
IN THIS CHAPTER

• Starting the New Windows
Application Project

• Adding a Windows Controls
Library

• Building Your First Inheritable
Form

• Programming with Class

• Click Event Code for the
Form’s Buttons

CHAPTER 4

A Visual Basic .NET
Framework

In this chapter, we’ll build a simple application framework
for Visual Basic .NET forms applications that use SQL Server.
You’ll see how object-oriented techniques can greatly reduce
development time and cost, and simplify your job. If you
thought Visual Basic .NET was a lot harder than Visual
FoxPro, I think you’ll be pleasantly surprised.

A small Visual Basic .NET Windows Application project might
consist of

• A Main form to contain the application and the menu

• The Menu control in the Main form

• A few forms to add, edit, and delete records from indi-
vidual tables

We’ll base the Add/Edit/Delete forms on a single inheritable
form class, so that we only write the common code once and
reuse it as needed.

Starting the New Windows
Application Project
To start a Visual Basic .NET project, open up the IDE and
select File, New from the menu. The resulting dialog lets you
pick from a wide range of project types. Unlike FoxPro, where
there is only one language and one project type, in Visual
Studio .NET you pick both the project type and the develop-
ment language. This selection determines which namespaces
are included in the project references. For example, if we pick
Visual Basic Projects and click on the Windows Application
project type, the Windows.Forms namespace (among others)

05 0672326493 CH04 4/8/04 12:57 PM Page 135

136 CHAPTER 4 A Visual Basic .NET Framework

will appear in the list of references. If we instead pick a Smart Devices project, the refer-
ences for Pocket PC and Windows CE are included.

You first have to pick a name for your new project. When you create this project, Visual
Studio adds a new directory under your default projects directory, which is initially
Documents and Settings\MyUserID\Visual Studio Projects\YadaYada. I changed mine
to C:\VBProjects and recommend that you do likewise. It creates both a solution (a
container for several projects) and a project. As you’ll see repeatedly in our examples,
Visual Basic .NET assumes a different arrangement for projects than does FoxPro. In
FoxPro, we build one project, and may include several class libraries. In Visual Basic .NET,
each class library is usually built as its own project, and compiled as a DLL, then included
as a reference in other projects that use the classes. It doesn’t take long to get used to.

The newly created Visual Basic .NET Windows Application project also includes one form,
named Form1.vb by default. Form1 is both the filename and an internal class name. You
should change both. In this case, because it’s the first form that was created, we’ll use it as
we used MAIN.PRG in our FoxPro project. There’s no _Screen object in Visual Basic .NET, so
this first form will become our background screen. Using F4, open the Properties window,
and change the Name property to AppScreen. (If you open the code window for the form,
you’ll see that the class name in the first line has been changed to AppScreen.) Open the
Solution Explorer with Ctrl+Alt+L and select Rename, and change Form1.vb to
AppScreen.vb. Right-click again on the project in the Solution Explorer and select Rebuild.

NOTE

A FoxPro form would consist of two files, an SCX and an SCT.

Next, we’ll need a menu. Use Ctrl+Alt+X to open the Toolbox, select Windows Forms, and
drag a MainMenu control to anywhere on the AppScreen form. When selected, the MainMenu
control appears in the upper-left corner of the screen. For now, it’s the only control, so it
will be selected automatically. Later, if you add other controls (for example, a label) to the
form, the menu control will disappear when the label is selected. Click on the MainMenu
control to begin building your menu.

The MainMenu control is simple and intuitive. (I believe it was ported directly from Delphi
when the lead architect of Delphi was ported over to Microsoft.) As you move down and
right, new text boxes appear to let you add menu selections. You should right-click on
each of your menu pads and change the name to something meaningful (for example,
mnuExit for the File, Exit menu pad), so that the Click code for the menu option makes
sense when you read it. Add a File pad first, and below it add an Exit bar. Right-click on
the File pad, select Properties, change the name to mnuExit, and then double-click on it
and type in the single command End. Press F5 to compile and run the application, and
you’ll see that your form closes when you click on Exit.

05 0672326493 CH04 4/8/04 12:57 PM Page 136

The AppScreen Form Properties
The AppScreen form is the container for the rest of the forms in your application, so let’s
configure it more to our liking. Use F4 to open the Properties window and make the
following property settings:

StartPosition – CenterScreen

FormBorderStyle – Fixed3D

Text - My First VB.NET Application

Remember that I said that some things are harder in .NET? This is one of them: The drop-
shadow trick that we used in Chapter 2, “Building Simple Applications in Visual FoxPro
and Visual Basic .NET,” to put a title on the screen with a “drop shadow” turns out to be
unusually difficult in Visual Basic .NET because the Label control can’t be transparent on
a Windows form.

