseError��cMessage�Inherited from BaseError��lNoLogging�Inherited from BaseError��nButtons�Inherited from BaseError��nIcon�Inherited from BaseError�����Methods���CancelApplication�Inherited from BaseError��HandleIt�Inherited from BaseError��Init�Inherited from BaseError��LogError�Inherited from BaseError��WarnUser�Inherited from BaseError��

�

sFBehav.vcx� XG "sFBehav.vcx" �

The class library sFBehav contains the class that will form the form behavior. The form behavior is how the end user will perceive the form.

BaseFormBehavior� XG "BaseFormBehavior" ����Description�Base class for all FormBehavior classes. Use this class as the base class for all new FormBehavior classes you create. For examples of how to do so, see the chapter on Form and Behavior classes.��BaseClass�BaseBehavior� XG "BaseBehavior" ������Properties���oLinked�Inherited from BaseBehavior�����Methods���AddBehavior�Inherited from BaseBehavior��DoIt�Inherited from BaseBehavior��FormInit�Inherited from BaseBehavior��FormQueryUnload�Inherited from BaseBehavior.��FormResize�Sends a message to the FormBehavior chain of behavior to resize all contained controls.��GetReference�Inherited from BaseBehavior��

�

FormCaptionBehavior� XG "FormCaptionBehavior" ����Description�Adds an incrementing number to the caption of a form and to its name property. It uses the name property to check for the presence of other forms. If more than one form is found, it will stack the new form just below and to the right of the form with the highest number. Use this class if you want to let the user have multiple instances of the same form open at the same time and you want to give each a unique name and caption. This will let the user pick the correct window from the Windows pad if you also use the WindowsPad class.��BaseClass�BaseFormBehavior� XG "BaseFormBehavior" ������Properties���nFormNumber�The number to add to the Form Name and Caption properties.��oLinked�Inherited from BaseFormBehavior�����Methods���AddBehavior�Inherited from BaseFormBehavior��DoIt�Inherited from BaseFormBehavior.��FormInit�Sends a message to GetFormNumber to determine the next form caption number and sends a message to SetFormCaption to modify the caption and name properties.��FormQueryUnload�Inherited from BaseFormBehavior��FormResize�Inherited from BaseFormBehavior��GetFormNumber�Determines the highest form number for this instances of this form. If multiple instances of this form exist, they are stacked. The new form number is stored in the nFormNumber property��GetReference�Inherited from BaseFormBehavior��SetFormCaption�Adds the form number to the caption and name propertyies.��	�

FormCaptionNoOneBehavior� XG "FormCaptionNoOneBehavior" ����Description�Adds an incrementing number to the caption of a form and to its name property. It uses the name property to check for the presence of other forms. If more than one form is found, it will stack the new form just below and to the right of the form with the highest number. If this is the first form of a type, the caption is not changed. See also the FormCaptionBehavior class as this is a subclass of that class.��BaseClass�FormCaptionBehavior� XG "FormCaptionBehavior" ������Properties���nFormNumber�Inherited from FormCaptionBehavior��oLinked�Inherited from FormCaptionBehavior�����Methods���AddBehavior�Inherited from FormCaptionBehavior��DoIt�Inherited from FormCaptionBehavior��FormInit�Inherited from FormCaptionBehavior��FormQueryUnload�Inherited from FormCaptionBehavior��FormResize�Inherited from FormCaptionBehavior��GetFormNumber�Inherited from FormCaptionBehavior��GetReference�Inherited from FormCaptionBehavior��SetFormCaption�Adds the form number to the caption and name properties if this isn't the first form of this type.��

�

FormResizeBehavior� XG "FormResizeBehavior" ����Description�Resizes all controls contained on a form when the form is resized. It also changes the form’s border style to '3 - Sizeable Border'. This class calls the function ResizeContainer in VfpProc.prg which is called recursively for every container on the form. Use this class if you want to let the user resize a form by dragging its right bottom corner. You could create a subclass of this class which first checks a property from the application object to let the user choose at runtime whether they want this behavior. If not, the subclass Init method simply returns FALSE. If so, the FormResizeBehavior class Init method is called instead.��BaseClass�BaseFormBehavior� XG "BaseFormBehavior" ������Properties���nOldHeight�Height before the resize operation.��nOldWidth�Width before the resize operation.��oLinked�Inherited from BaseFormBehavior�����Methods���AddBehavior�Inherited from BaseFormBehavior��DoIt�Inherited from BaseFormBehavior��FormQueryUnload�Inherited from BaseFormBehavior��FormResize�Calculates the amount the height and width are to be scaled from the current dimensions and the previous dimensions. The function ResizeContainer is called recursively to handle the resizing of all contained controls.��GetReference�Inherited from BaseFormBehavior��Init�Stores the original dimensions to calculate the resize scale and limits the resize operations to plus or minus 25 % of the original forms size. Also sets the form’s BorderStyle property to '3 - Sizeable Border'.��

�

FormSavePosition� XG "FormSavePosition" ����Description�Saves the forms position in the registry or INI file when the form is closed. When the form is initiated, it recalls the position. Use this class to give your forms a memory between different times the application is used. During the form’s startup, the last form’s coordinates are retrieved from the registry and used for this form. If you want to use this class in combination with the FormCaptionBehavior, you need to take care of the order you specify them. If you first specify this class and then the FormCaptionBehavior class, the first form will start at the position of the last form closed and any subsequent forms will be stacked just below the previous. If you specify the order the other way around, all forms will start at the same position.��BaseClass�BaseFormBehavior� XG "BaseFormBehavior" ������Properties���oLinked�Inherited from BaseFormBehavior.�����Methods���AddBehavior�Inherited from BaseFormBehavior��DoIt�Inherited from BaseFormBehavior��FormInit�Retrieves the form’s Top and Left properties from the registry or INI file using the form’s Name property as the key��FormQueryUnload�Stores the form’s Top and Left properties in the registry or INI file using the form’s Name property as the key.��FormResize�Inherited from BaseFormBehavior��GetReference�Inherited from BaseFormBehavior��

