Explanation and Examples of Non-Visual Classes

Introduction

Many products that support object orientation only support OOP for the creation of visual (GUI) objects. In Visual FoxPro, while visual classes are extraordinarily powerful and flexible, they represent only a fraction of the power Object Oriented Development can add to your applications. An entire universe of classes lie beneath the surface of the computer display, just waiting for our imaginations and skills to bring them to light. These classes are the Non-Visual​ Classes.

Defined

A non-visual class is any class that is not designed primarily for display. For example, a CommandButton is a class that is specifically designed to display on a form. A timer class, on the other hand, does not show on a form at all.

Non-visual classes in Visual FoxPro are typically descendants of the Custom or Timer classes and often will have no display component attached to it at all. However, as we will see later, non-visual classes may have a visual component attached to it.

Why Create Non-Visual Classes?

There are many reasons why a non-visual class may be created. In fact, there are as many reasons to create non-visual classes as there are to create visual ones. Principally, the reasons are:

· Code Maintenance

· Code Reuse

· Functionality Enhancement

So what’s the difference between non-visual and visual classes? The basic difference lies in the kind of classes we will create. While visual classes typically center around the user interface, non-visual classes play key roles in management functions. Non-visual classes also incorporate the type of class that is most often neglected when discussing object orientation in systems development: business classes.

Types of Non-Visual Classes

Wrapper Classes

When we talk about classes written for management roles, there are many different aspects of management we will want to create a class for. One type of management would be to manage the interface between one program and another. A good example of this would be to manage the interface between Visual FoxPro code and DLLs, FLLs or other function libraries. These classes are created to make it easier to use these sources functions, to enhance their capabilities, and to encapsulate the definition, loading and error trapping required when working with the function library.

This process is known as wrapping a class around some existing functionality. Appropriately, we call these classes wrapper classes.

Manager Classes

Another typical non-visual class would be a class to manage other classes. A good example would be a class to handle multiple instances of forms. Such a class would enable us to create “tile all windows” functions and the like. These classes are known as manager classes.

Business Classes

A business class is a class that is designed to model an entity in a business environment. A good example would be a customer class. These classes are a combination of information and actions designed to do what a business entity needs to do within the context of the problem domain (i.e., the environment being modeled and automated).

The responsibilities of a business class are often determined after careful analysis and design. Business class responsibilities can be very abstract in nature and require careful modeling before implementation. Some common responsibilities may be:

· Can retrieve its information from the database

· Can print itself

· Can save itself to the database

Business classes are a little more difficult to classify as visual or non-visual. Business classes may, and often do, have visual components. Or it may be based on a visual class (e.g. a form class) with the appropriate properties and methods added to the form. Which category does it belong in? It depends on how the object it is created...

Let’s look at a sample wrapper class first.

Wrapper Classes

The purpose of a wrapper class, as we discussed earlier, is to create a class that manages and perhaps even enhances the functionality of some other code. Any code can be wrapped into a class. If you have an old procedure library written in prior versions of FoxPro, you could wrap a class around it if you like. The tough part is deciding when it is appropriate to wrap a class around something.

The best reasons to wrap a class around something is to make it easier and better to use. A perfect example of a candidate for a wrapper class would be a DLL or FLL. These function libraries can be obscure, their parameters difficult to determine and their error handling requirements rather extensive. For example, if you are using a .FLL library (e.g. FOXTOOLS), what do you do if someone else’s code unloads it accidentally with SET LIBRARY TO? Can you rely on the fact that the library is there all the time? Take the example of calling some of the Windows API functions (e.g., the functions to write and read from .INI files). These can be difficult to learn to use.

When a class is wrapped around some other piece of code, the class developer has the ability to control which portions of the DLL/FLL are available to the outside world, how they are called and even what values are returned.

Wrapper classes carry a myriad of benefits with them. First of all, if a DLL/FLL is used with a wrapper class, the developers who use that class do not have to know anything about the DLL/FLL that serves as the basis for the class. They also do not have to be concerned with issues of loading the DLL/FLL or registering the functions contained therein.

In effect, the result is a much reduced learning curve and coding time for all concerned.

Let’s look at the following example of a wrapper class. This class is a wrapper around a library of functions that ships with Visual FoxPro called FOXTOOLS.FLL. First the code:

* Program...........: FTOOLS.PRG

* Author............: Menachem Bazian, CPA

* Copyright.........: (c) Flash Creative Management, Inc. 1994, 95

* Project...........: COMMON

* Created...........: 11/29/1994

*) Description.......: Wrapper class for FoxTools

* Major change list.:

*-- This is a wrapper class for FoxTools. The following functions have been added as

*-- methods to this class:

*--

*-- DriveType

*-- JustPath

*-- JustDrive

*-- AddBs

*-- CleanDir

*--

*-- A couple of quick notes here:

*--

*-- JustPath has been modified to add a backslash where necessary to the return

*-- value.

