	Multi-tier Application Architectural Design

A 3 Day Seminar prepared and presented by: Jim Booth

Review of Database Design

A) Selecting a Database Architecture

There are as many different architectures for databases as there are uses for data. The architectures that exist vary on a number of different parameters. One of the issues that are addressed by the various architectures is the primary use of the data.

Database architectures can be divided into two groups based on use of data, the transactional and the warehouse database. The transactional database is one that is used to record activity that is current and ongoing while the warehouse is used to record data that is relatively static. The next two sections discuss these designs in more detail.

Transactional Database

A transactional database has constant activity in it that is recording and altering the data contained. This is the common database we see as the “relational” model. The design is optimized for data entry and updating with a focus on protecting the integrity of the data during these operations. Our focus will be on this type of database.

Data Warehouse

The data warehouse is used to record fairly static data. The primary use for a data warehouse is reporting of information and for decision support. The data in a data warehouse is not very dynamic in that it does no have active and ongoing changes being made to it. Because of this the design can be optimized for data retrieval and the issues related to data entry and updating can be relegated to a lesser concern.

B) The Relational Database Model

In some things we can get away with “shooting from the hip”, that is we can create as we go without major difficulty. Relational database design is not one of those things. Due to the very issues that make relational databases so flexible in storing and retrieving data, an effective design process is absolutely required. Luckily, there are some tools that can be used to assist in database design as well as some heavily tested and proven guidelines.

I have often heard references from developers about too much “theory”. These folks will promote a pragmatic approach to doing things, well I hate to be the bearer of sad tidings but theory is the basis for scientific discovery. Relational database theory is footed in mathematical set theory. It is a mathematically proven approach to data handling. All of the relational “theory” can be proven, through mathematical formulae, to be true.

Many of the “rules” in relational design are no more than guidelines created to help prevent problems in working with the data later. Guidelines are exactly that, guides. As such, we are free to follow them or not as we see fit. However, think about this for a moment. There is a whole body of experience probably numbering in the millions of person years on which these guidelines are based. To dismiss a body of wisdom that significant without careful consideration is truly the work of a fool.

I am not saying that every guideline should be followed without question. I am saying that before you or I violate one of these guidelines we should have done a careful analysis of what the guideline is, why it exists, what it will cost us to violate it, and what benefit we get by violating it.

Start by learning about the business

A relational database must record and retrieve data that is derived from information about a specific business. Each database is designed to work for a system or systems of software applications for a business. The object of the relational design effort is to model the business’ information into a relational database structure.

In order to model anything you must understand the thing being modeled. If you want to build a model airplane you must know detailed information about that airplane. You must know the dimensions so the ratios are maintained, you must know the shapes and the number of engines, etc. Businesses are no different. To successfully model a business you must have a clear understanding of the nature of the information that the business uses in its operations

Learning the Business

One of the things that I find satisfying about the software development field is the ability, actually the requirement, that I learn detailed knowledge about many different businesses. As with learning anything the source of your education is instrumental in the success or failure of your efforts to learn.

If I want to learn skiing, I seek out a ski instructor that has years of experience. If I choose to learn gardening, I seek out a gardening expert. If I need to learn a business, I look for a business domain expert.

Domain is a word you will encounter in many places in relational design. It refers to a body values. There is a business domain (information and knowledge about the business), a database domain (possible data that might be found in the database), an entity domain (possible records that might be found in an entity), field domain (possible values that might be found in a field), and others.

The business domain experts most readily available to you are your client and their employees. You need to spend some time with these folks early in the project just listening to them tell you about their business and how they run it. During this time try very hard to stop the client’s people from discussing the computer software that you will develop. You are the computer software expert and you don’t need them to tell you about software, but you do need them to tell you about their business in great detail.

During these conversations be very wary of these two disastrous words, always and never. Always is never always and never is a very long time. When the client says, “We always enter the customer information before we create an invoice.” Hear that as “We usually record the customer record before we create an invoice” or “We would like to create the customer record before we create an invoice.”

When the client says, “Our customers never have any more than three contact persons.” Hear that as “Most of our customers have no more than three contact persons” or “It is rare that we have a customer with more than three contact persons.”

One thing to keep in mind as you learn about the client’s business is this, our clients are primarily interested in probabilities and when they use the words never and always they are using them relative to the probability of something. We must be focused on possibilities without regard to probability. If something can occur, no matter how improbable, our design must be capable of handling the situation.

Build a Skeletal Model

A model is a miniature of something. A database model is a description of the structure of the actual database. We will discuss the diagramming method for a database model later, for now let’s identify the major components of a database model.

Entity: The relational database term used for a person, place, thing, or idea that we need to record information about. Not all entities are physical things; some of them are abstract things.

Identify Major Entities

Some examples of entities are:

· Customers

· Employees

· Invoices

· Inventory

In this early stage of the database design you must work with the client to identify all of the entities that the system will require. Keep in mind that design is an iterative process, and that you will revisit this stage again to add more entities that are discovered during the rest of the design and programming of the system.

Relation: A fact about or an association between two entities.

Determine Relationships

When we speak of relationships in terms of a database design we are referring to persistent relationships. That is, the natural relationships that describe of the nature of the data being managed. One of the flexibility features of the relational data model is the fact that the relationships between the entities are not fixed; there can be multiple different views of the data in the database that look at the entities with different relationships.

For example, taking a database that includes Customer, Invoice, Invoice Details, and Inventory entities we can look at the data from the perspective of the Customer and determine what Inventory items have been purchased, or we can reverse the relationships and view the data from the perspective of the Inventory entity and see which customers bought things. Because of this flexible nature of relationships in an RDBMS (Relational Database Management System) we classify relationships into two categories, persistent and temporal. Persistent relationships are defined in the database model and describe the nature of the data in the real world. Temporal relationships are created using SQL SELECT statements or, in VFP, the SET RELATION command at runtime.

The relationships that we need to identify at this point in our database design process are the persistent relationships. We need to identify not only the relationships that exist, but also what rules for referential integrity apply to each relationship (more on this later).

The Concepts of Parent and Child

Parent and child roles are not permanent roles for entities. That is that two entities can be related in two ways, with either of them being the parent. For example, consider the simple Customer to Invoice relationship. We are apt to think of Customer as the parent and Invoice as the child, and the persistent relationship in the database is probably defined this way. However, we can also view the data with invoice being the parent and customer being the child.

The parent is a relationship is the table that controls the relationship, that is the source of the relationship. The child is the table being controlled that is the target of the relationship. The VFP SET RELATION command shows this quite well.

SET RELATION TO <RelationalExpr>

 ^

 {The Child alias name}

INTO <TargetAlias>

 ^

{The expression in the parent alias}

If we want to see customers and what invoices they have; we look at the data with customer as parent and invoice as child. However if we want to see the invoices for a period of dates and see which customers bought from use; we would need to make invoice the parent and customer the child.

Why talk about this at all, it seems pretty obvious, because there is often confusion in communications regarding the use of parent and child outside of the description of a specific view of the data. Many times I have seen someone confused because they didn’t realize that the roles of parent and child in a relationship can be dynamic and they concluded that the parent in the persistent relationship was always called the parent.

Identify Attributes

Attribute: An atomic piece of data that is descriptive of some aspect of an entity.

Next we need to determine all of the attributes for each entity. The definition of each attribute’s domain is part of this step. Refer to the definition of domain earlier in this document.

The domain for an attribute includes:

· Data type

· Length

· Format (mask)

· Uniqueness

· NULL support

· Allowance of blanks

· Legal values

· Default value

· Meaning

· Anything else that describes the attribute

It is important to take the time now to document these domains, as they will play an important role later in validating your design. In the previous step you identified the persistent relationships in this step you need to insure that all of the foreign keys (more on this later) exist to support those relationships.

Add the keys to your model

Keys are the key to a relational database. It is through the use of these keys that the data in one entity can be related to data in another entity.

Determine Primary and Alternate (or Candidate) keys

The purpose of a primary key (PK) in relational databases is to uniquely identify a specific record within an entity. The primary key requirement from the relational database perspective has no other purpose or responsibility.

Primary key: An attribute or group of attributes that uniquely identifies an instance of an entity.

Candidate Key: An attribute or group of attributes that met all of the requirements for being the primary key.

Alternate Key: A candidate key that is not being used as the primary key.

In a relational database every table MUST have a PK. If a table exists without a PK it is not a relational table.