�

SavePositionSize� XG "SavePositionSize" ����Description�Saves the forms position and as well as the size in the registry. When the form is restarted the position and size are restored..��BaseClass�FormSavePosition� XG "BaseFormBehavior" ������Properties���oLinked�Inherited from FormSavePosition.�����Methods���AddBehavior�Inherited from FormSavePosition��DoIt�Inherited from FormSavePosition��FormInit�Retrieves the form’s Height and Width properties from the registry or INI file using the form’s Name property as the key then calls the baseclass.��FormQueryUnload�Stores the form’s Height and Width properties in the registry or INI file using the form’s Name property as the key then calls the baseclass.��FormResize�Inherited from FormSavePosition��GetReference�Inherited from FormSavePosition��

�

SingleFormBehavior� XG "SingleFormBehavior" ����Description�Form behavior class for a form that allows only a single instance of itself. When a second copy of the form is run, the FormInit method returns FALSE and the first instance is activated instead. Use this class for those forms where you would want only a single instance to be active at any time.��BaseClass�BaseFormBehavior� XG "BaseFormBehavior" ������Properties���oLinked�Inherited from BaseFormBehavior�����Methods���AddBehavior�Inherited from BaseFormBehavior��DoIt�Inherited from BaseFormBehavior��FormInit�Checks to see whether another form with this name is loaded. If there is one, the form is not loaded but the other form is activated instead��FormQueryUnload�Inherited from BaseFormBehavior��FormResize�Inherited from BaseFormBehavior��GetReference�Inherited from BaseFormBehavior��

�

StandardFormBehavior� XG " StandardFormBehavior " ����Description�This class adds the standard FormBehavior from the application object and adds it to the current form. It can be combined with other FormBehavior classes to create the behavior for the current form.��BaseClass�BaseFormBehavior� XG "BaseFormBehavior" ������Properties���oLinked�Inherited from BaseFormBehavior�����Methods���AddBehavior�Inherited from BaseFormBehavior��DoIt�Inherited from BaseFormBehavior��FormInit�Inherited from BaseFormBehavior��FormQueryUnload�Inherited from BaseFormBehavior��FormResize�Inherited from BaseFormBehavior��GetReference�Inherited from BaseFormBehavior��Init�Adds the contents of goApp.cFormBehavior to the current form��

�

WindowsPad� XG "WindowsPad" ����Description�Adds the caption to the windows menu� XG "menu" � to activate this form upon selection. If this class is used together with FormCaptionBehavior� XG "FormCaptionBehavior" � or one of its subclasses, it is to be placed behind it in the list.��BaseClass�BaseFormBehavior� XG "BaseFormBehavior" ������Properties���cMenuName�Name of the Window menu pad.��nBarNumber�Bar number of the pad that was created��oLinked�Inherited from BaseFormBehavior�����Methods���AddBehavior�Inherited from BaseFormBehavior��Error�If the Window menu pad has not been defined, an error 165 - ‘Menu has not been defined with DEFINE POPUP' occurs. This can happen when the form is run in development mode because the application main menu is not loaded. If another error occurs, the default error handler is called.��DoIt�Inherited from BaseFormBehavior��FormInit�Creates a new bar on the Window menu with the form’s caption as the prompt. When the user chooses the menu bar, the current form is activated.��FormQueryUnload�Removes the bar from the windows menu.��FormResize�Inherited from BaseFormBehavior��GetReference�Inherited from BaseFormBehavior��

�sForms.vcx� XG "sForms.vcx" �

The class library sForms contains the basic form classes for use with this framework.

BaseForm� XG "BaseForm" ����Description�This class is the base class for all forms in the framework. If you create any new classes to work with the framework, they will need to inherit from this class. You can use forms in the framework that do not subclass from this class, but they will not interact with the framework. This could be done for utility forms that are controlled in some other way.��BaseClass�Form�����Properties���aLinkedForms�An array of forms linked to the current form. When the current form is unloaded all the linked forms will also be unloaded. If one of the linked forms cannot be unloaded the current form isn’t unloaded either.

Example :

lnIndex = ALEN(ThisForm.aLinkedForms) + 1

DIMENSION ThisForm.aLinkedForms[lnIndex]

DO FORM <linked form> NAME ThisForm.aLinkedForms[lnIndex] LINKED��cDataBehavior�A comma separated list of DataBehavior classes to use for this form. A DataBehavior class is permitted to add new classes that are to be loaded into this property.��cDeleteMessage�The text to use in the message box to ask for confirmation upon a delete action.��cErrorTriggerDelete�The text to display when a delete trigger error occurs.��cErrorTriggerInsert�The text to display when a insert trigger error occurs.��cErrorTriggerUpdate�The text to display when a update trigger error occurs.��cErrorTriggerUniqueKey�The text to display when a unique index violation occurs.��cFormBehavior�A comma separated list of FormBehavior classes to use for this form. A FormBehavior class is permitted to add new classes that are to be loaded into this property.��cMouseBehavior�A comma separated list of MouseBehavior classes to use for this form. A MouseBehavior class is permitted to add new classes that are to be loaded to this property.��cSecurityId�Default security identifier to use for this form.��cTools�A comma separated list of tool classes to use for this form.��oDataBehavior�The reference to the first DataBehavior object used��oFormBehavior�The reference to the first FormBehavior object used��oMouseBehavior�The reference to the first MouseBehavior object used�����Methods���Activate�Enables the tools named in the cTools property by sending a message to the tools manager.��AddTools�Adds the tools in the cTools property to the tools manager and makes them visible.��DataCancel�Sends a message to the DataBehavior chain and refreshes the form.��DataDelete�Sends a message to the DataBehavior chain and refreshes the form.��DataDoIt�Sends a message to the DataBehavior chain.��DataEdit�Sends a message to the DataBehavior chain and refreshes the form.��DataNew�Sends a message to the DataBehavior chain and refreshes the form.��DataSave�Sends a message to the DataBehavior chain and refreshes the form.��DblClick�Sends a message to the MouseBehavior chain.��Deactivate�Disables the tools in the cTools property by sending a message to the tools manager.��Destroy�Hides the tools in the cTools property by sending a message to the tools manager. The tools manager only hides the tools if there is no other form using them. If there are other forms using this tool, it is disabled instead.��FormDoIt�Sends a message to the FormBehavior chain.��Init�Checks the DataBehavior, FormBehavior and MouseBehavior chains to check if the form can load. If the form is permitted to load, it adds the tools to the tools manager and moves to the first record.��Load�Load the DataBehavior, the FormBehavior and the MouseBehavior chains of behavior.��LoadDataBehavior�Load the DataBehavior chain of behavior by parsing the cDataBehavior property.��LoadFormBehavior�Load the FormBehavior chain of behavior by parsing the cFormBehavior property.��LoadMouseBehavior�Load the MouseBehavior chain of behavior by parsing the cMouseBehavior property.��MouseDoIt�Sends a message to the MouseBehavior chain.��QueryUnload�Checks whether the form is permitted to unload by sending a message to the FormQueryUnload method from the DataBehavior, FormBehavior and the MouseBehavior chains of behavior. If one of the methods returns FALSE, the form is not permitted to unload.��RefreshForm�Send a message to The forms Requery method to refresh any views, refreshes all contained controls on the form and refreshes all tools in the cTools property by sending a message to the tools manager.��Requery�Method to requery views. This method is called every time the form is loaded or refreshed. By default, this method is empty.��Resize�Sends a message to the FormBehavior chain to resize all contained controls on the form.��RightClick�Sends a message to the MouseBehavior chain that the right mouse button was clicked on the form.��SkipBottom�Sends a message to the DataBehavior chain to move to the last record.��SkipNext�Sends a message to the DataBehavior chain to move to the next record��SkipPrevious�Sends a message to the DataBehavior chain to move to the previous record.��SkipTop�Sends a message to the DataBehavior chain to move to the first record��

�

ReturnForm� XG "ReturnForm" ����Description�Base class for all forms that are to return a value. The form is always modal. You can use this from as a base class for all forms that either need to be modal or that need to return some value or status.��BaseClass�BaseForm� XG "BaseForm" ������Properties���cDataBehavior�Inherited from BaseForm��cDeleteMessage�Inherited from BaseForm��cErrorTriggerDelete�Inherited from BaseForm��cErrorTriggerInsert�Inherited from BaseForm��cErrorTriggerUpdate�Inherited from BaseForm��cFormBehavior�Inherited from BaseForm��cMouseBehavior�Inherited from BaseForm��cTools�Inherited from BaseForm��oDataBehavior�Inherited from BaseForm��oFormBehavior�Inherited from BaseForm��oMouseBehavior�Inherited from BaseForm��uReturnValue�The value to return when the form is closed�����Methods���Activate�Inherited from BaseForm��AddTools�Inherited from BaseForm��DataCancel�Inherited from BaseForm��DataDelete�Inherited from BaseForm��DataDoIt�Inherited from BaseForm��DataEdit�Inherited from BaseForm��DataNew�Inherited from BaseForm��DataSave�Inherited from BaseForm��DblClick�Inherited from BaseForm��Deactivate�Inherited from BaseForm��Destroy�Inherited from BaseForm��FormDoIt�Inherited from BaseForm��Init�Inherited from BaseForm��Load�Inherited from BaseForm��LoadDataBehavior�Inherited from BaseForm��LoadFormBehavior�Inherited from BaseForm��LoadMouseBehavior�Inherited from BaseForm��MouseDoIt�Inherited from BaseForm��QueryUnload�Inherited from BaseForm��RefreshForm�Inherited from BaseForm��Requery�Inherited from BaseForm��Resize�Inherited from BaseForm��RightClick�Inherited from BaseForm��SkipBottom�Inherited from BaseForm��SkipNext�Inherited from BaseForm��SkipPrevious�Inherited from BaseForm��SkipTop�Inherited from BaseForm��Unload�Returns the return value stored in the uReturnValue property.��

�

DbcMaintenance� XG "DbcMaintenance" ����Description�Utility class to reindex and pack the tables in the database.��BaseClass�BaseForm� XG "BaseForm" ���Use�To use the DbcMaintenance class in an application do the following:

Create a form base on DbcMaintenance.

Fill the property cDatabase with the name of the database that contains the tables to be indexed.

In the Init method of the lstTables listbox, add all the tables in the following way :�THIS.AddListItem('Customer table')�THIS.AddListItem('Customer', This.NewItemId, 2)�The fist column will contain the table name for the user, the second the actual table name in the database.�����Properties���cDatabase�Name of the database that contains the tables��cDataBehavior�Inherited from BaseForm��cDeleteMessage�Inherited from BaseForm��cErrorTriggerDelete�Inherited from BaseForm��cErrorTriggerInsert�Inherited from BaseForm��cErrorTriggerUpdate�Inherited from BaseForm��cFormBehavior�Inherited from BaseForm��cMouseBehavior�Inherited from BaseForm��cTableDescription�Name of the current table to use in error messages. Only used internally��cTableName�Name of the current table in the database. Only used internally��cTools�Inherited from BaseForm��oDataBehavior�Inherited from BaseForm��oFormBehavior�Inherited from BaseForm��oMouseBehavior�Inherited from BaseForm�����Methods���Activate�Inherited from BaseForm��AddTools�Inherited from BaseForm��CloseTable�Close the indicated table��DataCancel�Inherited from BaseForm��DataDelete�Inherited from BaseForm��DataDoIt�Inherited from BaseForm��DataEdit�Inherited from BaseForm��DataNew�Inherited from BaseForm��DataSave�Inherited from BaseForm��DblClick�Inherited from BaseForm��Deactivate�Inherited from BaseForm��Destroy�Inherited from BaseForm��Error�Checks for an open table error. If the specified table cannot be opened exclusively the user if given the choice between retry, ignore this table or cancel all tables��FormDoIt�Inherited from BaseForm��Init�Opens the specified database as the current database. If the database is not specified a warning message will appear.��Load�Inherited from BaseForm��LoadDataBehavior�Inherited from BaseForm��LoadFormBehavior�Inherited from BaseForm��LoadMouseBehavior�Inherited from BaseForm��MouseDoIt�Inherited from BaseForm��OpenError�Displays an error message for the user and ask what action should be taken, Possible actions are retry, ignore this table or cancel all tables��OpenTable�Opens the specified table exclusively in an unused workareas��PackTable�Packs the specified table��QueryUnload�Inherited from BaseForm��RefreshForm�Inherited from BaseForm��ReindexTable�Reindex the specified table��Requery�Inherited from BaseForm��Resize�Inherited from BaseForm��RightClick�Inherited from BaseForm��SkipBottom�Inherited from BaseForm��SkipNext�Inherited from BaseForm��SkipPrevious�Inherited from BaseForm��SkipTop�Inherited from BaseForm��Unload�Inherited from BaseForm��

�

LoginForm� XG "LoginForm" ����Description�Utility class to create a login form for a user.��BaseClass�ReturnForm��Use�Use this class as a baseclass to create a modal login dialogue. This class can be used without change or subclassed for more functionality.�����Properties���aLinkedForms�Inherited from ReturnForm��cDataBehavior�Inherited from ReturnForm	��cDeleteMessage�Inherited from ReturnForm��cErrorTriggerDelete�Inherited from ReturnForm��cErrorTriggerInsert�Inherited from ReturnForm��cErrorTriggerUpdate�Inherited from ReturnForm��cFormBehavior�Inherited from ReturnForm��cMouseBehavior�Inherited from ReturnForm��cTools�Inherited from ReturnForm��nMaxTries�The number of tries the user gets to login��nNumberOfTries�The number of tries the user has used��oDataBehavior�Inherited from ReturnForm��oFormBehavior�Inherited from ReturnForm��oMouseBehavior�Inherited from ReturnForm��oSecObj�A reference to the security object�����Methods���Activate�Inherited from ReturnForm��AddTools�Inherited from ReturnForm��Cancel�Stop the user and returns FALSE.��DataCancel�Inherited from ReturnForm��DataDelete�Inherited from ReturnForm��DataDoIt�Inherited from ReturnForm��DataEdit�Inherited from ReturnForm��DataNew�Inherited from ReturnForm��DataSave�Inherited from ReturnForm��DblClick�Inherited from ReturnForm��Deactivate�Inherited from ReturnForm��Destroy�Inherited from ReturnForm��FormDoIt�Inherited from ReturnForm��Init�Inherited from ReturnForm��Load�Inherited from ReturnForm��LoadDataBehavior�Inherited from ReturnForm��LoadFormBehavior�Inherited from ReturnForm��LoadMouseBehavior�Inherited from ReturnForm��Login�Checks the users name and password.��MouseDoIt�Inherited from ReturnForm��QueryUnload�Inherited from ReturnForm��RefreshForm�Inherited from ReturnForm��Requery�Inherited from ReturnForm��Resize�Inherited from ReturnForm��RightClick�Inherited from ReturnForm��SkipBottom�Inherited from ReturnForm��SkipNext�Inherited from ReturnForm��SkipPrevious�Inherited from ReturnForm��SkipTop�Inherited from ReturnForm��PackTable�Inherited from ReturnForm��

�

UserMaintenance� XG "UserMaintenance" ����Description�Utility class to edit the users and their rights.��BaseClass�BaseForm� XG "BaseForm" ���Use�To use this class either subclass it for additional functionality or create a form based on the class.�����Properties���aLinkedForms�Inherited from BaseForm��cDataBehavior�Inherited from BaseForm��cDeleteMessage�Inherited from BaseForm��cErrorTriggerDelete�Inherited from BaseForm��cErrorTriggerInsert�Inherited from BaseForm��cErrorTriggerUpdate�Inherited from BaseForm��cFormBehavior�Inherited from BaseForm��cMouseBehavior�Inherited from BaseForm��cTools�Inherited from BaseForm��oDataBehavior�Inherited from BaseForm��oFormBehavior�Inherited from BaseForm��oMouseBehavior�Inherited from BaseForm�����Methods���Activate�Inherited from BaseForm��AddTools�Inherited from BaseForm��DataCancel�Inherited from BaseForm��DataDelete�Inherited from BaseForm��DataDoIt�Inherited from BaseForm��DataEdit�Inherited from BaseForm��DataNew�Inherited from BaseForm��DataSave�Inherited from BaseForm��DblClick�Inherited from BaseForm��Deactivate�Inherited from BaseForm��Destroy�Inherited from BaseForm��FormDoIt�Inherited from BaseForm��Init�Inherited from BaseForm��Load�Inherited from BaseForm��LoadDataBehavior�Inherited from BaseForm��LoadFormBehavior�Inherited from BaseForm��LoadMouseBehavior�Inherited from BaseForm��MouseDoIt�Inherited from BaseForm��QueryUnload�Inherited from BaseForm��RefreshForm�Inherited from BaseForm��Requery�Inherited from BaseForm��Resize�Inherited from BaseForm��RightClick�Inherited from BaseForm��SkipBottom�Inherited from BaseForm��SkipNext�Inherited from BaseForm��SkipPrevious�Inherited from BaseForm��SkipTop�Inherited from BaseForm��Unload�Inherited from BaseForm��

�sMBehav.vcx � XG "sMBehav.vcx" �

The class library sMBehav contains the classes that will let the user get extra behaviors like right click popup menus from the form.

BaseMouseBehavior� XG "BaseMouseBehavior" ����Description�Use this class as the baseclass for all mouse and keyboard related classes. For examples of how to do so, see the chapter on Form and Behavior classes. Possible user of these classes could be form-specific right mouse click popup menus.��BaseClass�BaseBehavior� XG "BaseBehavior" ������Properties���oLinked�Inherited from BaseBehavior�����Methods���AddBehavior�Inherited from BaseBehavior��DoIt�Inherited from BaseBehavior��FormClick�Handle a mouse click on the form.��FormDblClick�Handle a mouse double click on the form��FormInit�Inherited from BaseBehavior.��FormKeyPress�Handle a key press event from the form.��FormQueryUnload�Inherited from BaseBehavior��FormRightClick�Handle a mouse right click on the form��GetReference�Inherited from BaseBehavior.��

�

FormInspector� XG "FormInspector" ����Description�Calls the object inspector. This only works with the object inspector from Dave Frankenbach located in the directory HOME() + "\Inspect". The object inspector is not included in this framework.��BaseClass�BaseFormBehavior� XG "BaseFormBehavior" ������Properties���cInspector�Name of the inspector utility to run��oLinked�Inherited from BaseFormBehavior.�����Methods���Init�Only allows the creation of this object if the specified form inspector exists.��FormDblClick�Runs the form inspector with the active form as the parameter.��	

�

StandardMouseBehavior� XG "StandardMouseBehavior" ����Description�This class adds the standard MouseBehavior from the application object and adds it to the current form. It can be combined with other MouseBehavior classes to create the behavior for the current form.��BaseClass�BaseFormBehavior� XG "BaseFormBehavior" ������Properties���oLinked�Inherited from BaseFormBehavior.�����Methods���Init�Only allows the creation of this object if the specified form inspector exists.��FormDblClick�Inherited from BaseFormBehavior.��	

�

StandardTools� XG "StandardTools" ����Description�This class adds the standard Tools from the application object and adds it to the current form. It can be combined with other Tools classes to create the behavior for the current form. ��Note�This class isn’t a real MouseBehavior class but as this would not work as a tools class I decided to do it this way instead.��BaseClass�BaseFormBehavior� XG "BaseFormBehavior" ������Properties���oLinked�Inherited from BaseFormBehavior.�����Methods���Init�Only allows the creation of this object if the specified form inspector exists.��FormDblClick�Inherited from BaseFormBehavior.��	

�sManager.vcx� XG "sManager.vcx" �

The class library sManager contains the class that will manage all the tools in the application.