RANT

<rant>I’m sure it will be changed by the time this book hits the shelves, but at this moment, you
can’t get there from here. There is a different kind of control that allows drawing text with a
shadow, but it’s 15 lines of code, doesn’t demonstrate inheritance, and is so complicated that it
irritates me.</rant>

Adding a Windows Controls Library
The whole idea of object-oriented programming is that you code things once, and then
reuse them throughout your application. That applies to everything—even the controls on
each of your forms.

For example, I like to make it easy for users to see which control has the focus. So I either
change the background color of the active control or enhance its border. It’s a small thing,
but it wouldn’t be a small thing if I had to code each individual control. Believe it or not,
kids, back when I was walking six miles to school in a foot of snow, that’s what we had to
do. We wrote macros to speed up the process, but what a pain!

Now it’s much, much easier. Simply right-click on your solution and select Add Class
Library, giving it the name MyControls. A new project will be added to your solution, with
an empty code window. Name it MyControls.vb. Add the code shown in Listing 4.1.
Recompile the project.

LISTING 4.1 The MyControls Class

Imports System.Windows.Forms

Imports System.Drawing

Public Class MyControls

Adding a Windows Controls Library 137

4

05 0672326493 CH04 4/8/04 12:57 PM Page 137

Public Class MyText

Inherits TextBox

Public Sub New()

MyBase.new()

Text = “”

Width = 200

Enabled = False

BackColor = System.Drawing.SystemColors.ControlLight

End Sub

Public Sub EnterHandler(_

ByVal Sender As Object, ByVal e As EventArgs) _

Handles MyBase.Enter

ForeColor = ForeColor.White

BackColor = BackColor.Blue

End Sub

Public Sub LeaveHandler(_

ByVal Sender As Object, ByVal e As EventArgs) _

Handles MyBase.Leave

ForeColor = ForeColor.Black

BackColor = BackColor.White

End Sub

Public Sub DisableHandler(_

ByVal Sender As Object, ByVal e As EventArgs) _

Handles MyBase.EnabledChanged

Sender.BackColor = _

IIf(Sender.enabled, BackColor.White, _

System.Drawing.SystemColors.ControlLight)

End Sub

End Class

Public Class MyEdit

Inherits TextBox

Public Sub New()

MyBase.new()

Text = “”

Width = 200

Multiline = True

Enabled = False

BackColor = System.Drawing.SystemColors.ControlLight

End Sub

Public Sub EnterHandler(_

ByVal Sender As Object, ByVal e As EventArgs) _

CHAPTER 4 A Visual Basic .NET Framework138

LISTING 4.1 Continued

05 0672326493 CH04 4/8/04 12:57 PM Page 138

Handles MyBase.Enter

ForeColor = ForeColor.White

BackColor = BackColor.Blue

End Sub

Public Sub LeaveHandler(_

ByVal Sender As Object, ByVal e As EventArgs) _

Handles MyBase.Leave

ForeColor = ForeColor.Black

BackColor = BackColor.White

End Sub

Public Sub DisableHandler(_

ByVal Sender As Object, ByVal e As EventArgs) _

Handles MyBase.EnabledChanged

Sender.BackColor = _

IIf(Sender.enabled, BackColor.White, _

System.Drawing.SystemColors.ControlLight)

End Sub

End Class

Public Class MyCombo

Inherits ComboBox

Public Sub New()

MyBase.new()

Text = “”

Width = 200

Enabled = False

BackColor = System.Drawing.SystemColors.ControlLight

End Sub

Public Sub DisableHandler(_

ByVal Sender As Object, ByVal e As EventArgs) _

Handles MyBase.EnabledChanged

Sender.BackColor = _

IIf(Sender.enabled, BackColor.White,

System.Drawing.SystemColors.ControlLight)

End Sub

End Class

Public Class MyCheck

Inherits CheckBox

Public Sub New()

MyBase.new()

Adding a Windows Controls Library 139

4

LISTING 4.1 Continued

05 0672326493 CH04 4/8/04 12:57 PM Page 139

Text = “”

Width = 200

Enabled = False

End Sub

End Class

Public Class MyRadio

Inherits RadioButton

Public Sub New()

MyBase.new()

Text = “”

Width = 200

Enabled = False

End Sub

End Class

Public Class MyLabel

Inherits Label

Public Sub New()

MyBase.new()

Text = “”

TextAlign = ContentAlignment.MiddleRight

Height = 12

End Sub

End Class

End Class

Next, open the Toolbox using Ctrl+Alt+X, right-click, and add a new tab called My User
Controls. Open the tab, right-click anywhere under it, and select Add/Remove Items.
When the Customize Toolbox dialog appears, click on the Browse button, and add the
new MyControls.dll component from the MyControls\bin directory.

Now when you open the Toolbox and select the MyControls tab, you’ll see the MyText,
MyCombo, MyCheck, MyRadio, MyLabel, and MyEdit components.

From now on you’ll use these controls on your forms, rather than the VB standard
controls. And if you change MyLabel’s font to Tahoma Bold and its color to purple, it will
change on every single one of your forms. That’s a lot of benefit for 15 seconds of work.