Natural vs. Surrogate Primary Keys

There are two major types of PKs, natural and surrogate.

Natural key: A primary key comprised of attribute(s) that would still be part of the entities attributes even it(they) were not being used as the PK.

Surrogate key: An attribute that has been added to the entity for the sole purpose of being the primary key, if it were not used as the PK then the attribute could be removed without affecting the completeness of the entity definition.

Which is better? Well the answer can be a controversial one. There are those folks who believe that if a natural attribute (or attributes) of an entity can meet the requirements of being the PK then it should be used for the PK.

Then there is the school of thought that I belong to; “The sole need for a PK is rooted in the relational database requirements, that requirement is to uniquely identify a record within a table, and there are problems (more about this later) when the value of a PK changes, therefore using surrogate PKs universally is the best approach to PKs.

OK, let’s examine my opinion on this issue. A PK identifies a record. The PK is used to related records from other tables to allow views of meaningful information from divergent tables. If the value of a PK changes it is necessary to assure that the value of the pointers in other tables are also changed (Referential Integrity). If an attribute has meaning then its value cannot be random, it must be accurate in reflecting the meaningful information it contains. People make mistakes. People don’t always discover their mistakes right away. Therefore, if a PK has meaning outside of being the PK there will come a time when the user needs to change the value of an existing PK in order for its non-PK purpose to be accurate. This change requires that code be written and run to resolve all of the foreign table references.

If a PK has no meaning outside of its role as PK, then there is no need to ever show the PK to the user. A surrogate PK is created by the computer software and is only used by the computer software. The surrogate PK has no meaning to the user. In this case the user will never have any desire or need to change the value of an existing PK.

What about a mixture within a database, some natural and some surrogate? Well, I have a problem with that. The two types of PKs are handled very differently and I find that the benefits of having every table the same is regards to how its attributes and PK is handled is of more value than any possible benefit of mixing the methods. Since surrogate PKs work everywhere, and they are easy to implement, then I say use surrogate PKs universally.

Simple Vs. Compound Primary Keys

A second categorization that can be made for PKs is simple versus compound.

Simple PK: A primary key that is comprised of only one attribute.

Compound PK: A primary key is comprised of more than one attribute.

In the case of surrogate PKs there is no reason that they would ever be compound. The compound PKs would, therefore, only be seen in natural PKs.

This is another advantage to surrogate PKs is that they are never compound PKs. One has to keep in mind that whenever we try to relate data from two or more tables we have to write something somewhere that explains how the relation is derived, that is the Join condition. With compound PKs these join conditions can be complex while simple PKs render simple join conditions.

For example assume two tables: Invoice and Details. Invoice has a compound PK comprised of InvNo + CustNo + InvDate , these fields are also contained in the Details table for use it relating details to invoices. The syntax of a WHERE clause to connect these two tables is:

… WHERE Invoice.InvNo = Details.InvNo ;
AND Invoice.CustNo = Details.CustNo ;
AND Invoice.InvDate = Details.InvDate …

Now contrast that with the use of a surrogate simple PK named InvID:

… WHERE Invoice.InvID = Details
.InvID …

This example is contrived; however it does demonstrate the effect of the type of PK that is used on how JOIN conditions need to be phrased.

Determine Foreign keys

In the pervious section on primary keys we discussed relating of table to one and other. We said the primary key plays a role in this relating. The other half of the relation requirement is called a foreign key (FK).

Foreign Key: An attribute or group of attributes that holds the value of the primary key in a different table.

It is the combination of a primary key in one table and the foreign key in another table that allows us to combine data from the two tables and produce meaningful information as a result.

Again, there is a benefit in using surrogate simple PKs here. To relate TableA to TableB you must provide for a field or fields in TableB to hold a reference to the records of TableA. This is done by reproducing TableA’s PK in TableB as an FK. With a compound PK for TableA you would need to create all of TableA’s PK member attributes in TableB to make the PK to FK relationship work. Using a simple PK in TableA requires only one attribute be added to TableB for the FK.

Define the key business rules

There are business rules and there are key business rules.

Key Business Rules: Those data rules of a system that are related to how the PK and FK relationships are to be managed. These rules dictate what the referential integrity constraints will be.

Relational databases make heavy use of PK to FK relationships to elicit information from data. There are a number of issues that are raised with this approach to database design. For example: a Customer table and an Invoice table exist in a system and they are related on the CustID field in each table.

How do you handle the entry of an Invoice that has a value in the CustID field that does not have a corresponding record in the Customer table? What about a change in the CustID for an existing record, what do you do about the related Invoice records? How about deleting a Customer record, again what do you do about the related Invoice records?

As database developers we must focus on insuring that all of our relationships are valid.

Referential Integrity: The state of a database in which all of the inter-table relationships are valid according to the key business rules.

of our relationships are valid.

Persistent Relationship: A persistent relationship is descriptive of the nature of the data entities and how they relate to one and other. Persistent relationships are defined in the database and survive work sessions.

Temporal Relationship: A temporal relationship is description of the relationship between entities in a specific view of the data. Temporal relationships do not survive the work session.

In order to better understand the key business rules we need to organize the types of relationship that can exist in a database system.

Types of Relationships

There are two basic types of relationships:

See the diagram below for an example of how temporal relationships provide flexibility that they give us in displaying our data.

[image: image40.jpg]Data Access

ealizaNams
“Datatase
Fieids
eLastEnor
eTable LestEror
Guhere i

XMLHzndler

XMLHandlsClsssLib
FetehType
nCannadtion
piFieidName

Xirmater

AN

1 Createxil
Parexil

FetonData
witeats

R

VFPOXMLHandler| (VER7XMLHandler

VPP Data Acoas “ADD Data Acoese

[y— [[y— [

This diagram could be a persistent relationship definition in the database. It describes how customers own addresses.

[image: image2.jpg]Address

CustAddr

AddrD

» CustiD
AddHD

Customer

CustiD

If you were asked to produce a list of cities and the names of the customers in those cities you would need to look at the data in the tables using a relationship set up like the one shown above.

The ability of a relational database to allow us to use these two different views of the data is the very root of the relational designs flexibility.

Types of Persistent Relationships

There are two types of persistent relationships that are possible. These types divide the persistent relationships into two groups that have different requirements in areas of key business rules and referential integrity enforcement.

Defining Relationship: The Parent record defines the existence of the child records. If the parent record is removed then the children have no meaning any longer.

Non-defining Relationship: The child records have meaning even without a corresponding parent record.

See the next two figures for examples of each type of persistent relationship.

[image: image3.jpg]Invoice

InvoiceDetails

ImiNO.

MO
DetLineNo

In figure 3 you see an Invoice table being related to an Invoice Details table. The defining nature of this relationship is that an Invoice Detail record has absolutely no purpose without a corresponding Invoice record and any given Invoice Detail record is defined by one, and only one, Invoice record. Contrast this relationship with the one below.

[image: image4.jpg]Customer

CustAddr

CustiD

Address

| CustiD
AddHD

AddrD

The relationship between CustAddr and Address is a non-defining one. It is non-defining because any one CustAddr record does not define the existence of any of the Address records. That is, a given Address record may be referenced by more than one CustAddr record and therefore the removal of any particular CustAddr record does not, necessarily, negate the value of the Address record that was pointed to.

Back to the Key Business Rules

So, what are key business rules? Let’s consider a Customer to Invoice defining persistent relationship. The defining nature of this relationship tells us that we have a referential integrity issue here. We must insure that there is never an Invoice record that does not refer to an existing Customer record.

The integrity issue affects two database operations; one is whenever a record is added to the Invoice table we must insure that it has a valid FK value for the Customer table. The second issue is when deleting or changing the value of a Customer record’s PK we must insure that all Invoice records that are related to the Customer record being affected are handled.

For simplicity let’s just consider the deletion of a Customer record. Assume we have Customer number 1001 and it has 5 Invoice records. If we attempt to delete Customer number 1001 there are three ways to deal with the referential integrity;

· Cascade the deletion. Delete all of the referring invoice records.

· Restrict the delete: Do not allow the customer record to be deleted if there are any invoice records fro that customer

· Ignore the relationship: Allow the customer to be deleted and do nothing about the invoice records.

The first two approaches will insure the integrity of the customer to invoice relationship. We’ll discuss the third option a little bit later.