BaseMgr� XG "BaseMgr" ����Description�Manager class to handle all tools related to the application. Tools can consist of toolbars, menus etc. If you want to create a more complex tools manager that would let you do things like change the size of the toolbars, you could subclass it from this class. To use this new tools manager class, you will need to change the Application.cToolsMgr property to reflect the new class.��BaseClass�Custom�����Properties���aTools�Array with a reference to all the registered tools.�����Methods���AddTool�Adds a new tool to the tools manager. If the tool is already in the array of registered tools, it is not added again.��DisableTool�Send a disable message to the tools if their class name is in the list. It receives a comma separated list of tools to process as a parameter.��EnableTool�Send an enable message to the tools if their class name is in the list. It receives a comma separated list of tools to process as a parameter.��HideTool�Send a hide message to the tools if their class name is in the list. It receives a comma separated list of tools to process as a parameter��RefreshAll�Send a refresh message to all the registered tools��RefreshTool�Send a refresh message to the tools if their class name is in the list. It receives a comma separated list of tools to process as a parameter��ShowTool�Send a show message to the tools if their class name is in the list. It receives a comma separated list of tools to process as a parameter��

�

MgrTimer���Description�Utility timer class that is used by the TimedManager��BaseClass�Timer�����Properties���Interval�Default 500 milliseconds. �����Methods���Timer�Calls the TimedManager TimerEvent method.��

TimedManager���Description�Tools manager that buffers enable and disable request to prevent flashing of toolbars.��BaseClass�BaseMgr�����Properties���aActions�Array to buffer enable and disable messages.��aTools�Inherited from BaseMgr.�����Methods���AddTool�Adds a new tool to the tools manager. If the tool is already in the array of registered tools, it is not added again. Set the next action to None.��DisableTool�Sets the next action to Disable.��EnableTools�Sets the next message to Enable.��HideTool�Send a hide message to the tools if their class name is in the list. It receives a comma separated list of tools to process as a parameter��RefreshAll�Send a refresh message to all the registered tools��RefreshTool�Send a refresh message to the tools if their class name is in the list. It receives a comma separated list of tools to process as a parameter��ShowTool�Send a show message to the tools if their class name is in the list. It receives a comma separated list of tools to process as a parameter��TimerEvent�Process any pending actions.��

�sSecurit� XG "sSecurit" �.vcx

The class library sSystem contains the classes needed to interface with the operating system.

IdSecurityApplication� XG "IdSecurityApplication" ����Description�Implements the application wide part of an identifier / group based security system. Each identifier is grouped in a number of security groups and the user is given privileges per security group.��BaseClass�BaseSecurityBehavior�����Properties���cUserId�The user login identifier.��oLinked�Inherited from BaseSecurityBehavior.�����Methods���CheckExistenceId�If the application is run in debug mode and the security identifier is not found in the SecId.dbf table it is added to the table.��CreateTables�Contains the code needed to create the security tables. This method is never actually called.��IsAllowed�Checks if the current user has the specified rights for the specified security identifier. The method returns TRUE if he does otherwise FALSE.��Login�Runs the form LOGIN.SCX letting the user login. If this method returns FLASE the application will be terminated.��

IdSecurityData� XG "IdSecurityData" ����Description�Implements the form specific part of an identifier / group based security system. Each identifier is grouped in a number of security groups and the user is given privileges per security group.��BaseClass�BaseDataBehavior�����Properties���oLinked�Inherited from BaseDataBehavior.�����Methods���DataDelete�Checks for the deletion right.��DataEdit�Checks for the edit right.��DataNew�Checks for the edit and the add rights.��DataSave�Checks for the edit right.��FormInit�Checks for the read right.��Init�Only implements itself if an application object is found. When we are developing without an application object no security can be enforced.���sReports.vcx

The class library sSystem contains the classes needed to interface with the operating system.

BaseReport���Description�Abstract base class for reports. It uses a toolbar as base class to have a private data environment.��BaseClass�cToolBar�����Properties���cAlias�Alias to select before running the report. Automatically filled.��cReport�Report file name to run.��cToFile�Name of the destination file. Automatically filled.��lDataLoaded�The data environment is loaded flag. Automatically filled.�����Methods���GetParameters�Requests the parameters from the user if they are required to create the report. If the method returns FALSE the reports is not created.��GetToFile�Ask the user for a file name to store the report in.��Init�Checks if the report manager has a default database set and opens it.��LoadData�Checks if the data environment needs to be loaded and if so does it. If it is already loaded it selects the proper alias.��Preview�Called by the report manager when the user wants to preview a report��Print�Called by the report manager when the user wants to print a report��SetupDataEnvironment�Override this method to create the data environment for the form. ��ToFile�Called by the report manager when the user wants to save a report in a print file.��

ReportManager���Description�Form class to use as a base class for managing and creating reports. It uses subclasses of BaseReport to actually implement the report itself.��BaseClass�BaseForm�����Properties������Methods���������

�sSystem.vcx� XG "sSystem.vcx" �

The class library sSystem contains the classes needed to interface with the operating system.