The same holds true for forms. In FoxPro, it’s common to build a form to add, edit, and
delete records in a single table. Most applications have several such tables, and the logic is
the same for all of them. In FoxPro, they’re called form templates, but they’re just form

CHAPTER 4 A Visual Basic .NET Framework140

LISTING 4.1 Continued

05 0672326493 CH04 4/8/04 12:57 PM Page 140

classes. In Visual Basic .NET, they’re called inheritable forms. So let’s build one and see if
the benefits that accrue are as considerable as they are in FoxPro.

Building Your First Inheritable Form
To create an inheritable form class, open the VS IDE and select New Visual Basic .NET
Windows Application project. Enter InheritedForm as the project name. (I’ve changed the
location where the solution and project will be created to C:\VBProjects so as to make my
Visual Basic .NET code easy to find.) Fill in the screen as shown in Figure 4.1.

Building Your First Inheritable Form 141

4

FIGURE 4.1 Starting a new solution and Windows Application project.

Visual Studio will create a solution file named InheritableForm, as well as a project file
named InheritableForm containing a form named Form1.vb, as shown in Figure 4.2.

FIGURE 4.2 The solution and project in the Solution Explorer window.

Because we want to create an inheritable form, we need to change the Output type from
Windows Application to Class Library. First close the Form Designer because you can’t
change project properties while the Form Designer has one of its forms open. Make sure
the Solution Explorer window (Ctrl+Alt+L) is visible and selected, then right-click on the

05 0672326493 CH04 4/8/04 12:57 PM Page 141

project name and select Properties. Select Class Library from the Output Type, combo box,
change the name to BaseForm, and blank out the Root Namespace text box as shown in
Figure 4.3.

CHAPTER 4 A Visual Basic .NET Framework142

FIGURE 4.3 Changing the inheritable form name in the Inheritable Form Property Page.

Close the Properties page. Finally, right-click on Form1.vb in the Solution Explorer and
change the name to BaseForm.vb. The result should look like what’s shown in Figure 4.4.

FIGURE 4.4 The renamed form class in the Solution Explorer.

Double-click on baseform.vb to bring up the designer, and then use Ctrl+Alt+X (or select
View, Toolbox from the IDE menu) to display the Toolbox. Select Windows Forms. (You
can only select it if the Designer is open, so if you don’t see the Toolbox tab, that’s proba-
bly the problem.) I want to have buttons to add, edit, delete, save, cancel, and close the
form, so double-click six times on the button control. You can then use the Layout tools to
line them up. Select View, Toolbars from the IDE menu and make sure Layout is checked.

Next, change the buttons’ Name properties to btnAdd, btnEdit, btnDelete, btnSave,
btnCancel, and btnClose, and then change their respective Text values to Add, Edit,
Delete, Save, Cancel, and Close. I like to put an ampersand (&) in front of the appropriate
capitalized letter of each text caption to enable a hotkey. I use Cl&ose because &Cancel is

05 0672326493 CH04 4/8/04 12:57 PM Page 142

taken, even though it’s not really a conflict because both are never enabled at the same
time. Speaking of enabling, I initially disable all buttons except Close, for reasons that will
become clear presently. I also changed the form’s Text property to Change me! as a
reminder to the programmer.

Finally, position all six of the buttons near the bottom left of the screen, and then select
all of them and set the Anchor property to Bottom, Left, as shown in Figure 4.5.

Building Your First Inheritable Form 143

4

FIGURE 4.5 Anchoring the buttons to the bottom left of the form.

Although some “flat files” are very large, most applications use lots of little tables. So I’m
going to make a simplifying assumption that a single level of filtering is sufficient to show
a subset of matching records from which a single record can be chosen for viewing or
editing. For this purpose, I’ll put a text box at the top of the screen so that the user can
enter a filtering value for a designated search field, and a button and a list box to show
the matching values of said search field. It’s not going to work in every case, but if it
meets 90% of your needs, it’s a good start. Add two labels, a text box, a button, and a list
box to make the form look like Figure 4.6.

FIGURE 4.6 Adding a search capability to the form.

05 0672326493 CH04 4/8/04 12:57 PM Page 143

I anchored the Show Matching Records button at the top and right, and the list box is
anchored at the top, right, and bottom. As a result, automatic resizing performs exactly as
you would expect. That’s better than writing all of that resizing code that used to be
required, and it works the same way in the IDE as it does in the final program.

Coding the Form Class
The first thing I code is always the Close button because I’m anxious to see it work.
Double-click on the Close button and you’ll see that the IDE generates two lines of code.
Listing 4.2 shows the code for the Click event of the Close button. Note that the Handles
clause determines which event the routine responds to, not the routine name as is the
case in Visual FoxPro.