Focusing on the first two options. Cascading the deletion of the customer to the invoices will prevent any invoice records that are not connected to a customer record. So will restricting the deletion of the customer. From a database integrity perspective these two approaches are equal, they both protect the integrity of the data.

However, I think if you talked to the financial folks at your client and said, “By the way, if a user clicks this delete button we will blow away all of the invoice records for that customer.” You might spark a conversation. Financial folks don’t like the idea of destroying financial records. So, then, you could use restrict.

Well it might not be that simple. The financial people may give you a rule something like this; “If the customer has no invoice records in the current accounting period and no invoices with an outstanding balance, then you can cascade the delete, otherwise you must restrict the delete.”

The quoted sentence is an example of a key business rule. It is a rule of the business that affects how we must manage the integrity of the PK to FK relationships.

Determine Additional Business Rules

The official terminology for the business rules that are not related to key management is triggering operations.

Triggering Operations: The most generalized form of business rule, encompassing domains and key business rules as well as other types of attribute business rules. The set of rule rules that make some data sets valid and others invalid.

Do not confuse triggering operations in relational design theory with triggers which are features of certain database applications that automatically fire on database events, they are not the same thing.

As the definition above states, triggering operations are that set of business rules that are not involved with the management of primary and foreign keys. Things like credit limit rules for customers or minimum order rules for free shipping and things along those lines.

Define the Domains for all attributes

We defined a domain earlier in this paper. An attribute domain describes an attribute in a way that accounts for all of the possible values that might ever be found in that attribute.

The domain definition is a very important step in the design process. This is because one of our goals in relational design is to eliminate redundant data elements from the tables. It is virtually impossible to tell if two attributes are redundant without knowing the complete domain definition for each of them.

For example, take a Customer and Invoice table each of which has a field named SalesTaxRate. Is SalesTaxRate a redundant attribute because it appears in both tables? The answer depends on the domains for the two fields. If the domain is the same then they are redundant. In this particular case they are not redundant. This is because the domain for the SalesTaxRate field in the customer table is; “The current sales tax rate for this customer” and the field in the Invoice table has the domain of, “The sales tax rate in effect at the time of this invoice for this customer.” So you see their domains are different, therefore they are not redundant fields.

Attribute domains come into play again when we are looking for repeating and multi-valued fields in a single table. If two fields have the same domain they are the same field with multiple possible values. Again consider a customer table with fields named Contact1 and Contact2. When we consider the domain definition for the two fields we get; Contact1 “The name of a contact person at this customer” and Contact2 “The name of a contact person at this customer.” Both fields have the same domain; therefore they are the same field even though they have different names. The contact fields are an example of a multi-valued attribute. We will see how to fix this problem later on.

Many To Many Resolution

The major problem with Many-to-Many relationships is that they do exist in business. However, computer databases cannot handle them. There are some database systems that claim to handle Many-to-Many relationships, but they actually do what you are about to see automatically.

Whenever you see a two-headed arrow in an ERD you should immediately think, “There is an entity missing here.” The missing entity is called an intersecting entity or a joining entity.

Intersecting or Joining entity: An entity that serves the purpose of storing multiple join cases for another two entities.

We can resolve a Many-to-Many relationship between the Invoice and Inventory tables by using to the design seen below.

[image: image5.jpg]Invoice

InvoiceDetails

1m0

1m0
DetLineNo

Inventory

terniD

The figure above introduces the intersecting entity, Invoice Details. This entity will have one record for each connection of an Invoice with an Inventory item. The introduction of the Invoice Details intersecting entity reduces the Many-to-Many relationship to two One-to-Many relationships.

In some cases, the new intersecting entity may have a connection with the reality of the business (like line items on an invoice). In other cases the intersecting entity may be a complete fabrication solely existing to resolve the Many-to-Many relationship (like Customers with Addresses where each customer may have many addresses and any address may be used by multiple customers, in this case the intersecting entity would only exist to connect a customer with an address and would not, necessarily, add any additional information).

Test the Validity of Your Model

At this point you have identified all of the components of your database and you have drawn the first pass at your ERD. The next step is to validate your work so far. At this point you would need to apply some type of testing on what you have done to find the problem areas.

Relational database design has just such a tool available, that tool is called Normalization.

The process of Normalization
When you create a new form or report for a system you will run that new thing and test it to find out if it works as intended. You will test the limits and boundaries of the thing to find out where it breaks or fails. Generally, you want to get a level of confidence in the functioning of the new component.

Databases are no different than forms or reports in this area. After you design the database it is helpful to test that database to see if it works as intended. The testing process is called Normalization.

Normalization: Successively examine each entity and it’s attributes for structural redundancies and/or inconsistencies.

Why Normalize?

Testing the validity of your database design is a desirable goal, but why? What benefits does insuring a normalized structure of the database provide? We will discuss the four major benefits of normalization (that is my four most important ones).

Minimize the space required to store the data.

One of the things that normalizing a database does is to remove redundant data elements. For example, storing the date of an invoice in both the Invoice header table and in the Invoice details table is redundant. The date of the invoice will always be the same for every line on that invoice. Eliminating the data redundancies reduces the space required to store the data.

Minimize the possibility of data inconsistencies.

This one is interesting. The definition of inconsistent from Webster is “not compatible with another fact or claim.” That means that in order for a data inconsistency to exist there must be two conflicting values somewhere. If we remove the redundancy we remove the multiple locations for values to exist. If all values exist in one, and only one, place then there cannot be any inconsistency.

Minimize possible update and delete anomalies.

An anomaly is when something goes wrong. An update or delete anomaly is when something goes wrong with the updating or deleting of information from a database.

Let’s take the Invoice and Invoice detail situation mentioned in space reduction issue above. If we were to store the data of the invoice in both the invoice header and in the detail lines tables, then we would have a possibility of data inconsistency, that is it would be possible for an invoice to have one date while one or more of the details had a different date. That would be an inconsistency.

However, by only recording any piece of data in only one place the possibility of inconsistency is virtually eliminated.

Maximize the stability of the data structure.

This is my particular favorite reason for normalization. In this case we are not referring to protection from damage for the files involved, we are talking about a database design that allows for additional functionality to be introduced with the absolute minimum changes to the existing data structure. That is, the data design is stable.

How can normalization do this? Here’s an example from real life. A few years ago there was a question posted on the CompuServe FoxPro forum asking, “I have a table that is used to record the sales for 6 retail stores. The customer has asked me to produce a report that shows the highest sales for an hour and which store that was in. My table structure is …” the table structure described is shown below.

[image: image6.jpg]Store Sales

Hourl
Hou2
Hour3
Hourd
Houss
Houfs

The questioner also said the stores were open for 6 hours per day and the owner of the stores said that would never change (there’s that word never). He also said please don’t tell me to change the structure of the table because it contains 3 months of data and that would be too much to try and convert. This occurred in September.

I responded to him and told him first to change the structure of his data and that that would fix his problem. But, since he had specifically asked how to do this without changing the structure of the data I advised him of how to process all of the records for a given date for all of the stores and find the highest hourly value.

There is a fundamental problem with the data structure above that can be easily seen once we investigate the business requirements. What, exactly, does the business need recorded in this table? Is it sales for a date or sales for an hour?

In fact, it is sales for an hour and the structure in figure 7 is recording sales for a date. To see this ask yourself, “What does one record in the table represent?” It represents sales on one date at one store. The next figure shows the table design for recording hourly sales.

[image: image7.jpg]Store Sales

StoreNum
Date
Hour
Amount

This table structure can answer the current question with a single line of code;

SELECT StoreNum, Date, Amount FROM StoreSales TOP 1 ORDER BY 3 …

That’s it! No comparing values or calculating across multiple records or any of that. The original problem is solved.

Well the questioner did not take my advice, he used the complex calculation because, “There was 3 months of data already in the existing data structure.” A couple of months later, in late October, I saw a question about 6 retail stores and sales data that was asking how, without major changes, to allow for the stores to be open more than 6 hours a day. I looked back in my message archives and it was the same person doing the asking.

I couldn’t resist. I posted the suggestion to make the same change to the data structure and said, “If you had made this change a month ago you would have had only 3 months of data to convert, now you have nearly 5 months worth.”

The point is that in figure 8, when the table design matches the business’s requirements, you can have business requirement changes that don’t need a data structure change. Why, because if you have successfully modeled the business in the data then virtually anything that can happen in the business can also happen in the database. Keep in mind though, that this is not always the case. If a system does require changes to adapt to a new business requirement that is not a strong indication of a poor data design in the first place. However, the inverse is always true, a poor data design will invariably require changes to the structure to adapt to new business requirements.

