Multi-User Programming Issues

Introduction

Visual FoxPro provides a wealth of new capabilities when it comes to handling multi-user contention issues. Let’s take a look at some of the basic approaches used to handle locking in the past, and then discuss what the new capabilities are and how they can be used in our applications.

FoxPro 2.6 Locking Strategies

In FoxPro 2.6, a developer could natively do their GETs directly to the fields (direct READs) or to memory variables (indirect READs). There was also a third approach available, at a cost of doing some programming - that of a signature field. A signature field is a field that changed in value whenever any writing was done to a row in a table, allowing our save routines to quickly check that field in order to see if anyone else modified the data while we were working with it. I recommended using an optimistic locking scheme in which a record was only locked during a save. To review the three methods:

Direct READs

FoxPro will automatically attempt a lock for you when you edit a record directly, and the lock will be kept in force until the end of the edit. The advantage of this method is that little programming needs to be done. It is all automatic. A copy of the record must be saved before the edit begins (either with a SCATTER MEMVAR [MEMO], or a COPY TO <tempfile>) in case the user decides to cancel the edit.

A modeless application creates further difficulties, however. A record is always showing on the screen, ready to be edited. In fact, with multiple windows, many records may be showing on the screen, ready to be edited. For instance, a customer information screen may be available at the same time as the CD entry screen. As software designers, we cannot allow all of these records to be locked at all times. FoxPro has provided an enhancement to the READ command, READ NOLOCK. Issuing a READ with the NOLOCK clause will allow FoxPro 2.6 to display the window without the capability of editing the fields until a lock is manually placed with a SHOW GETS LOCK. The SHOW GETS LOCK refreshes the screen and locks the record.

Indirect READs

Editing to a memory variable means that the record is never locked, and the user can do all the changes that are necessary. Cancelling the edit does not require that you do anything to the record because it was never changed. When the record is saved, you must lock the record and move the changes into the record (with a GATHER MEMVAR [MEMO] or an APPEND FROM <tempfile>). The problem with this method is that another user may have modified the record, and the current user's modifications may wipe out the first user's changes.

One solution is to lock the record immediately when beginning the edit, and to hold the lock until the edit is completed. The other solution is to compare the record to a second set of memory variables that have not been changed. If there is a match, the change may take place. If the two don't match, modifications to the record have taken place and you must program accordingly.

Semaphore Locking

A third approach that can be used involves a marker that lets you check whether or not someone has modified or has locked your record. The simplest form of semaphore locking allows you to know that someone else has modified the record while you were editing (to memvars), without having to check every field to see if it has been modified. This form of logical locking (called a signature) involves the addition of an extra field to every dbf, in which you put a unique ID. When you wish to save your modifications, simply lock the record and check if the semaphore ID field has changed. If it has, you know that someone else has saved changes, and can act appropriately.

A more advanced form of logical locking would allow you to do edits to certain fields while other fields are being updated. For instance, if you have to globally update an inventory file with a new pricing scheme, you would normally have to lock the inventory file and change all of the records. While performing this update, nobody else could have access to the file. Using a semaphore locking scheme, however, you could let people know that you've locked the item price field, but allow them to update the on-hand field.

Concurrency Issues

The key thing to remember about multi-user programming in FoxPro 2.6 is that only the user that has the RLOCK() is viewing the current information. FoxPro caches information at the local station, updating it as necessary. You can only assure that the user is seeing the most recent data if they have a lock on the record. Accordingly, you will want to perform an RLOCK() before allowing the user to edit the data. As we’ll see, Visual FoxPro allows you to request the current information from the server, which can be used during updating of information.

Visual FoxPro 3.0 Locking Strategies

The addition of the data dictionary to Visual FoxPro effectively negated the use of memory variables when editing because validation rules apply to a field, and users expect the validation to occur as they are entering information. Enter buffering.

Buffering essentially duplicates and extends the functionality of memory variable usage while implicitly binding itself to the data. When you turn buffering on, Visual FoxPro copies the current information into a buffer which you edit directly, referring to your information as if it was the actual data fields themselves. This allows column and row validation to occur. When you are satisfied with the changes, and assuming that the validation has returned a .T., the data is written which causes the appropriate triggers to fire.