LISTING 4.2 The Close Button Click Event Code

Private Sub btnClose_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnClose.Click

Close()

End Sub

The Private Sub and End Sub lines were written by the IDE’s code generator. I added the
Close command. (The ending parentheses were added by the IDE.)

The form displays one record at a time, which makes saving changes simple. That’s the
reason for this design. But that means we have to have a mechanism for selecting a record
for viewing or editing. That’s what the text box, the list box, and the Show Matching
Record button are for. The user enters a string—one or more letters—into the text box and
clicks on the button, and the list is populated with all of the records that match. But
match on what? I’ve decided to specify a single search field, presumably the most impor-
tant field in the table, as the target for the search. I’ve also decided to show all records
that start with the string entered by the user. As you’ll see shortly, matching any part of
the expression is equally easy. But it’s my design, so I’ll do it my way.

To see how this works, compile the project. This creates a DLL named
BookInheritedForm.dll, which can contain several inheritable items. Next, add a project
called UseTheFormLuke to your current solution. (I did my first FoxBASE project for George
Lucas at the Skywalker Ranch.) It will add a form called Form1, which we’ll ignore for now.

Next, right-click on the new project and select Add, Add Inherited Form from the context
menu. The resulting dialog will first ask for a name for the new form (call it Test), and
then it will ask you to select from the available inheritable classes, as shown in Figure 4.7.
Select BaseForm, the only one on the list. The resulting form will look just like BaseForm
because it inherits from BaseForm.

CHAPTER 4 A Visual Basic .NET Framework144

05 0672326493 CH04 4/8/04 12:57 PM Page 144

FIGURE 4.7 Selecting an inheritable class for an inherited form.

We’ll need a Main Form in order to test our inherited form. You can use Form1, which was
created automatically when you added the Windows Application project. Change the file-
name to MainForm.vb by right-clicking on the filename and selecting Rename, and then
open the form’s code and change Class Form1, the first line in the file, to Class
MainForm. (You can also open the form in the Form Designer and change the Name prop-
erty.)

Next, drag a MainMenu control from the Windows Form toolbox to the form’s design
surface. Type File in the top left cell, and Exit just below it, as shown in Figure 4.8.

Building Your First Inheritable Form 145

4

FIGURE 4.8 Adding menu items to the form.

05 0672326493 CH04 4/8/04 12:57 PM Page 145

Double-click on Exit and enter the single command End. Go up and to the right of File
and type Tables, and then go down and type Test Form. Double-click on Test Form and
enter the following three lines of code:

Dim frm as Test

frm = New Test

frm.Show()

Press F5 to compile and run your application. Then select Tables, Test from the menu, and
you’ll see your first inherited form. It doesn’t do much yet, but it will.

Programming with Class
We want to allow programmers to use this inheritable form simply by filling in some
properties. What are properties? In Visual FoxPro, they’re something like public variables
at the class level. In Visual Basic .NET you can enter a Public As String statement in the
declarations at the top of a class, and the resulting element (called a field) is accessible to
classes subclassed from the class. For example, if a class contains Public MyField as
String in its declarations, then in a subclass of the class, IntelliSense will expose
Me.MyField (Me is like THISFORM in FoxPro). But it’s not visible in the class’s property sheet,
nor is it visible in the property sheet of a subclass of the class.

In order to view and set the property in a subclass of the class, you have to create a private
variable and a property procedure to save and retrieve it. And what’s exposed is not the
private variable, but rather the property procedure containing the Getter and Setter
routines. For example, to provide a settable MainTable property, you add the code shown
in Listing 4.3 to the top of your form class’s code, just below the declarations.

LISTING 4.3 Declaring A Property Procedure

Private _MainTable As String

Public Property MainTable() As String

Get

Return _MainTable

End Get

Set(ByVal Value As String)

_MainTable = Value

End Set

End Property

You really only have to enter four of these lines of code: When you type Public Property
As and press Enter, the IDE writes all of the code except Return _MainTable and
_MainTable = Value. So you have to create the private variable (by convention the name
of the property procedure preceded by an underscore), the procedure name, and the

CHAPTER 4 A Visual Basic .NET Framework146

05 0672326493 CH04 4/8/04 12:57 PM Page 146

Return and Value assignment statements. Then, when you subclass the class, MainTable
(not _MainTable) appears in the property sheet. It looks unnecessarily complicated, espe-
cially to FoxPro developers; but after you do it a few hundred times, you won’t even
notice it.

Automating Data Access
ADO.NET is the data engine used in .NET applications. It’s a disconnected methodology;
you request data and close the door. When you want to save it, you reconnect and send
the changes. Inside the application, data is stored in a dataset—sort of a miniature data
environment, which can contain tables, relations, and some other elements. For our
simple application, it will contain a single table, and the programmer will know the table’s
name. So we’ll need a MainTable property. Open up the BaseForm.vb code module and
enter the code shown in Listing 4.3. Rebuild the project and then rebuild the solution.
Now open the inherited form in the designer, press F4, and look under Misc (see Figure
4.9): Voilà, there’s your new MainTable property!