C) The Normal Forms

The next sections of this paper will describe each of the normal forms and how they are applied. There will be examples used to describe the form and its application. The examples chosen are obviously wrong and are designed to clearly demonstrate the normal form being discussed.

In your actual design work the normalization problems will probably be more subtle and require a much more careful study to discover and repair.

1st Normal Form (1NF)

Reduce entities to first normal form (1NF) by removing repeating or multi-valued attributes to another, child entity.

To understand 1st Normal Form we will use the table design below.

[image: image8.jpg]Custormer

CusliD
Address
Phane
Contact]
Contact2
Contact3

To discover the problem in this design we must consider the domains for the fields in the table. The CustID is defined as the customer Primary key ID, the Name is the name of the customer, Contact1 is the name of a contact person, Contact2 is the name of a contact person, and Contact3 is the name of a contact person.

The fact that Contact1, 1, and 3 all have the same domain definition proves that in fact there is only one attribute, contact person, and that we need multiple values for that attribute. This is a multi-valued attribute.

The 1st NF design for this situation is shown below.

[image: image9.jpg]Customer

CustiD

Address

Phane

Cantacts

ContactlD
CustiD
ContactName
Phane

Notice the creation of the new entity for Contacts and the relation of that entity to the original Customer entity. Using this new design the customer can have any number of contacts from none to the capacity of the table storing the contact names.

What about the client who tells us that their customer will never have more than three contact names? Do we really need to do this for those situations?

Well, reread what I said earlier about clients and the word never. Besides that, if we provide the three fields for contact names and most customers have only one name, we are wasting a lot of space. For a contact name of 40 characters and 1 million customer records that would amount to approximately 40 MB of wasted space.

Also, the first customer that comes along with four or more contact names would require that the user either use two customer records, not store all of the contact names, or pay for a revision to the data design to allow the fourth name. With the 1st Normal Form structure none of these things are an issue. If the customer has only one contact then there is only one record in the Contacts table. If the customer has 300 contact names, then there are 300 records in the contacts table.

Reduce entities in 1NF to 2NF by removing attributes that are not dependent on the whole primary key.

2nd Normal Form (2NF)

The figure below will be used to study this normal form.

[image: image10.jpg]Invoice Details.

CustD
iteriD
Price
Quantity

The primary key for the invoice details table in the figure is the combination of InvNo and LineNo. The two fields together comprise the primary key. 2nd NF deals with non-key attributes that are not dependent on the entire primary key but rather only on part of it.

The ItemID and Price Quantity are dependent on the whole primary key. You cannot know the item sold or its quantity price break without knowing the invoice and which line of the invoice you are interested in.

However the CustID will remain the same for all lines on an invoice. This means that CustID is dependent on the InvNo only and not ion the LineNo. CustID is dependent on part of the primary key.

To fix this we move the CustID field to another table where it is dependent on the whole primary key.

[image: image11.jpg]Invoice

IniNo
CustiD
Invoice Details
» [0
iterniD
Price
Quantity

3rd Normal Form (3NF)

Reduce entities in 2NF to 3NF by removing attributes that depend on other, non-key attributes (other than alternate keys).

The golden rule of relational databases is, “the key, the whole key, and nothing but the key”. The 3rd normal form deals with attributes that are codependent on the primary key and another, non-key, attribute. The figure below shows a table design that violates the 3rd normal form.

[image: image12.jpg]Purchase Order

PONurm
VendoriUM
VendorCity

With the 3rd normal form we are trying to identify non-key attributes that have a dependency on other non-key attributes (other than alternate keys). In figure 13 the there are four non-key attributes that are all dependent on the primary key, that is to know the VendorID, VendorCity, Date, or Terms of a purchase order you must know which purchase order you are looking at. However the VendorCity is also dependent on the VendorID for its value. That is if you change the VendorID on a purchase order the VendorCity will also need to change.

The solution for this example is shown in below.

[image: image13.jpg]Purchase Order

PONum
VendorNUM

Vendor
VendorNUM

VendorCity

We have moved the VendorCity out of the purchase order table and put it in the Vendor table where the VendorID is the primary key.

Perhaps you have heard someone say that it is not a good design, in a relational database, to store the results of a calculation in a table. Why not? What rule does this break? It violates 3rd normal form.

If I have a table for invoice detail lines and it has a UnitPrice field, a quantity field, and a TotalPrice field (which is calculated by multiplying the UnitPrice by the Quantity) then I have at least one field that is codependent, the TotalPrice field. The TotalPrice for a line is dependent on the line number, but it is also dependent on both the UnitPrice and the Quantity. If either UnitPrice or Quantity changes then the TotalPrice will also need to change.

Is 3rd Normal Form good enough?

I have often heard people say that 3rd normal form is good enough; perhaps you have too. Is this true? Is 3rd normal form good enough? Well, I would have to ask that if 3rd normal form was as far as it is necessary to go with normalization then why are there three more normal forms after 3rd?

n truth, the next three normal forms only apply in certain specific situations and if none of those situations exist in the data design, then 3rd normal form is 5th normal form an fully normalized.

Boyce-Codd Normal Form (BCNF)

Reduce entities in 3NF to BCNF by ensuring that they are in 3NF for any feasible choice of candidate key as primary key.

The next normal form is named after the two people who first described it, Boyce and Codd. This normal form is only required for tables that have more than one candidate for the primary key. The rule is simple; if the table is in 3rd normal form for the primary key being used, insure that it is also in 3rd normal form for any of the alternate keys as well.

Imagine an employee table that has attributes for Social Security Number, Employee Clock Number, and Employee ID (a surrogate primary key). 3rd normal form would apply the first three rules using the Employee ID as the primary key. Boyce-Codd normal form would go back and apply the first three rules using the Social Security Number and then using the Employee Clock Number as the primary key. When the table structure is in 3rd normal form no matter which candidate for primary key is used, then it is in Boyce-Codd normal form.

4th Normal Form (4NF)

Reduce entities in BCNF to 4NF by removing any independently multi-valued components of the primary key to multiple new parent entities.

4th normal form is only applicable when the primary key is comprised of two or more attributes. With a primary key of only one attribute there is no need to check 4th normal form. 4th and 5th normal forms resolve problems within the primary key itself.

In figure 15 we have a design that is meant to record and track employees, their skills, and their objectives. The primary key for the table is the combination of the Employee ID, the Skill ID, and the Objective ID. The problem with this design is the independence of the skill and objective attributes comprising the primary key.

[image: image14.jpg]Employee-Skill Objective

ErmployeeName
Skl
Objective

To really understand the nature of the problem, let’s consider some data from this table:

	EmpID
	Skill
	Objective

	Jones
	Accounting
	More Money

	Jones
	Accounting
	Master’s Degree

	Jones
	Public Speaking
	More Money

	Jones
	Public Speaking
	Master’s Degree

Looking at the sample data, what would need to happen if Jones was to tell you he had an objective of getting a doctorate degree too? How many record would you need to ad for that change? What if he received his Masters Degree? Again how many records would need to change? Both situations require that more than one record change in order to record the change in the data.

Below is shown the same information being recorded, but the design is in 4th normal form. Any of the events asked about in the previous paragraph will only involve one record in the new design.

[image: image15.jpg]Employee-Skill

ErmployeeName
skil

Employee-Objective

ErmployeeName
Objective

5th Normal Form (5NF)

Reduce entities in 4NF to 5NF by removing pair-wise cyclic dependencies (appearing within composite primary keys with three or more component attributes) to three or more new parent entities.

The 5th normal form is another one that is only required when the primary key has more than one attribute. In fact, with 5th normal form the primary key must use three or more attributes.

Reading the definition for this normal form can be stress inducing for sure. If you take it apart and understand each piece separately it really isn’t that complex. The definition refers to pair-wise cyclic dependencies. Pair-wise means taking two attributes at a time, dependencies is referring to the value of one attribute being dependent on the value of another. The cyclic is simply saying that in a primary key of three attributes you need the value of the other two to determine the value of any one of them. The figure below shows an example of a 5th normal form problem.

[image: image16.jpg]Buyer-Vendor-ftem

Buyerlame
Vendorhare
HterNarne
LastPurchase
PricePaid

This design is to record information about a retail buying operation. The requirement is to track the buyers, from whom do they buy, and what do they buy. The table design has the combination of Buyer, Vendor, and Item as the primary key.