There are two buffering modes: row buffering and table buffering. Each mode can be set to use optimistic or pessimistic locking. As in FoxPro 2.6, optimistic locking only locks the data at the time of saving, while pessimistic locking locks the data when editing begins.

Buffering is set by using the CURSORSETPROP() function with the “Buffering” parameter and a value of one through five, which have equivalents in FOXPRO.H, as follows:

	Value
	Description
	FOXPRO.H Named Constant

	1
	No buffering
	DB_BUFOFF

	2
	Pessimistic Row Buffering
	DB_BUFLOCKRECORD

	3
	Optimistic Row Buffering
	DB_BUFOPTRECORD

	4
	Pessimistic Table Buffering
	DB_BUFLOCKTABLE

	5
	Optimistic Table Buffering
	DB_BUFOPTTABLE

For instance, to set the current workarea to optimistically buffer the table, we would use the following line of code (assuming that we have #INCLUDEd FOXPRO.H):

=CURSORSETPROP(“Buffering”,DB_BUFOPTTABLE)

When working with server data in a buffered mode, Visual FoxPro forces the use of optimistic buffering. As a result, let’s look at managing optimistic concurrency in greater detail.

Updating Our Data

In order to update our information when using table buffering, we make use of the TABLEUPDATE() function. TABLEUPDATE() takes three parameters:

· Should all rows be updated? If set to .T., all pending edits will be sent to the back end database.

· Should failed updates be forced? If set to .T., any changes made by another user (which would normally cause the update to fail) will be lost, and the update will be forced through.

· What alias should be updated?

We can now see various approaches to multiuser contention:

The current user always wins

This approach is useful for a case where we assume that the most recent user always has the most recent information. For instance, we have a table that contains contact names, address and phone numbers. The assumption is made that the user with the customer on the phone is keying in the correct address and phone #. In this case, we simply issue a TABLEUPDATE(.T.,.T.) to always send through our data.

The current user always loses

This approach is useful for a case where a person cannot change any newly entered information. In a case like this, we issue a TABLEUPDATE(.T.) on all changed rows at once, and if the update fails, issue a TABLEREVERT(.T.) to revert all of the rows.

The current user wins some

This approach is useful for those cases where we know that the current user can never overwrite any changes to the database. For instance, we are writing a library check-out system. A patron can call up all of the books for an author, and check off the ones that she wants to check out. While perusing the list, however, another patron has checked out some of the same books. When the update is rejected, we will check out whichever books remain, discarding the rejected updates.

In order to do this, we issue a TABLEUPDATE(.T.), attempting to update all changed rows. If the update fails, we loop through the changed rows using the GETNEXTMODIFIED() function. This function, when used in a loop moves from modified row to modified row, with a parameter telling it what row to begin on. Passing it a zero positions us on the first modified row, passing it an existing row moves to the next modified row. As we hit a modified row, we issue a TABLEUPDATE(), attempting to update just the current row. If it fails, we issue a TABLEREVERT() for the current row. When we are finished, we’ve updated all possible rows, and reverted those that have been changed. If we want to, we could keep a list of updated (or failed) rows, and present them to the user.

The current user gets to decide

In this situation, when an update fails, we want to present the user with as much information as possible. The basic approach for this method is similar to the previous one: we issue a TABLEUPDATE(.T.), and if it fails, do a loop with the GETNEXTMODIFIED() function.

When we encounter a row that has changed, however, we loop through the data in the row, presenting the user with the following values:

	Value
	Description

	The field itself
	This contains the information entered by the user.

	OLDVAL(<field_name>)
	This contains the information that the user saw before the changes were made.

	CURVAL(<field_name>)
	This contains the information that currently exists in the back end.

We allow the user to specify whether or not their changes should supercede the information on the back end, and issue a TABLEUPDATE() or TABLEREVERT() accordingly.

Conclusion

Visual FoxPro’s very capable buffering scheme allows us to build robust multi-user applications. In conjunction with the updatable view support which will be discussed in the next chapter, it offers us a path to developing robust client/server applications as well.

Acknowledgements

This article is excerpted from The Visual FoxPro(3 Codebook by Y. Alan Griver, ISBN 0-7821-1648-5, Copyright (1995 SYBEX Inc.,by permission of SYBEX Inc. All rights reserved. We acknowledge the help of Flash Creative Management, Inc., Hackensack, NJ in providing this material.