Programming with Class 147

4

FIGURE 4.9 Exposing a property in a subclass.

How do we use this property? We use it just exactly as we use properties in FoxPro; they’re
variables that the programmer can set while designing the form. I need two more proper-
ties and a constant before I can do what needs to be done, so I’ll just fast-forward and list
the entire declarations and property procedures code in one fell swoop, as shown in
Listing 4.4.

LISTING 4.4 The BaseForm Inheritable Form Class

Public Class BaseForm

Inherits System.Windows.Forms.Form

#Region “ My declarations “

Public Const TurnOn As Boolean = True

05 0672326493 CH04 4/8/04 12:57 PM Page 147

Public Const TurnOff As Boolean = False

Public ConnStr As String = _

“Provider=SQLOLEDB;server=(local);database=Northwind;uid=sa;pwd=;”

Public dc As OleDb.OleDbConnection

Public daFiltered As OleDb.OleDbDataAdapter

Public dsFiltered As DataSet

Public daOneRecord As OleDb.OleDbDataAdapter

Public dsOneRecord As DataSet

Public _MainTable As String

Public _keyfield As String

Public _searchfield As String

Public spacer As String

#End Region

#Region “ My Property procedures “

Public Property MainTable() As String

Get

Return _MainTable

End Get

Set(ByVal Value As String)

_MainTable = Value

End Set

End Property

Public Property KeyField() As String

Get

Return _keyfield

End Get

Set(ByVal Value As String)

_keyfield = Value

End Set

End Property

Public Property SearchField() As String

Get

Return _searchfield

End Get

CHAPTER 4 A Visual Basic .NET Framework148

LISTING 4.4 Contintued

05 0672326493 CH04 4/8/04 12:57 PM Page 148

Set(ByVal Value As String)

_searchfield = Value

End Set

End Property

#End Region

The #Region directives allow you to hide chunks of code. For example, when I collapse all
of my code regions, this is what I see in the code editor for the BaseForm (see Figure 4.10).
Needless to say, this is a lot easier to navigate than 453 lines of code.

Programming with Class 149

4

LISTING 4.4 Contintued

FIGURE 4.10 Collapsed code using #Region directives.

The additional public variables declared in the preceding code include constants to
provide more meaningful symbols than True and False; a connection string and
DataConnection to hook up to SQL Server; a couple of DataAdapters and datasets to get a
list of candidate records and the single record the user selected, respectively; and public
properties for the names of the Main Table, the key field (for retrieving the selected
record), and the name of the searchable field to display in the ListBox.

The reason that everything has to be declared up front is Option Strict. The code won’t
compile unless we use DIM, PUBLIC, or PRIVATE (or FRIEND or whatever) to declare every
single variable that we use in the code. IntelliSense uses these declarations to know what
to show us when we hit that first period, and the compiler uses them to set aside storage.

ADO.NET uses a connection to build a DataAdapter. The DataAdapter contains Select,
Insert, Update, and Delete logic to get the data to and from the data source specified by
the connection. The data is stored inside your form in a DataSet object, which is like a
data environment built of XML. It contains tables, relations, and other stuff that this exer-
cise won’t need. For our purposes, it contains a table, and its name is contained in the
MainTable property. The KeyField, the one we’ll use to retrieve a single record and to post

05 0672326493 CH04 4/8/04 12:57 PM Page 149

updates, is another named property, and SearchField, the field to search and to display in
the list box, is named in the third property. Our code will refer to these three properties,
trusting that the programmer has filled them in correctly.

Now we’re ready to write some code. The Load event fires first in Visual Basic .NET, just as
it does in FoxPro. We’ll use the connection string to open the connection; then construct
a SELECT statement and create a DataAdapter; then use the DataAdapter’s Fill method to
fill a DataSet with a table named using the contents of the MainTable property. Listing 4.5
shows the code for the Load event.

LISTING 4.5 The BaseForm Load Event Code

Private Sub BaseForm_Load(_

ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles MyBase.Load

Try

Label2.Text = “in the “ + SearchField + “ field”

dc = New OleDb.OleDbConnection

dc.ConnectionString = ConnStr

dc.Open()

Catch oEx As Exception

MsgBox(“Connection failed: “ + oEx.Message)

Close()

End Try

End Sub

How BaseForm Load Works
The program puts the name of the search field into the label at the top of the screen so
that the display makes sense. Then it uses the connection string from the template form
to open a connection to the data source, which could be SQL, ODBC, or anything else.

Loading the List Box and Displaying a Record When Clicked
The user gets a chance to filter the data in the table; if the table contains only a dozen or
two records, it may not even be necessary. When the Show Matching Records button is
clicked, the list is loaded and the first record in the list is displayed. Subsequently, clicking
on any item in the list causes its record to be displayed. The code is shown in Listing 4.6.