If you analyze the relationship between the components of the primary key in this design you will realize that if you want to know the buyer, you must first determine the vendor and item. If you want to know the vendor, you need the buyer and item. Finally if you want the item, you must know the vendor and buyer. Notice the pair wise (you always need to know two) cyclic (no matter which one you need it is the other two that it depends on) dependency.

To appreciate the nature of the difficulty having a table that is in violation of 5th normal form will present to you, consider the following sample data.

	Buyer
	Vendor
	Item

	Mary
	Jordache
	Jeans

	Mary
	Jordache
	Sneakers

	Sally
	Jordache
	Jeans

	Mary
	Liz Claiborne
	Blouses

	Sally
	Liz Claiborne
	Blouses

Like 4th normal form, the major problem areas with 5th normal form have to do with data updates. For example, if Liz Claiborne were to introduce a new line of Jeans, how many records would need to be added to this table to reflect that change? Two, since both Mary and Sally buy from Claiborne and both Mary and Sally buy Jeans. What if Jordache dropped their line of jeans? Again, two records need to be modified (actually deleted) to reflect this change.

Below is the design reduced to the 5th normal form.

[image: image1.jpg]Customer

CustAddr

CustiD

Address

| CustiD
AddHD

AddrD

Denormalization

Chris Date wrote in a paper for InfoMIS 4 No. 22nd Quarter 1984 titled “Some Relational Myths Exploded”. Date’s myth number 25 is “Third normal form is a panacea”. In this section of the paper Date states, “In a sense, the 3NF discipline optimizes for update at the expense of retrieval: It eliminates certain “update anomalies”, but it can lead to the need for lots of joins on retrieval.” (Emphasis is in the original).

There are many other issues that are important to a system design besides the logical data model. At times these issues can be at odds with one and other. When a developer encounters one of these circumstances a decision has to be made as to which issue will win out.

Sometimes normalization will win and sometimes it won’t. When a developer decides to back off from a fully normalized design, the process has been named denormalization by Date.

Denormalization: Controlled redundancy.

Chris Date, “A Practical Approach to Database Design”, IBM Technical Report No. TR 03.220, December 1984.

What date is talking about here is that a fully normalized design is optimized for the elimination of update problems. However, the very design decisions that optimize for updates can be detrimental for retrieval.

Denormalization should not be undertaken until a fully normalized design has been achieved. Denormalization is not an excuse for not knowing or applying the process of normalization. It is, rather, an acknowledgement that the database design has to work well for both updates and retrievals.

The figure below shows a design that is 3rd NF in the top and denormalized at the bottom.

[image: image17.jpg]3rd Normal Form

Custorner PostalCode
CustiD PostalCode
stest [P|city
PostalCode State

Denormalized

Customer PostalCade
CustiD

) Ensmcm
City N

State Slde
PostalCode

In order to justify denormalization we need to have a business reason for the alteration form 3rd NF. This example design is for a mail order company that has 120,000,000 customers to whom they must send catalogs. The top design is in 3rd normal form because the attributes for State, City, and Country are codependent on the PostalCode field. To fix that we created the PostalCode entity and related it back to the Customer records on the PostalCode foreign key in the Customer table.

However, during system testing it was discovered that the time required to produce 120,000,000 mailing labels through a two-table join was much longer than if the labels could be produced from a single table. The table was then denormalized by reintroducing the City, State, and Country attributes to the Customer table.

After doing this it would be heavily documented including the normal form that is violated, the reason for the violation, and the consequences of the violation. Any violation of a fully normalized design carries with it potential problems in the area of updates.

My rule of thumb for breaking any programming “rules” is that If:

· you know what the rules is

· you know why the rule exists

· you know what the consequences of breaking the rule are

· you know why you want to break the rule

Then go ahead and break the rule. Just be sure that you fully document what you have done and why you have done it so programmers coming after you don’t have a difficult time trying to figure what you did and why you did it.

Data Partitioning

Data Partitioning: Dividing the contents of a single entity into two or more tables that are related to each other.

Every database manager has some type of restriction or another on the size and amount of data that can be stored in it. For many of the “big iron” database servers this limitation is practically insignificant, in that the limitation is so high that very few systems will ever approach the limit.

Visual FoxPro is not one of those database managers. VFP has a limit on file size, 2 gigabytes, table size 1 billion records, and record size 255 fields and 65,500 characters in a record. These limits, though pretty high, can and often will be encountered is business systems.

Combine the limitations issue with the fact that often, with very large data sets, it is advisable to divide things up for faster retrieval and you have a good argument for data partitioning.

The next sections will discuss the two approaches to data partitioning and the reasons for selecting one over the other.

Horizontal Partitioning

The two types of partitioning are horizontal and vertical. These titles may be somewhat meaningless until you see the contents of an entity in a row and column table orientation. The example below should help in understanding the use of horizontal and vertical partitioning.

	CustID
	Name
	City
	Credit Limit

	101
	Joe’s bar and grill
	Washington, D.C.
	1,000

	102
	Mike’s barber shop
	New York
	1,000

	105
	Sally’s dress shop
	Philadelphia
	2,500

	107
	You plug ‘em we plant ‘em funeral services
	New York
	1,500

	110
	Princely Cigars
	San Francisco
	2,750

	123
	Eat at Joe’s
	Pittsburgh
	1,000

	124
	Dewey, Skruewem, and Howe Attorneys at law
	Washington, D.C.
	100

In the table the data is oriented in horizontal columns and vertical rows. If we divide the fields into two or more tables we are dividing the entity horizontally. If we make our division on the records, then it is vertical partitioning.

Each method of partitioning has its benefits and its drawbacks. We will use the example below for our discussion.

[image: image18.jpg]Custormer

CustD
FirstName
MiddleName
LastNarne
AddrLine
AddrLine2

City

State

PostalCode
Country
CreditLimit
SalesTaxRate
AccountRep
PreferredShipper
PrimaryPhone
FaxPhone
EmailAddress
LastPurhcaseDate
CustomerSince

This example is not large enough to require any data partitioning but it will be useful in explaining the concepts of partitioning anyway. The limitation of space is the reason for using this size example.

The first partitioning method we are discussing is horizontal. In horizontal partitioning we will divide the table into two or more tables each having a subset of the attributes from the original table. The design below shows one partitioning that is possible.

[image: image19.jpg]CustomerA Custorers
CustiD | CustD
FirstNarme CreditLimit
MiddleName SalesTaxRate
LastName AccountRep
Addrine! PreferredShipper
Addiline2 PrimaryPhone
City FaxPhone

State EmailAddress
PostalCode LastPurhcaseDate

Country

CustomerSince

We have created two tables that are related to each other on a one-to-one basis. The combination of the data in both of these tables is representative of the actual entity. Either table alone has only partial data for the entity.

Notice that the partitioning was done along some logical lines, that is one table is holding demographic data while the other is holding financial data. It is a good idea to take this approach, the division of the data follows some logical concept, when partitioning horizontally. Doing the partitioning this way allows for the possibility that one of the tables alone can provide all of the needed data. For example, when printing mailing labels for customers, the Customer1 table can be used alone.

Managing data in horizontal partitioned entities is as simple as using the JOIN clause of the SELECT command.

SELECT Customer1.*, Customer2.* ;

 FROM Customer1 JOIN Customer2 ;

 ON Customer1.CustID = Customer2.CustID ;

 WHERE Customer1.State = “NY” …

Vertical Partitioning

Vertical, in contrast to horizontal, partitioning divides the table based on records rather then fields. Vertical partitioning is a reasonable approach when the system using the partitioned data has a limited requirement to combine the records between the partitions.

The design below shows the customer entity vertically partitioned.

[image: image20.jpg]CustomerAToM CustomerNToZ
CustiD CustiD
FirstName FirstName
MiddleName MiddleName
LastName LastName
Addrine1 Addrine!
Addiline2 Addiline2

City City

State State
PostalCode PostalCode
Country Country
CreditLimit CreditLimit
SalesTaxRate SalesTaxRate
AccountRep AccountRep
PreferredShipper PreferredShipper
PrimaryPhone PrimaryPhone
FaxPhone FaxPhone
EmallAddress Emalladdress
LastPurhcaseDate LastPurhcaseDate
CustomerSince CustomerSince

Note that the two tables both have the full set of attributes, however the records found in the two tables are not the same. In the design above the partitioning is done on the spelling of the customer’s name (which is not a good idea). A more appropriate partitioning might be on AccountRep or on State.