BaseSettings� XG "BaseSettings" ����Description�Abstract base class for system settings class. Use this as the base class for any new class that saves and restores application settings in-between different runs. You could subclass this to create a Macintosh specific class. To use this new tools manager class, you will need to change the Application.cRegistry property to reflect the new class or enhance the Application.SetRegistry method to get it to load automatically.��BaseClass�Custom�����Properties�None�����Methods���Get�To be implemented by the actual subclass if needed. Always return the default value that is passed as a parameter.��Set�To be implemented by the actual subclass if needed��

�

IniSettings� XG "IniSettings" ����Description�Saves the application settings in an INI file. This class is automatically used when the application is run in a Windows 3.1 environment. To force the application to use this even in Windows 95, you can set the Application.cRegistry property to this class.��BaseClass�BaseSettings� XG "BaseSettings" ������Properties�None�����Methods���Init�Declare the Win 32 API functions��Get�Retrieve an entry from the INI file named in the AppInc.h file. If the entry was not found, the default value is returned.��Set�Store a value in the INI file named in the AppInc.h file. The value is always stored as a character field.��

�

RegistrySettings� XG "RegistrySettings" ����Description�Save the application’s settings in the Windows 95 or Windows NT registry. This class is automatically used when the application is run in a Windows 95 or NT environment. To force the application to always use this, you can set the Application.cRegistry property to this class. Keep in mind that the application will no longer be able to run in a Windows 3.1 environment.��BaseClass�BaseSettings� XG "BaseSettings" ������Properties���nHandle�Handle to use when reading or writing to the registry.�����Methods���Init�Declare the Win 32 API functions.��CloseKey�Close the handle to the registry��Get�Retrieve an entry from the Windows 95 or NT registry. If the entry was not found, the default value is returned.��OpenKey�Opens a handle to the registry��Set�Retrieve an entry from the Windows 95 or NT registry. The value is always stored as a character field.��

�sTools.vcx� XG "sTools.vcx" �

The class library sTools contains the tools an end user can use to interact with a form.

BaseTool� XG "BaseTool" ����Description�Abstract base class for the tools to be added to the application’s tools manager. Use this class as the base class for any new tool classes, other than toolbars and menus, you might create. For toolbars, use the BaseToolBar class and for menus use the MenuTool class.��BaseClass�Custom�����Properties���nCount�The number of forms using this tool�����Methods���Hide�Reduces the nCount property by 1.��Show�Increases the nCount property by 1.��

�

BaseToolBar� XG "BaseToolBar" ����Description�Abstract base class for the toolbars to be added to the application’s tools manager. Use this as the base class for all new toolbars you want to create.��BaseClass�Toolbar� XG "Toolbar" ������Properties���nCount�The number of forms using this toolbar.�����Methods���Disable�Sets the enabled property of all contained controls to FALSE.��Enable�Sets the enabled property of all contained controls to TRUE and calls the refresh method.��Hide�Reduces the nCount property by 1. If the toolbar is no longer in use by a form, its position and docking state are saved in the registry and the toolbar is made invisible. If the toolbar is used by other forms, it is only disabled.��Refresh�Empty method to contain any refresh code in an actual implementation of a toolbar.��Show�Increases the nCount property by 1. If this is the first form using the toolbar, the last position and docking state are retrieved from the registry.��

�

CompleteBar� XG "CompleteBar" ����Description�Complete navigation toolbar with an edit button and a ComboBox to allow the user to select the active order. Use this in combination with the StartStopEdit DataBehaviorClass for forms where the user has to choose edit before any changes can de made. The Edit and Add buttons on this toolbar will check if the user has permission for the security identifier associated with the active form for the relevant action. If he/she doesn’t the button will remain disabled.��BaseClass�BaseToolBar� XG "BaseToolBar" ������Properties���lIsEditing�TRUE if the current active form is in edit mode, FALSE if it is not in edit mode or NULL if the mode is unknown. This status is used by the contained controls to alter their state.��nCount�Inherited from BaseToolBar�����Methods���Disable�Inherited from BaseToolBar.��Enable�Sends an enable message to the lstOrders listbox and then enables the toolbar with a call to BaseToolBar.Enable().��Hide�Inherited from BaseToolBar��Refresh�Updates the lIsEditing property with the currently active forms edit status. This allows the contained controls to reflect the current settings.��Show�Inherited from BaseToolBar��

�

CompleteMenu� XG "CompleteMenu" ����Description�Complete navigation menu� XG "menu" � with an edit bar. Use this in combination with the StartStopEdit DataBehaviorClass for forms where the user has to choose edit before any changes can be made��BaseClass�MenuTool� XG "MenuTool" ������Properties���cMenuName�Inherited from MenuTool��cPadName�Inherited from MenuTool��cPopupName�The name of the popup used. CompNav in this case.��nCount�Inherited from MenuTool�����Methods���Disable�Inherited from MenuTool��Enable�Inherited from MenuTool��Hide�Inherited from MenuTool��Refresh�Inherited from MenuTool��Show�Inherited from MenuTool��

�

DebugMenu� XG "DebugMenu" ����Description�Tools class that will add a debug menu� XG "menu" � to the main menu if the application is run in debug mode. Debug mode occurs when the file DEBUG.TXT exists in the application’s main directory and it is not run as a standalone executable.��BaseClass������Properties���cMenuName�Inherited from MenuTool.��cPadName�Inherited from MenuTool.��nCount�Inherited from MenuTool�����Methods���Disable�Inherited from MenuTool��Enable�Inherited from MenuTool��Hide�Inherited from MenuTool��Refresh�Inherited from MenuTool��Show�Inherited from MenuTool��

�

EditBar� XG "EditBar" ����Description�Simple toolbar� XG "toolbar" � with Save, Add and Cancel buttons for use with data forms. The Save and Add buttons on this toolbar will check if the user has permission for the security identifier associated with the active form for the relevant action. If he/she doesn’t the button will remain disabled.��BaseClass�BaseToolBar� XG "BaseToolBar" ������Properties���nCount�Inherited from BaseToolBar�����Methods���Disable�Inherited from BaseToolBar��Enable�Inherited from BaseToolBar��Hide�Inherited from BaseToolBar��Refresh�Inherited from BaseToolBar��Show�Inherited from BaseToolBar��	

�

MainMenu� XG "MainMenu" ����Description�Loads and releases the application’s main menu, � XG "menu" �MainMenu.mpr.��BaseClass�MenuTool� XG "MenuTool" ������Properties���cMenuName�The name of the main application menu to run if the application is not run in development mode. The value is MainMenu.mpr.��cPadName�This remains empty as the main menu is not disabled or removed��nCount�Inherited from MenuTool�����Methods���Disable�Inherited from MenuTool.��Enable�Inherited from MenuTool.��Hide�Resets the main menu to its default.��Refresh�Inherited from MenuTool.��Show�Inherited from MenuTool.��

�

MenuTool� XG "MenuTool" ����Description�Abstract base class to load menus in the tools manager. It works with menus created with the standard menu designer. Put the name of the menu file to run in the cMenuName property. If you want to have the menu disabled and enabled when the user switches between forms, you can use the cPadName property to specify the name of the pad to disable.��BaseClass�BaseTool� XG "BaseTool" ������Properties���cMenuName�The name of the menu file to run.��cPadName�The name of the menu pad to use for enabling and disabling the menu.��cPopupName�The name of the popup used.��nCount�The number of forms that use this menu.�����Methods���Destroy�Removes the menu.��Disable�Sets the skip of the menu pad to TRUE.��Enable�Sets the skip of the menu pad to FALSE.��Hide�Removes the menu if no more visible forms are using it.��Refresh�Empty method. It is called from the Form’s RefreshForm method to give more control over menu refresh events.��Show�Shows the menu and increments the nCount property.��

�

NavMenu� XG "NavMenu" ����Description�Load a menu� XG "menu" � with the basic navigation� XG "navigation" �al options in the tools manager. See the NavMenu menu file for the actual menu that gets loaded.��BaseClass�MenuTool� XG "MenuTool" ������Properties���cMenuName�The name of the menu file to run -- NavMenu.mpr in this case.��cPadName�The name of the menu pad to use for enabling and disabling the menu. --. _NavPad in this case.��cPopupName�The name of the popup name use. Navigation in this case.��nCount�Inherited from MenuTool�����Methods���Destroy�Inherited from MenuTool��Disable�Inherited from MenuTool��Enable�Inherited from MenuTool��Hide�Inherited from MenuTool��Refresh�Inherited from MenuTool��Show�Inherited from MenuTool��

�

OrderList� XG "OrderList" ����Description�Combo box with a list of all the available order tags in the main alias of a form. Tag names starting with an underscore ('_') are not shown. Use this control on a toolbar when you want to let the user change the order in which the data is displayed.��BaseClass�ComboBox�����Properties���aOrders�An array of all available order tags to show the user.�����Methods���Enable�Loads all the index tags from the form’s main alias into an array for the user to choose from. If an index tag start with an underscore, it is not displayed.��InteractiveChange�Sets the active order to the index tag chosen by the user.��

�

SkipBar� XG "SkipBar" ����Description�Basic toolbar� XG "toolbar" � to allow the user to skip through records on a form.��BaseClass�BaseToolBar� XG "BaseToolBar" ������Properties���nCount�Inherited from BaseToolBar.�����Methods���Disable�Inherited from BaseToolBar��Enable�Inherited from BaseToolBar��Hide�Inherited from BaseToolBar��Refresh�Inherited from BaseToolBar��Show�Inherited from BaseToolBar��

�

SkipTableBar� XG "SkipTableBar" ����Description�Toolbar� XG "Toolbar" � to allow the user to skip through the records on a form and allow the user to change the order with a OrderList ComboBox.��BaseClass�BaseToolBar� XG "BaseToolBar" ������Properties���nCount�Inherited from BaseToolBar�����Methods���Disable�Inherited from BaseToolBar��Enable�Calls the enable method from the Orders listbox and then enables the toolbar.��Hide�Inherited from BaseToolBar��Refresh�Inherited from BaseToolBar��Show�Inherited from BaseToolBar��

�

ToolBarButton� XG "ToolBarButton" ����Description�Abstract base class for all toolbar buttons.��BaseClass�CommandButton�����Properties���Height�Height of a standard toolbar button��Width�Width of a standard toolbar button�����Methods�None��

�Modifications

Version 1.1

BaseApp

Added behavior to the application in a similar fashion as exists with forms.

New method LoadBehavior.

Changed the Init method to call LoadBehavior and the call the ApplicationInit method of the application behavior. The ApplicationInit method can return .F. to prevent the application from running.

New method GetUserId returns the current users identifier. If no security is used it returns FALSE.

Added the oSecurity property to hold a reference to the security object.

New method IsAllowed to check if the user if has the permission for the requested action.

New method OpenTables.

Changed the OnShutdown method to check the application behavior if the application can unload.

Changed the AppSetup method to call the OpenTables method just before hiding the splash form.

New property cBehavior to hold a comma separated list of classes to load as application behavior.

New property oBehavior to hold the linked list of application behavior objects.

SControls.vcx

New class library with control classes.

New class MemoryGrid as a grid with a memory of how the users changes the layout.

New class MoverContainer as a mover dialogue.

New class RefreshPageFrame as a pageframe that remembers which page needs to be refreshed

FormResizeBehavior

Moved the FormInit code to the Init so it works with the SavePositionSize class.

SavePositionSize

New class that is subclasses of FormSavePosition. This class will save both the position and the size of a form and restore it.

LoginForm

New class to use for a login dialogue with the security module.

UserMaintenance

New class to use as a base for a form to maintain user information with the security module.

BaseReport

New base class for use with the reports module

ReportManager

New class to use as a base for a form with the reports module.

IdSecurityApplication

Application behavior class to implement security.

IdSecurityData

Form data behavior class to implement security on a form level.

BaseForm

Added the cSecurityId property for use with the security module.

CompleteBar

Added security checking to several buttons

EditBar

Added security checking to several buttons

sABehav.vcx

New class BaseApplicationBehavior as baseclass for all application behavior classes.

BaseSecurityBehavior as a baseclass for security managers

SingleApplication an application behavior class that will prevent the user from starting multiple copies of the same application on the same workstation.

TimedManager

A new class as an alternative tools manager. This class stores the last action to be preformed and uses a timer to do so. The result is that when switching between two forms that both use the same tools they are not first disabled and then enabled.

MgrTimer

Timer class used by the TimedManager tools manager.

�Version 1.01

BaseApp

Changed the OnShutdown method to check for forms that have already been unloaded because they where linked to another form.