LISTING 4.6 The LoadList Button Click Event Code

Private Sub LoadList_Click(_

ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles btnLoadList.Click

LoadTheList()

End Sub

CHAPTER 4 A Visual Basic .NET Framework150

05 0672326493 CH04 4/8/04 12:57 PM Page 150

Public Sub LoadTheList()

Dim I As Integer

Dim NumFound As Integer

Dim Str As String

Str = “SELECT * FROM “ + MainTable _

+ “ WHERE UPPER(“ + SearchField + “) LIKE ‘“ _

+ SearchValue.Text.ToUpper.Trim + “%’”

daFiltered = New OleDb.OleDbDataAdapter(Str, dc)

dsFiltered = New DataSet

daFiltered.Fill(dsFiltered, MainTable)

‘Clear the listbox and load it

With ListBox1

.Items.Clear()

NumFound = dsFiltered.Tables(MainTable).Rows.Count - 1

Dim dr As DataRow

For I = 0 To NumFound

dr = dsFiltered.Tables(MainTable).Rows(I)

Str = dr(SearchField)

Str = Str.PadRight(40)

Str = Str + CStr(dr(KeyField))

.Items.Add(Str)

Next

End With

ListBox1.SelectedIndex = 0

LoadaRecord()

Buttons(TurnOn)

End Sub

Private Sub ListBox1_SelectedIndexChanged(_

ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles ListBox1.SelectedIndexChanged

LoadaRecord()

End Sub

Public Sub LoadaRecord()

Dim Kv As String

Kv = ListBox1.SelectedItem

Kv = Kv.Substring(40)

Kv = Kv.Trim

Dim str As String

str = “SELECT * FROM “ + MainTable _

Programming with Class 151

4

LISTING 4.6 Continued

05 0672326493 CH04 4/8/04 12:57 PM Page 151

+ “ WHERE “ + KeyField + “ = ‘“ + Kv + “‘“

daOneRecord = New OleDb.OleDbDataAdapter(str, dc)

dsOneRecord = New DataSet

dsOneRecord.Clear()

daOneRecord.Fill(dsOneRecord, MainTable)

Dim dr As DataRow

dr = dsOneRecord.Tables(MainTable).Rows(0)

‘ Load on-screen controls’ text properties

Dim FldName As String

Dim Ctrl As Control

For Each Ctrl In Controls

Try

If TypeOf Ctrl Is TextBox Or TypeOf Ctrl Is ComboBox Then

Ctrl.DataBindings.Clear()

FldName = Ctrl.Name.Substring(3)

‘ skip characters “0-2”

Ctrl.Text = dr(FldName)

End If

Catch ‘ ignore fields that don’t have a column to bind to

End Try

Next

End Sub

How LoadList Click Works
Clicking on the Show Matching Records button is handled by the LoadList_Click routine,
which simply calls LoadList(). The routine creates a SELECT statement ending in a LIKE
condition that matches any string starting with the letters the user typed in (try it with a
single letter to start). The field that’s searched is the one named in the SearchField prop-
erty, which is also the field that’s loaded into the TextBox item list. The key value for each
record, KeyField, is appended to the end of the 40-character SearchField string, so that
it’s not visible. When the user clicks on the list, the key is extracted from position 41 (40
in VBSpeak) of the selected item and used to return a single record into the dsOneRecord
dataset.

The challenge here was to bind the data to the fields on the screen. I used a little trick
here; I assume that each field starts with a three-character mnemonic for the control type
(txt for text box, cmb for combo box, and so on —a mechanism we’re all pretty much
used to anyway), and that the remaining characters are precisely the name of a field in the
dataset. Datasets don’t have field names, but the rows in the tables that they contain do;
so I reference a row in the Tables(MainTable) collection, and then use dr(FieldName)—

CHAPTER 4 A Visual Basic .NET Framework152

LISTING 4.6 Continued

05 0672326493 CH04 4/8/04 12:57 PM Page 152

where I just inferred FieldName from the control name—to find the data and assign it to
the control’s Text property. The Try...Catch...End Try with no code after the Catch is a
neat trick; if the control doesn’t have a matching field in the data row, it’s an error, which
I throw away.

Utility Routines
There are a few routines that are used by several of the buttons’ Click events, so I’ll show
them first. Listing 4.7 shows the code for the Inputs subroutine.