[image: image28.jpg]Buyer-Vendor “endor-Product Buyer-Product
Buyerlame Vendorhlame BuyerName
VendorName Product Product
Contracthum LastPurchase LastPurchase
PricePaid PricePaid

The combination of these partitioned tables into the original full entity is not as easy as a JOIN. The combination requires the use of a UNION. The sample code below would retrieve the records for all customers in NY.

SELECT Customer1.* ;

 FROM Customer1 ;

 WHERE State = “NY” ;

UNION ALL ;

 SELECT Customer2.* ;

 FROM Customer2 ;

 WHERE State = “NY” …

Want to read more about relational database design?

The following two books are among the best I have seen for detailed, complete, and understandable discussions of relational database design concepts.

Handbook of Relational Database Design, Candace C. Fleming and Barbara von Halle,
Addison-Wesley ISBN: 0-201-11434-8

Relational Database Selected Writings, C. J. Date, Addison-Wesley

 ISBN: 0-201-14196-5

Review of Class Design“Is a” diagrams (Inheritance)

 “Has a” diagrams (Composition)

[image: image29.jpg]CommandButton

emdEditing
emdNavigate
r T T 1
emdgdit emandd emdsave emdRevart
emdTep emdPrevious emde emdsottom emdSearch

Design Patterns

Identifying problem patterns

The problems we encounter in development fall into repeating patterns. When we can identify the patterns in the problems we have we can apply design patterns to solve those problems.

Using design patterns

You will see in our discussion of design patterns that often there can be patterns found inside of patterns. There are also situations where a particular design may be classified as differing patterns depending on exactly how you look at the design. This should not be seen as a complication of design patterns but rather as a result of the high level of abstraction that at which design patterns reside.

Design patterns are abstract that is they have very little detail included in them that refers to implementation. Design patterns are more like a block diagram of an approach to a problem than a prescription to a solution for a problem.

The following sections discuss a few specific design patterns with some examples of their application.

Singleton

Gamma and Helms describe the intent of the singleton pattern as, “Ensure a class has one instance, and provide a global point of access to it.”

Let’s look at an application design problem that could be solved by applying the singleton design pattern. We have an application with many forms any of which may require a toolbar. We want one toolbar only to ever exist. If multiple forms are open we want them to share a single toolbar.

How can we accomplish this? In our example project named Patterns we have done this very thing.

If you look at the Application Manager class you will see a method named LaunchToolbar. This method will create a toolbar for a form that requests one. The key that makes this an implementation of the singleton pattern is the fact that no matter how many forms get created that request a toolbar there only ever be one toolbar. The form’s access to that toolbar is through the Application Manager class’ oToolbar property.

[image: image30.jpg]Address Block

Customer Fom

Financial Blodk

Stresttethox City Textbox

Postal Code
Tetbo

TaxRate Testho| | Tams Black

Cradit Limit
Textbex

2

Interest ate

Paymenttime

Interestingly, Gamma and Helms go on to say the following about the singleton pattern, “The pattern makes it easy to change your mind and allow more than one instance of the Singleton class.” In our example the forms collection along with the oForm property of the AppMgr demonstrates this concept. The oForm property is very similar to the oToolbar property, except that there can be multiple forms open. The Application Manager is the single reference point for the Toolbar to reach the currently active form by using the oForm property.

Bridge

There are times when both the interface and the implementation of a process must be able to vary independently. When a particular interface may have multiple implementations the common method to use in designing this is inheritance.

[image: image31.jpg]Fom

Printing Device

Piinting Biidge

For hput

et Cutput

A

Customer lnput

Invsics Input

Laser Qutput Facoutput

[image: image21.jpg]For

Pt

Customer Fom \nvoice Farm

Pt Pt

The figure above shows an inheritance tree for a form class that has printing capabilities. The interface for printing is the Print method of the form class. The implementation may vary from one form to another as the print outs will look different.

Introduce to this design the issue of differing printing devices like laser printer, ink jet printer, and fax and you can see that this inheritance design is not going to meet the requirements. Enter the bridge pattern.

Another example of a bridge pattern will be seen later when we see the disconnected data access design of the multi-tier model.

Decorator

Often called a wrapper, the decorator pattern is used to add functionality to an object dynamically. The following figure shows part of our multi-tier model that will be expanded later. The part shown is the business object design. One of the responsibilities of the business object is to move data to and from the data access object. The mechanism and structure of the data stream that moves between these two objects can vary. We use a decorator, the Stream Processor, to allow the business object to handle whatever type of data stream it receives.

[image: image32.jpg]Tootbar
Crastor

Application Manager
oToalbar
ofom

v
Form One Form Twe Form Thise
Crastor Crastor Crator

Mediator

A mediator loosens the coupling between other objects by preventing them from directly referring to each other. For example, refer back to our toolbar and form design earlier in the singleton discussion. The buttons in the toolbar must provoke behaviors from the form (navigating in the cursor). The forms must provoke behavior from the toolbar (enabling and disabling the buttons). If the toolbar and form communicated directly with each other they would each need to be intimately aware of each other. Each time the active form changed the toolbar would need to be notified.

Instead, in our design, we used the AppMgr as a mediator between the active form and the toolbar as in the figure below.

[image: image33.jpg]saie s

Strategy

Gamma and Helms et al describe a strategy pattern as; “Strategy lets the algorithm vary independently from the clients that use it.” In our examples the stream handler is an example of a strategy pattern as well as the decorator. The XML handler class that is used varies the way the streams are processed. This is done independently to the classes that use the stream processors. Both the data access and the business logic classes use the stream processors and the processors can vary the way the streams are processed independently from the client (data access or business logic) that is using it.

Flyweight

Using object sharing to reduce the number of objects required serving a function. The flyweight pattern allows the use of objects at a position where it might otherwise be a severe overhead due to the shear number of objects that might be required.

In our examples the Data Access objects are of the flyweight pattern. Flyweight objects store only intrinsic state. The key concept here is the difference between intrinsic and extrinsic context and state. The following figure describes our data access objects.

Application Architectural Design

Introduction

The architecture of an application is the high level “block-diagram” of how the application is structured. In common practice this design is often a result of “How we always did it” mentality. The architecture of an application will influence all other decisions of design in that project.

There is no “correct” architectural design for applications. Each design has its merits and its drawbacks. There is, however, correct and incorrect implementations of any particular design. What makes an implementation correct or incorrect is how closely it follows the “rules” of the design.

I have often heard the question, “What is the correct multi-tier design?” There is no single answer to that question. There are many good designs. There are also many applications that did not follow the architecture design with which they started; these are examples of poor implementations.

In the following sections we will examine a couple of different architectures for application development.

Single Layer

Applications can be divided into “layers” of responsibility. In the simplest design there is a single layer. This one layer handles all activities of the application. The figure below shows this design.

In this single layer design the single layer of the application handles all the activities of the application. Visual FoxPro can easily be used to create these designs.

Advantages

All designs have both advantages and disadvantages. The major benefit of the single layer design is the sheer simplicity of the design. All functionality is contained in a single layer.

Visual FoxPro, because of its ease of “instance programming”, can lull a developer into the single layer design. Writing code in the form designer often results in a single layer structure.

Disadvantages

Single layer architectures do not adapt to changes very easily. Often a minor change in technology or requirements will result in a major rewrite of large portions of the application.

Multi-Layer

The next level of application architecture is to move from the single layer to multiple layers. The major goal of moving to a multiple layered design is to achieve a componentization of the application layers. The various layers of these multiple layered designs have very specific responsibilities. These designs call for a separation of these responsibilities clearly into the layers in such [image: image34.jpg]Prasentation Data Access

.

Business Logie Requess Data storage

a fashion that the different layers do not over lap each other in activities.

Componentization

The word componentization means to enclose functionality into discrete components that can be interchanged to expand or enhance the application. For example, a given application needs to store data. Initially the application is distributed to a single department of a company. Later the requirements change such that the data in this application must be shared with other applications in different departments, even departments that are located in different cities.

Ideally we should be able to simply open the data for sharing and be done with it. However, in this situation there is a requirement for data security. Our initial data storage system did not include a high level of data security because the data was local to the using department. If we had achieved componentization of the data storage, then, in theory, we should be able to simply change the data storage system in use to one that provides the required security levels and make minor adaptations to the existing application.

Two Layers

The first multiple layered design we will examine is the two layered design, often called client-server design. In the two-layered design we separate the presentation of the information from the storage of the data. The figure below demonstrates this design.

[image: image22.jpg]Prasentation

—

L.

Data Storage.

In the figure you can see the two layers, presentation and data storage. The presentation layer is responsible for displaying the data to the user and accepting input from the user. The data storage layer is responsible for storing and retrieving the data to and from the storage media.

Notice in this design that the requests go in only one direction, from presentation to data storage, although the data moves in both directions. The single direction of requests in a integral part of this design.

Three or More Layers

Now lets look at a more complex design, the three layered model.

[image: image23.jpg]ntaton

f—=Ea g

ess Logio

[N

Data Storage

In this three-layered design we have introduced a layer titled Business Logic. This layer is responsible for enforcing the business rules on the data. The raw data is stored in the data storage layer. The presentation layer is responsible for displaying the data to the user and for accepting input from the user. The new business logic layer is responsible for formatting the data into information based on the business rules and for enforcing constraints on the user’s input based on the same business rules

Other Layers

This layered design can be carried further into 4, 5, and 6 to n layers. Below is an example of a 4-layered design

[image: image35.jpg]Prasentation Layer VFP Foms HTML Pages St

~b~ §
Sunes Lo Sunes Lo
Susnes Lo Layer o iy
. +
oote oo toye| | VPP Dste accese | [vPP ate Acoase e 90U Semerdata | | col pats Acoese
& XML whiiens vl ol wPT
H 3
. |

Data Storage Layer | | VFF Data Storage SaL sener

It is this 4-layered design that we will be implementing later in this seminar.

Advantages

The advantages of the multiple-layered design are found in the maintenance and evolution stage of the application’s lifetime. As technologies and functionality requirements change over time it is easier to adapt the multi-layered application than it is a single layered design.

The level of componentization achieved will directly influence the amount of effort needed to adapt the application the new re
quirements. Consider the figure below;

[image: image36.jpg]mplementation s
‘Application Manager
Teolbar Taalbar- Singiek
oFom : Gbject

TrunehFomG
LaunehToolbar)
RegisterForm)
UnvegistrForm0

[emplementation das]

s [Foatbar - Simgieton

Disadvantages

Since the design is more complex than the single or two layer design, the implementation will also be more complex. When compared to pure VFP single layered design data access performance may be affected. Because of the nature of the data access mechanisms the presentation layer’s user interface design may be affected.

Although these are listed as disadvantages, they can be more accurately described as effects of the multiple layered architecture. This is because they may or may not have a negative impact, in fact, their impact may be positive.

Our Multi-Layered Design

The following diagram shows the multi-layered design that we will build in this seminar. This design uses 4 layers divided into Presentation, Business Logic, Data Access, and Data Storage.

[image: image24.jpg]Prasentation

Business Logio

Data Accese

The concentric circles are used to demonstrate that the layers only communicate with the adjacent layer and never skip a layer. That is the presentation layer only communicates with the business logic layer and the business logic layer only ever communicates with the data access layer.

Special problems to a distributed application

Our exercise in this seminar is to create an application architecture design that can be used to build applications that meet certain requirements. The requirements are as follows:

1 The applications are data centric in nature.

2 The applications will be primarily used for the in house activities of our clients.

3 The data in these applications must be available to other applications.

4 The business rules developed during our project must be enforced regardless as to what application is accessing our data.

5 Current applications being developed are our VFP applications only.

6 Future applications that need to be anticipated are web based applications as well as other desktops applications that may or may not be developed using VFP.

7 The data storage must be capable of scaling as the amount of data, applications, and users accessing it increases.

8 It must be possible to have data stored in multiple databases simultaneously as some of our data requirements may be already established in existing applications.

In reviewing these requirements we can see that our architecture must be very flexible indeed. While we can depend on the features of VFP for our current work, we cannot afford to force the architecture to require VFP for its implementation. In other words, whatever architecture we design must be capable of being written in many different development languages.

In addition to the above issue we have to deal with the special needs of a web based data application in our architecture. The web has some special issues related to it that simple LAN based applications don’t need to address. One of the most important issues has to do with the simple fact that in a web situation the client machine is not constantly in contact with the server machine. This means there is a “disconnected” environment in effect.

Also in the web situation our business rules code cannot hold any “state”. This means that from one call to another the business objects cannot assume anything about the context in which they operating, they cannot assume records pointer positions, data values, or anything else. Why, because they may be receiving calls from different clients sequentially. Study the following two diagrams for a moment.

[image: image37.jpg]Business Dbject

Stman Prosessar

XML Handler vFP
]

XML Handier vFP
0

ADD Handier

[image: image38.jpg]Ethetnet

Semer

Client1

Claint2

Clienta

Clienta.

In the LAN configuration the clients are always connected to the server, and there are known number of clients. In the Internet configuration the clients are not always connected, a client will connect, make a request, get a response and then disconnect from the server. The types of connections can vary widely on the Internet. Then number of clients is never really known by the server and can vary widely in a very short period of time.

Describe a disconnected data access structure

The problem described above leads us to the realization that we need to somehow have a disconnected access to our data if we are to have an architecture that will scale to web based applications. Now we could design a connected data architecture for our internal applications and use a different architecture for any web-based components that may arise in the future, but that would cause us to be using two differing application architectures and would totally prevent use from leveraging any work we did on the internal applications for our web requirements.

Instead we could design a disconnected data access mechanism that can be used in both the web-based environments and in our internal VFP applications. What we need is a data access mechanism that is disconnected and stateless. The diagram below shows the design we need to achieve.

[image: image25.jpg]Business Logio Layer

Data Acoess Layer

Supples data to the
presentation layar and
enfoross busines rles.

[N

There i no permanent.
connection bamesn thess

layers. They connec, do there
thing, and then disconnect

Fetohes and wites data o and

rom the data storgare Layer
and supplies data ot

[ieaeiager

Data Storage Layer

In this design the business logic layer and the data access layer are not always connected. The presentation layer will request data from the business logic layer. Then the business logic layer will determine if it has the data necessary to comply with the request, if it does not it will make a connection to the data access layer and request the required data. The data access layer will then submit a request to the data storage layer for the necessary data and return it to the business logic layer. Once the data access layer has returned the data it then forgets everything it knew about that data and is prepared for a new request. The business logic layer will then supply the requested data to the presentation layer.

In the reverse, that is updating data, the sequence is similar. The presentation submits some data top the business logic layer for updating. The business logic layer applies whatever business rules there may be and, given that the rules are passed, it establishes a connection to the data access layer and submits a request to update the data. The data access layer then submits the request to the data storage layer and returns a status value indicating whether the update was successful or not. The business logic layer will then return that same status to the presentation layer.

So why do we need all of this complexity? If you examine the architecture carefully you can see that the only layer that needs any knowledge of how the data is displayed or manipulated by the user is the presentation layer. This means that our business logic classes can support multiple differing user presentation without needing to be changed internally.

The business logic layer has no knowledge of exactly where the data resides or how the data is accessed. These technologies are isolated to the data access layer. This means that we can easily move the data storage from VFP tables to SQL Server without making any changes to the internals of the business logic layer. We can also change our data access methodology from SQL Passthrough to ADO+, or any other data access technology, by making changes in the data access layer alone.

Programming to Interface not implementation

What, exactly, makes all of this possible? It is a simple but pervasive concept called “programming to interface not implementation”. Refer to the diagram below for the next discussion.

[image: image26.jpg]To presentation layer
intertace

Implemention of business
logic object(code)

Intertace o the business logio abjact (mithods and proparties)|

Intertace o the data ascess object (methods and propertes)

Implementtion ofdats acoess|
abject(code)

To data storage

intertace

In the diagram you see that the only communication between the business logic object and the data access object is through their respective interfaces. This gives us an architecture where the only dependencies are between the interfaces and not the specific code used within an object.

An object’s, or class’s, interface is comprised of the public methods, their arguments and return values and the public properties of the class or object. The implementation is the specific code inside of the methods.

Design classes to support a disconnected data access design

So in our diagrams above we can see that we will need two sets of classes to access and write data in our architecture. We will design these classes in separate class libraries so that they can be used independently in the future.

The first class library we will create will hold our data access classes. The design of our data access base class is shown below.

Let’s look at some documentation of what these classes do for us.

[image: image39.jpg]Intemet Server

Client1

Client2

Clienta

osL

Clienta.

D) Data Access

The data access class is a composite and abstract class. It is composite in that it contains an XMLHandler class and it is abstract in that it is not used directly to create objects.

The data access class has two subclasses named VFPDataAccess and ADODataAccess. The intention of these two subclasses is to allow for the implementation of two different methods of accessing the data storage, one using Visual FoxPro data and VFP access methods and the other using other data sources and ADO methodologies to access that data.

Each of these subclasses has a subclass for each “entity” that needs to allow data access. In the diagram we show the Customer and the Order entities.

The XMLHandler is used to produce and interpret XML streams that move between the data access and the business logic layers.

E) XMLHandler

The XMLHandler class is also an abstract class used to introduce the interface for all XML handlers in the design. Our diagram shows two concrete subclasses, VFP6XLMHandler which is coded to work under Visual FoxPro 6.0 and VFP7XMLHandler which is coded to work in Visual FoxPro 7.0.

We need to two subclasses because VFP 6 and VFP 7 have different capabilities when dealing with XML. VFP 7.0 has many built in functions that can be used whereas VFP 6.0 does not have these functions available.

You will see, later, that we reuse these XMLHandler classes in our business logic layer classes. Let’s look deeper into the XMLHandler class design for VFP 6.0.

Internal Design of XML Handler class

We will start our in depth discussion of these classes with the XMLHandler class. First let’s mention why we have an XML handler at all. Since we are designing a disconnected data access system we need a way to move data between the data access layer and the business logic layer.

There are many ways we could move the data. We could use VFP cursors or we could use a text stream, however XML provides a standard structure for moving data around that allows us to make our system versatile and robust. By using XML we are not “married” to Visual FoxPro for both layers since other tools can assimilate XML as well. We are also not making ourselves proprietary by using some structure that is private to our design; instead we are using an industry standard.

Below are listed the methods in our XMLHandler class along with a description of what each method does.

	Method Name
	Visibility
	Description

	CreateCursor
	Protected
	Creates a cursor structure to hold the data in the XML stream. Actually creates two matching cursors, one that will be edited and one that will remain exactly as originally populated by this object.

	CreateEmptyXML
	Protected
	Creates and XML stream that contains only a schema with no data.

	CreateSchema
	Protected
	Creates the schema description for the XML stream

	CreateXML
	Public
	Creates the XML stream for sending out.

	GetNumSize
	Protected
	Determines the size of a numeric field within an XML stream when parsing the stream.

	ParseXML
	Public
	Takes an XML stream and creates the two cursors described above.

	PopulateCursor
	Protected
	Puts data into the cursors created by the CreateCursor method.

	VerifyXMLStream
	Protected
	Verifies that an XML stream is one that this object can read.

Below is a listing of the properties of the XMLHandler class along with a description of their purpose.

	Property Name
	Visibility
	Description

	cLastError
	Public
	Holds a description of the most recent error that occurred in this object.

	cXMLStream
	Protected
	Holds the XML stream being processed.

	FieldList(1,5)
	Protected
	Holds a list of the fields that are included in the data being processed.

The job of the XMLHandler object is to take a cursor and produce an XML stream containing the data within the cursor and to take an XMNL stream and produce a cursor with the data contained in the XML stream.

Both the data access class and the business logic class must do these two processes in order to exchange data between themselves. They both will use this XMLHandler class to accomplish these tasks. Since they both use the same XML handler class any changes we make to the XML or the processing of the XML will be incorporated in both sides of the data access operations.

Internal Design of Data Access class

This object provides services to the business logic layer and consumes the services of the data storage layer. It is the bridge between the business objects and the database system used to store the data.

Below are listed the methods of this class along with a description of their functionality.

	Method Name
	Visibility
	Description

	DoDelete
	Protected
	Deletes an existing record from the data source.

	DoInsert
	Protected
	Inserts a new record into the data source.

	DoUpdate
	Protected
	Updates an existing record in the data source.

	FetchData
	Public
	Gets data and returns that data based on a request from the business logic layer.

	WriteData
	Public
	Writes data to the data source based on a request from the business logic layer.

Now the properties are described.

	Property Name
	Visibility
	Description

	cAliasName
	Public
	The alias name to be used for the cursor that temporarily holds the data.

	cDatabase
	Public
	The name of the database that is the data source

	cFields
	Public
	A delimited list of field names within the data source.

	cLastError
	Public
	Description of the last error that occurred in this object.

	cTable
	Public
	The name of the table that is the data source.

	cWhere
	Public
	The where clause that will be used in the SELECT command that gets the data or does the updates.

	cXMLHandler
	Public
	The class name for the XML Handler that this object should use.

	cXMLHandlerClassLib
	Public
	The name of the class library that the XML Handler class resides in.

	FetchType
	Public
	The types of fetch data operation for this object. Designates whether this object does a SELECT, uses a remote view, uses ADO, uses SQL Passthrough, or fires stored procedures in the data storage system.

	nConnection
	Public
	The connection handler for this object if it is using a connection.

	pkFieldName
	Public
	The name of the primary key field for the table that this object gets and writes data from and to.

Internal Design of Business Logic class

The following tables show you the methods and properties of the business logic object design.

	Method Name
	Visibility
	Description

	AddRecord
	Public
	Adds a new record to the cursor.

	CheckFieldName
	Protected
	Checks for a valid field name.

	DeleteRecord
	Public
	Marks a record for deletion.

	FetchData
	Public
	Gets data from the data access object.

	GetField
	Public
	Returns the current value for a field.

	GetFirst
	Public
	Moves to the first record in the cursor.

	GetLast
	Public
	Moves to the last record in the cursor.

	GetNext
	Public
	Moves to the next record in the cursor.

	GetPrevious
	Public
	Moves to the previous record in the cursor.

	IsDeleted
	Public
	Returns a logical value indicating whether the current record in the cursor is marked for deletion.

	NextAvailable
	Public
	Returns logical value indicating whether there are any other records further in the cursor. Sort of a logical end of file.

	PreviousAvailable
	Public
	Sane as NextAvailable except it is checking for beginning of file.

	PutField
	Public
	Updates a field in the cursor with a new value.

	RecallRecord
	Public
	Unmarks a record fro deletion.

	RemoveUnchanged
	Protected
	Removes all records in the cursor that have no changes to them since they were obtained from the data access layer.

	RevertRecord
	Public
	Reverts any changes that have been made.

	ValidateData
	Public
	Method to be used by developers to do any data validation that may need to be done.

	WriteData
	Public
	Writes the data within the cursor back to the data access object.

The properties are listed below.

	Property Name
	Visibility
	Description

	cAliasName
	Public
	Alias name for the cursor.

	cXMLHandlerClass
	Public
	The name of the XML handler class to be used.

	cXMLHandlerClassLib
	Public
	The class library for the XML handler.

	DataAccessClass
	Protected
	The data access class to be used.

	DataAccessClassLib
	Protected
	The class library for the data access object.

	FieldList
	Protected
	A list of valid field names.

As you have seen in the previous diagrams these two objects (the business logic object and the data access object) work together to provide access to data with both read and write operations. These objects could reside on the server moving data to and from the presentation layer using XML, or they could reside on different machines. That is, the data access object residing on the server and the business object on the client.

In our sample application we will be creating the data access object external to the presentation layer through the technique called aggregation. The business logic object will be created internal to the presentation layer using composition. Let’s take a moment and

understand the difference between aggregation and composition.

Aggregation versus Composition

Examine the diagram below as we discuss the difference between these two approaches of combining multiple objects.

[image: image27.jpg]Composition

Objecta

Objects

Aggregation

bjecta

Objects
Areterto 8

In the diagram above you can see that composition involves containership, Object A actually contains Object B inside of itself. For example a form will refer to the controls in it through composition.

Aggregation is seen in the lower diagram. Here Object A refers to Object B through aggregation, Object A holds a reference to Object B which exists completely external to Object A.

In our implementation of the architecture described here we see aggregation used by the business logic layer to hold reference to the data access layer and composition used by the presentation layer to hold reference to the business logic layer.

Create application components using the data access classes

We will now spend some time looking at a number of presentation layer components that have been designed specifically to work within our architecture.

Open discussion, questions, and individual issues