*--

*-- CleanDir deals with the issue of directories specified with ..\. It returns

*-- an "adjusted" directory name.

*--

*-- In all cases when running a FoxTools function, the class will check to make sure

*-- that FoxTools is still loaded (the user may have released on their own). If this

*-- class loads FoxTools, it released it when the object is released.

DEFINE CLASS ftools AS custom

PROTECTED lLoaded

PROCEDURE init

this.lLoaded = .F.

this.loadlib()

ENDPROC

PROCEDURE destroy

IF this.lLoaded

RELEASE LIBRARY (SYS(2004)+"foxtools.fll")

ENDIF

ENDPROC

PROCEDURE loadlib

IF !"FOXTOOLS" $ SET("library")

SET LIBRARY TO (SYS(2004)+"FOXTOOLS")

this.lLoaded = .T.

ENDIF

ENDPROC

FUNCTION drivetype(tcDrive)

LOCAL lnRetVal

lnRetVal = (drivetype(tcDrive))

RETURN lnRetVal

ENDFUNC

FUNCTION justpath(tcString)

LOCAL lcRetVal

lcRetVal = (this.addbs(justpath(tcString)))

RETURN lcRetVal

ENDFUNC

FUNCTION addbs(tcString)

LOCAL lcRetVal

lcRetVal = (addbs(tcString))

RETURN lcRetVal

ENDFUNC

FUNCTION cleandir(tcString)

RETURN(UPPER(sys(2027, tcString)))

ENDFUNC

PROCEDURE error (tnError, tcMethod, tnLine)

LOCAL lcMessage

tcMethod = UPPER(tcMethod)

DO CASE

CASE tnError = 1
&& File not found

&& Cause by the library not loaded

this.loadlib()

RETRY

OTHERWISE

?? CHR(7)

lcMessage = "An error has occurred:" + CHR(13) + ;

"Error Number: " + PADL(tnError,5) + CHR(13) + ;

" Method: " + tcMethod + CHR(13) + ;

" Line Number: " + PADL(tnLine,5)

=MESSAGEBOX(lcMessage, 48, "Ftools Error")

ENDCASE

ENDPROC

ENDDEFINE

This class shows the various purposes of a wrapper. Let’s look at each one individually:

Ease of Use - Encapsulate Error Trapping

When a library is loaded within Visual FoxPro, it can be unloaded by other objects by issuing one command. The FTOOLS class automatically loads FOXTOOLS.FLL (if it is not already loaded) when the object is instantiated. If the library is released by another module or object and a FoxTools function is called, Visual FoxPro will generate an error #1 (File Not Found). In that case, the error method calls the LoadLib() method to reload the library. This provides developers with a simple way to use FoxTools without having to worry whether someone else’s code unloaded the library.

Enhance Existing Functionality

The JustPath() function in FoxTools calculates what portion of a file name string is the path designation and returns that path as a string. The string may or may not have a backslash at the end. In order to promote consistency, the method that calls JustPath() also calls the AddBs() method to add a backslash at the end of the string if one does not already exist there. This is an example of enhancing functionality and provides developers with a simple, consistent, return value.

Adding Functionality

The CleanDir() method is designed to adjust a path string for “backsteps”. For example, a path string of “C:\WINAPPS\VFP\SAMPLES\DATA\..\GRAPHICS\” would adjust to “C:\WINAPPS\VFP\SAMPLES\ GRAPHICS\”. This function does not call Foxtools at all however it’s functionality is related to the other functions included in this class. By adding a method for this function, we are allowing developers access to related functionality in one place without requiring them to load multiple classes.

The ability to create and use wrapper classes is a major benefit to software development. Since the complexity of working with something can be hidden within a class without compromising the functionality, developers who use the wrapper will immediately notice an increase in productivity by having it in their arsenals without the cost of learning its intricacies.

Manager Classes

A second type of non-visual class that is often created is a manager class. This class will typically manage instances of another class. A good example is managing multiple instances of a form to ensure that subsequent instances are properly placed on the screen with a header that is identifiable (for example, Document1, Document2 and so on).

This next example deals with that issue and shows a manager class along with a simple form class to manage. First the code:

* Program...........: MANAGER.PRG

* Author............: Menachem Bazian, CPA

* Copyright.........: (c) Flash Creative Management, Inc. 95

* Created...........: 05/03/95

*) Description.......: Sample Manager Class with Managed Form Class

* Major change list.:

*-- This class is designed to manage a particular form class and make

*-- sure that when the forms are run they are "tiled" properly.

DEFINE CLASS FormManager AS Custom

DECLARE aForms[1]

nInstance = 0

PROCEDURE RunForm

*-- This method runs the form. The instance of the form class

*-- is created in the aForms[] member array.

LOCAL lnFormLeft, llnFormTop, lcFormCaption

nInstance = ALEN(THIS.aForms)

*-- Set the Top and Left Properties to Cascade the new Form

IF nInstance > 1 AND TYPE('THIS.aForms[nInstance -1]') = 'O' ;

AND NOT ISNULL(THIS.aForms[nInstance -1])

lnFormTop = THIS.aForms[nInstance -1].Top + 20

lnFormLeft = THIS.aForms[nInstance -1].Left + 10

ELSE

lnFormTop = 1

lnFormLeft = 1

ENDIF

*-- Set the caption to reflect the instance number

lcFormCaption = "Instance " + ALLTRIM(STR(nInstance))

*-- Instantiate the form and assign the object variable

*-- to the array element

THIS.aForms[nInstance] = CREATEOBJECT("TestForm")

THIS.aForms[nInstance].top = lnFormTop

THIS.aForms[nInstance].left = lnFormLeft

THIS.aForms[nInstance].caption = lcFormCaption

THIS.aForms[nInstance].show()

*-- Redimension the array so that more instances of

*-- the form can be launched

DIMENSION THIS.aforms[nInstance + 1]

ENDPROC

ENDDEFINE

*-- This class is a form class that is designed to work with

*-- the manager class.

DEFINE CLASS TestForm AS form

Top = 0

Left = 0

Height = 87

Width = 294

DoCreate = .T.

BackColor = RGB(192,192,192)

BorderStyle = 2

Caption = "Form1"

Name = "Form1"

ADD OBJECT label1 AS label WITH ;

FontName = "Courier New", ;

FontSize = 30, ;

BackStyle = 0, ;

Caption = (time()), ;

Height = 61, ;

Left = 48, ;

Top = 12, ;

Width = 205, ;

Name = "Label1"

ENDDEFINE

Note that forms are instantiated through the RUNFORM method rather than directly with a createobject() function. This allows the manager class to maintain control over the objects it instantiates.

Manager classes are very useful. They allow a simple way to encapsulate code that would normally have to be duplicated every time an object is instantiated into one single place.

Business Class

Business classes are object oriented representations of business entities (e.g. a Customer). The responsibilities of these classes will vary depending on the behavior of a particular object within the problem domain.

The purpose of a business class is multi-fold. At an abstract level, it is possible to determine what the basic functionality of a business object would typically be and then to create a class around it. For example, the basic responsibilities of a business object might be:

· Retrieve itself from the database

· Move within the database tables (First, Last, Prev, Next)

· Display itself

· Print itself

· etc.

These functions could be abstracted in a class as follows:

DEFINE CLASS BaseBusiness AS custom

cAlias = ""

oData = .NULL.

PROCEDURE INIT

IF !EMPTY(this.cAlias) AND !used(this.cAlias)

=MessageBox("Alias is not open!", 16)

ENDIF

ENDPROC

PROCEDURE next

SELECT (this.cAlias)

SKIP 1

IF EOF()

GO BOTTOM

ELSE

this.readrecord()

ENDIF

ENDPROC

*-- Additional methods here for movement would mimic

*-- procedure NEXT

PROCEDURE readrecord

*-- This procedure is initially empty

SCATTER NAME this.oData

ENDPROC

*-- Additional methods for saving would follow mimicing

*-- procedure readrecord.

ENDDEFINE

In order to create a customer object, for example, all we would need to do is subclass it as follows:

DEFINE CLASS customer AS basebusiness

cAlias = "Customer"

ENDDEFINE

The fields in the customer alias would be automatically added as members of oData. Thus, if an object called oCust were instantiated from the customer class, the cName field would be held in oCust.oData.cName.

Of course, the beauty of this method of development is that there is little coding to do from one business class to another. In effect, all you do is code by exception.

Conclusion

Object Oriented Programming goes well beyond the world of the graphical user interface in Visual FoxPro. Non-Visual classes represent a powerful weapon in our OOP arsenal for rapid, bug-free systems development.

Acknowledgements

We acknowledge the help of Flash Creative Management, Inc., Hackensack, NJ in providing portions of this material.