LISTING 4.7 The Inputs Subroutine Code

Public Sub Inputs(ByVal onoff As Boolean)

Dim Ctrl As Control

For Each Ctrl In Controls

If TypeOf Ctrl Is TextBox _

Or TypeOf Ctrl Is ComboBox Then

Ctrl.Enabled = onoff

End If

Next

SearchValue.Enabled = Not onoff

btnLoadList.Enabled = Not onoff

Buttons(Not onoff)

End Sub

Public Sub Buttons(ByVal onoff As Boolean)

btnAdd.Enabled = onoff

btnEdit.Enabled = onoff

btnDelete.Enabled = onoff

btnClose.Enabled = onoff

btnSave.Enabled = Not onoff

btnCancel.Enabled = Not onoff

End Sub

Public Sub ClearFields()

Dim Ctrl As Control

For Each Ctrl In Controls

If TypeOf Ctrl Is TextBox _

Or TypeOf Ctrl Is ComboBox Then

Ctrl.Text = “”

End If

Next

End Sub

Programming with Class 153

4

05 0672326493 CH04 4/8/04 12:57 PM Page 153

How the Inputs Subroutine Works
Inputs turns the text boxes, combo boxes, and other controls on and off as needed. I can
pass it the constant TurnOn (True) to enable them or TurnOff (False) to disable them.
Buttons ensures that, when the input fields are enabled, all of the buttons except Save and
Cancel are disabled and vice versa. ClearFields blanks the input fields before adding a
record.

Click Event Code for the Form’s Buttons
The buttons on the form give the users the options they need. We’ll discuss the code one
routine at a time. Listing 4.8 shows the code for the Click event of the Add button.

LISTING 4.8 The Add Button Click Event Code

Private Sub btnAdd_Click(_

ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles btnAdd.Click

Try

dsOneRecord.Clear()

BindingContext(dsOneRecord, MainTable).AddNew()

ClearFields()

Inputs(TurnOn)

Catch oEx As Exception

MsgBox(“Error: “ + oEx.Message)

End Try

End Sub

Private Sub btnEdit_Click(_

ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles btnEdit.Click

Inputs(TurnOn)

End Sub

Private Sub btnDelete_Click(_

ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles btnDelete.Click

Try

BindingContext(dsOneRecord, MainTable).RemoveAt(0)

Dim cb As OleDb.OleDbCommandBuilder

cb = New OleDb.OleDbCommandBuilder

cb.DataAdapter = daOneRecord

daOneRecord.UpdateCommand = cb.GetUpdateCommand()

CHAPTER 4 A Visual Basic .NET Framework154

05 0672326493 CH04 4/8/04 12:57 PM Page 154

daOneRecord.Update(dsOneRecord, MainTable)

dsOneRecord.Tables(MainTable).AcceptChanges()

LoadTheList()

MsgBox(“Record deleted”, MsgBoxStyle.Information, “My app”)

Catch oEx As Exception

MsgBox(“Error: “ + oEx.Message)

End Try

End Sub

How the Button Code Works
The Add button clears the text boxes and uses a BindingContext object to do the FoxPro
equivalent of APPEND BLANK. Because the fields aren’t bound to the data row in this exer-
cise, I have to manually blank the onscreen controls, and finally I have to enable them.
Edit is much simpler, of course. Listing 4.9 shows the code for the Click event of the
Delete button.

LISTING 4.9 The Delete Button Click Event Code

Private Sub btnDelete_Click(_

ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles btnDelete.Click

Try

BindingContext(dsOneRecord, MainTable).RemoveAt(0)

Dim cb As OleDb.OleDbCommandBuilder

cb = New OleDb.OleDbCommandBuilder

cb.DataAdapter = daOneRecord

daOneRecord.UpdateCommand = cb.GetUpdateCommand()

daOneRecord.Update(dsOneRecord, MainTable)

dsOneRecord.Tables(MainTable).AcceptChanges()

LoadTheList()

MsgBox(“Record deleted”, MsgBoxStyle.Information, “My app”)

Catch oEx As Exception

MsgBox(“Error: “ + oEx.Message)

End Try

End Sub

How btnDelete Click Works
Because the recordset is disconnected from the data source, I have two separate tasks: First,
I mark the record deleted using the BindingContext object; then I use a CommandBuilder
object to construct a Delete command object and use the Update method of the

Click Event Code for the Form’s Buttons 155

4

LISTING 4.8 Continued

05 0672326493 CH04 4/8/04 12:57 PM Page 155

DataAdapter object to pass it back to the data source. After updating the data source, I
accept the changes to the dataset, clearing it, and reload the list using a call to
LoadTheList(). You can’t call a .Click method directly in Visual Basic .NET as you can in
FoxPro, so that’s why LoadTheList is a separate routine called both here and in the
LoadList_Click method. Listing 4.10 shows the code for the Click event of the Save
button.

LISTING 4.10 The Save Button Click Event Code

Private Sub btnSave_Click(_

ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles btnSave.Click

Try

BindingContext(dsOneRecord, MainTable).EndCurrentEdit()

Dim FldName As String

Dim NewKey As String

Dim Ctrl As Control

For Each Ctrl In Controls

If TypeOf Ctrl Is TextBox And Ctrl.Name <> “SearchValue” Then

FldName = Ctrl.Name.Substring(3)

‘skip characters 0-2 - thanks, Bill..

dsOneRecord.Tables(0).Rows(0).Item(FldName) = Ctrl.Text

If FldName = KeyField Then

NewKey = Ctrl.Text

End If

End If

Next

Dim cb As OleDb.OleDbCommandBuilder

cb = New OleDb.OleDbCommandBuilder

cb.DataAdapter = daOneRecord

daOneRecord.UpdateCommand = cb.GetUpdateCommand()

daOneRecord.Update(dsOneRecord, MainTable)

dsOneRecord.Tables(MainTable).AcceptChanges()

‘ Load the list so as to include the new record

LoadTheList()

‘ Find the new key in the list

Dim str As String

Dim I As Integer

For I = 0 To ListBox1.Items.Count - 1

str = ListBox1.Items(I)

If str.ToUpper.Substring(1).IndexOf(NewKey.ToUpper) > 0 Then

ListBox1.SelectedIndex = I

Exit For

CHAPTER 4 A Visual Basic .NET Framework156

05 0672326493 CH04 4/8/04 12:57 PM Page 156

End If

Next

LoadaRecord()

Inputs(TurnOff)

Catch oEx As Exception

MsgBox(“Error: “ + oEx.Message)

End Try

End Sub

How btnSave Click Works
Saving the changes was the biggest challenge. First, I must end the current edit using the
BindingContext object. Then, I have to put the values stored in the text properties of the
onscreen controls back into the dataset. (I’ve fully qualified the row reference here so that
you can see where it’s going, but you can also use a DataRow object or even a DataTable
object.)

Next I build an Update command and execute it using the Update method. Again, I reload
the list to reflect any changes or an added record. Finally, I want the record that I was just
editing or adding to be selected when the save is completed, so that’s what the last
For..Next loop is about. When I find the SelectedIndex, I call LoadARecord and disable
all of the input controls. Listing 4.11 shows the code for the Click event of the Cancel
button.

LISTING 4.11 The Cancel Button Click Event Code

Private Sub btnCancel_Click(_

ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles btnCancel.Click

Try

BindingContext(dsOneRecord, MainTable).CancelCurrentEdit()

LoadaRecord()

Inputs(TurnOff)

Catch oEx As Exception

MsgBox(“Error: “ + oEx.Message)

End Try

End Sub

How btnCancel Click Works
The Cancel command only requires that I cancel the current edit using the
BindingContext object (which, by the way, also encapsulates the functionality of

Click Event Code for the Form’s Buttons 157

4

LISTING 4.10 Continued

05 0672326493 CH04 4/8/04 12:57 PM Page 157

TableUpdate(), TableRevert(), DELETE, APPEND BLANK, TOP, BOTTOM, and SKIP), reload the
record I was editing, and disable the input fields.

The last bit of code, which we saw at the beginning of this exercise, is shown in
Listing 4.12.

LISTING 4.12 The Close Button Click Event Code

Private Sub btnClose_Click(_

ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles btnClose.Click

Close()

End Sub

How to Use This Template
To use this template in your projects, either copy it to a directory where you’ve started a
solution, or use Add an Existing Project by right-clicking on the solution in the Solution
Explorer and adding it to the solution. All you really need is InheritedForm.dll, but I
recommend you copy the code in case you want to make some improvements.

For each inherited form that you want to build, right-click on a project in the Solution
Explorer and provide a name (usually the name of one of your data tables), then point to
InheritedForm.dll (you may have to browse to it) and click on BaseForm. Fill in the
MainTable, KeyField, and SearchField properties with the names of your main data table,
key field, and the field you want users to search.

Finally, drag text boxes and/or combo boxes onto the form and name them with three-
letter prefixes denoting the control type (for example, txt, cmb, chk) followed by the field
names. Be sure to set the tab order using the View, Tab Order menu selection. (Hint: Click
the same menu selection again when you’re finished. That only took me an hour to
discover.) Finally, disable all of the input fields. The user has to click on Add or Edit to
change them.

When you’ve finished your new form, add a menu selection for the table in your Main
Form MainMenu control using the pattern described earlier in the chapter, and rebuild the
project, and it oughta work. The Customer form shown in Figure 4.11 took me two
minutes and 15 seconds to build, from start to finish.

CHAPTER 4 A Visual Basic .NET Framework158

05 0672326493 CH04 4/8/04 12:57 PM Page 158

FIGURE 4.11 An Add/Edit/Delete form finished in less than three minutes.

Summary
In this chapter, you saw how you can build inheritable forms, Visual Basic .NET’s equiva-
lent of template classes in FoxPro, thereby achieving the same rapid prototyping capabil-
ity. You’ve seen how you can support both local tables and SQL Server with no change in
the form code.

In Chapter 5, “Adding Internet Access,” we’ll extend these two models to include support
for XML Web Services so that you can offer your clients the ability to run their rich client
applications over the Internet.

Summary 159

4

05 0672326493 CH04 4/8/04 12:57 PM Page 159

05 0672326493 CH04 4/8/04 12:57 PM Page 160