Added the cDataBehavior property. The class StandardDataBehavior adds these to a forms DataBehavior classes

Added the cFormBehavior property. The class StandardFormBehavior adds these to a forms FormBehavior classes

Added the cMouseBehavior property. The class StandardMouseBehavior adds these to a forms MouseBehavior classes

Added the cTools property. The class StandardTools� XG "StandardTools" � adds these to a forms Tools classes

BaseForm

Added the property cErrorTriggerUniqueKey to hold the text to display when a unique index violation occurs.

Added the property aLinkedForms. This is an array of linked forms that will be unloaded when the current forms is unloaded. If one of these linked forms cannot be unloaded the current form isn’t unloaded either.

Changed the QueryUnload method to check if all linked forms can be unloaded.

CompMenu

Changed the popup name from navigation to CompNav.

DbcMaintenance

Created a new class that can be used to reindex and pack the tables in the database.

Frame.h	

ERROR_UNIQUE_KEY is 1884 instead of 1584.

Deleted the MSG_DUPLICATE_KEY string. Created the new property cErrorTriggerUniqueKey in the BaseForm instead.�

SingleTableBehavior

Changed the SaveTableError method to use the property cErrorTriggerUniqueKey to retrieve the text to display after a unique index violation.

StandardDataBehavior

Added the applications default DataBehavior to the form

StandardFormBehavior

Added the applications default FormBehavior to the form

StandardMouseBehavior

Added the applications default MouseBehavior to the form

StandardTools� XG "StandardTools" �

Added the applications default Tools to the form

VfrmBldr.dbf

A new table containing the available behavior classes for use with the VfrmFormBuilder class.

VfrmFormBuilder

Created a builder to ease the development of forms.�

Index� INDEX \e "	" \h " " \c "2" p						�

�

_SCREEN.ActiveForm	19

aCursors	16

AddBehavior	16

adding new data	14

Application behavior	19

application class	27

application menu	18

ArrayBehavior	13; 34

AutoOpenTables	15

BaseApp	27

BaseApplicationBehavior	24

BaseBehavior	16; 35; 36; 53; 69

BaseDataBehavior	15; 34; 36; 38; 40; 41; 42

BaseError	43

BaseForm	15; 62; 64; 65; 68

BaseFormBehavior	53; 54; 56; 57; 58; 59; 60; 61; 70; 71; 72

BaseMgr	73

BaseMouseBehavior	69

BaseSecurityBehavior	25

BaseSettings	77; 78; 79

BaseTool	80; 87

BaseToolBar	81; 82; 85; 90; 91

Builders	20

cApplication	27

cCheckBox	30

cComboBox	30

cCommandButton	30

cCompany	27

cContainer	30

cCustom	31

cDataSettings	27

cGrid	31

Chain of Responsibility	14

cLabel	31

Client Server	17

client server data	15

cListBox	31

CloseTables	15

cMainMenu	27

cOldCaption	27

commercial applications	23

COMMIT	17

CompleteBar	82

CompleteMenu	83

cOptionGroup	31

cPageFrame	32

cRegistry	27

cSplashForm	27

cTextBox	32

cTitle	27

cToolBar	32

cTools	19

cToolsMgr	27

CursorSource	15

customer form	7; 8

cVersion	27

DataBehavior	14; 15; 17; 27

DataDoIt	12; 16

DataEnvironment	15

DataSettings	37

DbcMaintenance	65

DBCTransactionBehavior	38

DebugMenu	84

Design Patterns	14

developers mode	27

DoIt	16

EditBar	85

Error handling	20

ErrorConnectionBusy	44

ErrorHandler	45

ErrorIsLocked	46

ErrorNoDiskSpace	47

ErrorNoMemory	48

ErrorPassword	49

ErrorPrinter	50

ErrorReindexFiles	51

ErrorTooManyFiles	52

FormBehavior	14; 18; 27

FormCaptionBehavior	16; 54; 55; 61

FormCaptionNoOneBehavior	55

FormDoIt	16

FormInspector	70

FormResizeBehavior	18; 56

forms caption	14

forms position	14

FormSavePosition	57

Framework classes	24

GetReference	12; 16

IdSecurityApplication	75

IdSecurityData	75

IniSettings	78

Installation	5

lDebugMode	27

lDevelopMode	27

Legal issues	23

linked list	14

local views	15

LoginForm	67

MainMenu	86

Managers and tools	22

MemoryGrid	32

menu	61; 83; 84; 86; 88

menus	19

MenuTool	83; 86; 87; 88

MouseBehavior	14; 19; 27

MouseDoIt	16

MoverContainer	33

multiple developers	23

multiple instances	16

MultiTableBehavior	16; 17; 39

navigation	88

navigation trough the data	14

NavMenu	88

nFormNumber	16

NVL	16

object inspector	19

oLinked	16

OrderList	89

orders form	9; 12; 16

oRegistry	27

oSplashForm	27

pgfRefresher	33

popup menus	14

printers form	13; 17

private data environment	16

RefreshPageFrame	33

registry	27

RegistrySettings	79

remote views	15

Reports	21

resizing	14

ReturnForm	15; 64

right mouse click	14

ROLLBACK	17

sABehav.vcx	24

sample application	6

sApp.vcx	27

SavePositionSize	58

saving changes	14

sBuilder.vcx	29

sControls	30

sDBehav.vcx	34

Security	21

sError.vcx	43

sFBehav.vcx	53

sForms.vcx	62

shareware	23

SingleApplication	26

SingleFormBehavior	59

SingleTableBehavior	39; 40

SkipBar	90

SkipTableBar	91

sManager.vcx	73

sMBehav.vcx	69

Splash form	27

SQLCOMMIT()	17

SQLROLLBACK().	17

SQLSETPROP()	17

sSecurit	75

sSystem.vcx	77

StandardDataBehavior	41

StandardDataBehavior	27

StandardFormBehavior	60

StandardFormBehavior	27

StandardMouseBehavior	27; 71

StandardTools	27; 72; 95

StartStopEdit	42

sTools.vcx	80

Strategy	14

tool manager	19

Toolbar	81; 85; 90; 91

ToolBarButton	92

toolbars	19

Tools	19

transaction	17

UserMaintenance	68

VfrmBldr.dbf	29

VfrmFormBuilder	29

windows pad	18

WindowsPad	61

��

VfpFrame ™ Visual FoxPro Object Oriented Framework

Date 7 maart 1997	Copyright ABL	Page � PAG �98�

