Fehler! Formatvorlage nicht definiert.
West Wind Web Connection

West Wind Web Connection For Visual FoxPro

Welcome to West Wind Web Connection. This product can connect your Visual FoxPro applications to the World Wide Web in real time, allowing you to take full advantage of Visual FoxPro’s powerful data access functionality for providing dynamically generated Web Content. The supplied classes and tools greatly simplify receiving CGI requests, using the CGI information and generating the final dynamic HTML pages to return to the web server.

What you need to check out Web Connection

The current implementation of West Wind Web Connection is designed to work with any Web Server that supports either the WinCGI 1.2 or later (WebSite, Commerce Builder, FolkWeb) or the Internet Server Application Programming Interface (ISAPI) (Commerce Builder, MS IIS) specification. You will need a copy of either a WinCGI 1.2 or ISAPI compliant Web Server and have it operational in order to use Web Connection with the example forms provided here.

A Web Server is fairly resource intensive so a reasonably fast machine (486-66 or better) and 16 megs on Windows 95 and 20 megs on NT are highly recommended. Web Connection allows you to run multiple Visual FoxPro sessions in order to process simultaneous CGI requests and more memory will make this process much more responsive.

Although Web Connection was originally created for and tested with WebSite by O'Reilly Associates, it also works with any Web server that supports the WinCGI (Version 1.2 or later) or ISAPI specifications. This includes Commerce Builder by the Internet Factory (version 1.5 Build 16 or later) which provides secure transactions and Microsoft's Internet Information Server. A couple of extra setup steps may be required to get other servers working (see Running with non-WebSite Web Servers in this document)

You will also need a Web Browser (preferably the Netscape and/or MS Internet Explorer) and a copy of Visual FoxPro to run this fully functional demo version.

Finally, it will be helpful, but not required, to have a basic understanding on how a Web Server and the Common Gateway Interface (CGI) are used to process interactive HTML pages. CGI is a standard protocol that is used by web servers to return information about the server, the browser and form variables used to capture user input.

Features of West Wind Web Connection

· In-Process Server

Web Connection allows you to run Visual FoxPro in ‘Server’ mode to eliminate load time of Visual FoxPro when acting on CGI requests. Instead of calling a VFP EXE file directly all CGI requests call a tiny (11k) EXE file which generates requests that are picked up by the VFP CGI Server class implementation.

· Speed
CGI processing overhead for requests is very small and is measured in sub second times. Simple CGI requests can be returned to the server in less than a second on fast machines. In addition, Web Connection has an option that allows the VFP server to set a higher task priority when processing CGI requests, so that the VFP queries or other code can be processed at the fastest speed VFP allows even when running in the background.

Web Connection supports ISAPI, a highly efficient mechanism of processing CGI requests on the Web Server that greatly reduces Web server resource load.

· Scalability
If your web server’s load makes heavy use of your VFP CGI server you can opt to create multiple Web Connection sessions. Simply start up another session of VFP and run another copy of the CGI server program to allow processing of simultaneous CGI requests. In addition to running VFP on the machine local to the Web server, you can also run Web Connection from a networked machine efficiently seperating the data processing and Web service. This reduces CGI processing overhead on the Web server to practically nothing and allows you to scale your data processing to any kind of request load that the Web server can dish out, simply by adding VFP sessions and/or adding sessions on additional machines. Blow away any locally hosted data engine by a wide margin!

· Easy to use
Web Connection was designed with ease of use in mind. All pieces of the framework are implemented as clearly laid out classes that make the process of responding to CGI requests both easy to use and flexible. In addition this documentation gives you an overview of how CGI and the web server interact, so even if you have never used or read about CGI you should be able to create Web enabled VFP applications.

· Fully extensible via VFP Classes
Unlike other products, Web Connection was designed with programmers in mind. Ease of use does not come at the expense of limited functionality. The VFP portion of Web Connection is implemented as a set of easily reused and extensible class libraries (non-visual). The classes are: wwCGIServer to process incoming CGI requests, wwCGI to return CGI information and wwHTML to ease creation of HTML pages under program control. Registered users of Web Connection get full source code to all classes.

Pricing

Registration for West Wind Web Connection costs $99.00 plus shipping and handling. For this price you get the full Visual FoxPro source code for the supplied classes and utilities. Registration is available via CompuServe’s SWREG mechanism and by check via postal address.

To register by CompuServe GO SWREG and search for registration ID #8561. The amount will be billed to the credit card used for your CompuServe billing. Shipping and handling amounts to $6.00 and the registered copy of the code will be e-mailed to you at your CompuServe address as soon as payment is received. If you would like to have the software sent to another address email or otherwise you have to contact Rick Strahl at 76427,2363 with instructions.

To register by mail send a check for $99.00 plus $3.00 shipping and handling in the US/Canada, $6.00 in all other countries. All payments must be made in US Dollars. Mail to:

Rick Strahl

West Wind Technologies

400 Morton Road

Hood River, Oregon 97031

USA

Mail orders are returned by standard mail, but you may specify an e-mail address to send the program to. Email must either be an Internet address that supports file attachments or CompuServe.

Sorry, no credit cards at this time.

Support

If you have problems, questions, comments, suggestions or customization you can contact me at the following addresses:

email:

rstrahl@west-wind.com

URL:

http://west-wind.com/tech

CIS:

76427,2363

Phone:

(541) 386-2087

Warranty Disclaimer: No Warranty!

IN NO EVENT SHALL THE AUTHOR, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THIS PROGRAM AND DOCUMENTATION, BE LIABLE FOR ANY COMMERCIAL, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM INCLUDING, BUT NOT LIMITED TO, LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS, EVEN IF YOU OR OTHER PARTIES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Table of Contents

1

West Wind Web Connection For Visual FoxPro

What you need to check out Web Connection
1

Features of West Wind Web Connection
2

Pricing
3

Support
3

Warranty Disclaimer: No Warranty!
3

What's New
7

Version 1.49
7

Version 1.45
7

Quick Start
8

Startup Problems
9

Using the examples with ISAPI Servers
9

How Web Connection works
10

Web Connection Components
10

Setting up the VFP CGI Server
11

Receiving a CGI Request
12

Processing CGI Requests
13

Creating output quickly with ShowCursor and ShowMemoPage
17

Running Web Connection with Web servers other than WebSite
20

Using Web Connection with ISAPI based Web Servers
21

Troubleshooting
21

Finding WinCGI Temp Files
21

Windows NT and TEMP Files
22

Clean up the temp directory
22

Setting up Web Servers
22

Running Web Connection over a Network
23

Setting up SMTP Mail Capability
24

The wwCGI EXE and DLL files
25

How to use it
25

What does it do?
26

The wwCGI.ini file
26

Class wwCGIServer
28

Parent Class: Form
28

How it works
28

How to use it
28

Exposed Methods:
29

wwCGIServer::Init
29

wwCGIServer::Show
29

wwCGIServ :: SetCGIFilePath
30

wwCGIServ :: SetProgramToRun
30

wwCGIServ :: SetTaskingPriority
31

wwCGIServ :: SetTimerInterval
32

wwCGIServ :: SetLogToFile
32

wwCGIServ :: GetLogToFile
32

wwCGIServ :: LogEntry
33

wwCGIServ :: SetStatusWindow
34

wwCGIServ :: SetCGITemplateFile
34

wwCGIServer::SendMail
34

Class wwCGI
36

Parent Class: Custom
36

How it works
36

How to use it
36

Exposed Methods
36

wwCGI::Init
36

wwCGI::LoadCGIFileNames
38

wwCGI::GetCGIVar
38

wwCGI::GetFormVar
39

wwCGI::GetFormMultiple
39

wwCGI::GetOutFile
39

wwCGI::GetContentFile
40

wwCGI::GetCGIParameter
40

wwCGI::aCGIParms
41

wwCGI::GetCommandLine
41

wwCGI::GetPreviousUrl
41

wwCGI::GetServerAdmin
41

wwCGI::GetServerName
42

wwCGI::GetBrowser
42

wwCGI::IsNetscape
42

wwCGI::GetRequestMethod
42

wwCGI::GetRequestProtocol
42

wwCGI::ForcePath
43

Class wwHTML
44

Parent Class: Custom
44

How it works
44

wwHTML Class: Exposed Methods
44

wwHTML::Init
44

wwHTML::Destroy
45

wwHTML::Send
45

wwHTML::SendLn
45

wwHTML::SendPar
46

wwHTML::SendMemoLn
46

wwHTML::BreakMemo
47

wwHTML::ShowCursor
47

wwHTML::MergeText
48

wwHTML::ShowMemoPage
51

wwHTML::CreateHTMLdbf
52

wwHTML::EnclosedText
52

wwHTML::HeaderText
53

wwHTML::HRef
53

wwHTML::SetAllowHTMLTables
53

wwHTML::GetAllowHTMLTables
54

wwHTML::List
54

wwHTML::ContentTypeHeader
55

wwHTML::HTMLHeader
56

wwHTML::HTMLFooter
57

wwHTML::HTMLRedirect
57

wwHTML::HTMLError
57

wwHTML::NoOutput
58

wwHTML::Table Functions
58

Class wwCGIProcess
61

Parent Class: Custom
61

How it works
61

wwCGIProcess: Exposed Methods
61

wwCGIProcess::Init
61

wwCGIProcess::Process (Virtual)
62

wwCGIProcess::Error
62

wwCGIProcess::ErrorMsg
62

Using Text Wrapper
63

What's New

Here's a log of recent changes to Web Connection:

Version 1.49

· Fully debug ISAPI DLL. With the help of Microsoft's support fixed various serious bugs in the ISAPI DLL. Many thanks to Jim Schmidt for all of his help. Fixed memory leak on large input forms, temp file cleanup and proper WinCGI compliant server variable mapping on MS IIS servers.

· Add ability to embed FoxPro functions directly into HTML pages as code blocks. Using standard expression embedding with the wwHTML::ShowMemoPage() method it's now possible to create dynamic without creating corresponding Visual FoxPro functions/methods to handle the request. For more info see the updated docs on wwHTML::ShowMemoPage() and MergeText().

· New CGIProcess DisplayFile method that display dynamic pages directly from HTML links without attaching code. These default methods are called simply by using wwcgi.exe?DisplayFile~Filename.wc from an HTML link.

Version 1.45

· ISAPI support in addition to WinCGI to support additional Web Servers like MS Internet Info Server and Purveyor. This version includes a DLL version of wwCGI that can run as an Web Server in-process DLL that does not fire a separate process on the Web server making for better resource usage.

Beta Code - use with care. Known bug: Large text areas when filled with more than 300 or so characters can hose the DLL and possibly the Web Server.

· SMTP email support added with Ed Toupin's Email OCX. All you need is an internet connection and an email account on a mail server to send email with a single method. See wwCGIServer::SendMail()...

· Support for expiring MS Internet Explorer cache on GET requests off HREF links. Check out the new "Force Reload" option for the wwHTML::ContentTypeHeader and HTMLHeader methods.

· Miscellaneous fixes to the expression merging code in wwHTML::MergeText.

Quick Start

I know, I know. You want to get started quickly, so this section describes how to quickly set up Web Connection in a step by step manner.

· Unzip the wconnect.zip file with the -d switch to create the following directory tree:

WCONNECT

Main Web Connection Program Files

 This should be your startup directory to work from.

\HTML

HTML and images. Copy these to your Web Server HTML

 directory where you can access them with a browser.

\CGI-WIN

The CGI executables. Copy these into the Web Servers

 \CGI-WIN directory. If you don't have one, you'll need

 to set one up, so that the examples will work. You might

 have to set up a directory mapping to this directory

 in order for this directory to be accessible.

\TOOLS

Several Utility programs

\DOCS

This Word document and the Help file

\WWDEMO
 The sample application and data

· wwCGI.exe or wwCGI.dll
This is the CGI translation program that captures incoming requests and passes them on to Visual FoxPro to process. This program is what you need to call from all your HTML forms that process CGI requests (example URL address: \cgi-win\wwcgi.exe?TestPage with WinCGI or \cgi-win\wwcgi.dll?TestPage with ISAPI).

WwCGI.exe is the required file for WinCGI Web servers (WebSite, Commerce Builder), while wwCGI.dll is used by ISAPI based Web Servers (MS IIS, Purveyor).

For the examples to work the wwCGI files need to be copied into a CGI-WIN directory of the server's HTTP root. Preferrably set up a directory mapping for this directory as ("/cgi-win/" pointing it at the physical where the files are copied to).

· Wconn*.htm/Wconnect.gif/Whitwav.jpg
A set of example forms and images that start up the example CGI requests processed by CGITEST.PRG and CGIMAIN.PRG. Copy these files into your HTML root directory on the Web server.Wconnect.htm needs to have CGITEST.PRG running, while Wconn1.htm needs CGIMAIN.PRG. WCONNIS.HTM works with the ISAPI DLL.

· Wconnect.app
 This is the Visual FoxPro application that contains the wwCGIServer, wwCGI, wwCGIProcess, Utils and wwHTML classes that provide the CGI handling functionality. This is only a loader program and should not be run directly.

Note: Only applies to the shareware version. The full version calls the individual PRG files directly.

· CGITest.prg/CGIMain.prg
These are the sample VFP programs that demonstrates how Web Connection works. The demo sets up the server process and handles the requests that are generated from the wconnect.htm sample page, which uses Time Trakker data to display various different queries. Check out the source code to see how easy it is to build interactive HTML forms and respond to requests. CGIMain.prg works off the examples on the WCONN1.HTM form showing a more sophisticated setup that provides error handling and basic server administration functions.

· Wconnect.h - A header file that contains all the #DEFINEs used by Web Connection internally. It contains several important status flags like DEBUGMODE which affect overall system operation and error handling.

· Start up the WebSite or other WinCGI or ISAPI compliant Web server.

If you don’t have a copy of WebSite to use you can download a demo at http://website.ora.com/. Set up the server to use a Server Name that maps to an IP address (for example 205.106.005.1) that either matches the address that you have assigned to your machine in the TCP/IP setup section of the Control Panel or use the standard local machine address of 127.0.0.1 or Localhost. Most Web servers recognize the latter addresses as the local machine regardless of the entry you selected in the server setup. Once the server is installed you can run and access Web pages in local mode without an actual connection to the Internet. For example to access the Web Connect demo page you would type http://localhost/wconnect.htm into your web browser’s address window. Once your server is actually connected to the Internet you can use either the full domain name (if one is set up) or the IP address assigned to the machine as discussed above. For more detailed information see your Web server documentation.

· Startup Visual FoxPro.

Move to the directory where you unpacked the Web Connect demo and DO CGITEST. This operation starts up the CGI server and makes VFP ready to receive CGI requests from the Wconnect.htm sample page.

· Start up your Web browser

Move to your local WebSite home page by typing http://localhost/ into the address area to make sure your server is operating properly. This should bring up the default index page for the server. Once you are there, load the Wconnect.htm page (most likely http://localhost/wconnect.htm) and start exploring the sample .

Startup Problems

When using a non-WebSite server you'll likely have to make a few adjustment to your Web server configuration. Please see the section on running Web Connection with a non-WebSite web server for specifics.

Using the examples with ISAPI Servers

The examples are currently set up to work with WinCGI Web servers like WebSite. If you want to use the examples with ISAPI servers (MS IIS, Commerce Builder, Purveyor) you'll need to make a few minor modifications to the HTML and example source files.

The only difference between WinCGI and ISAPI as far as calling CGI scripts from HTML is that instead of calling an EXE file, ISAPI requests call a DLL. It's a simple matter of changing the the wwcgi.exe calls to wwcgi.dll. If your Web Server supports both WinCGI and ISAPI use ISAPI for better CGI performance.

A conversion program is included in the Tools directory. Run the following program from the WCONNECT root directory to convert the code and HTML pages stored in the directory tree between WinCGI and ISAPI versions:

 DO Tools/IsApiCvt WITH "ISAPI" && Convert to ISAPI

 DO Tools/IsApiCvt WITH "WINCGI" && Convert to WinCGI

The parameter specifies which interface to convert to. This routine updates the sample files provided in the directory tree. You'll need to update the HTML pages in the server root after running this utility. The pages affected are WCONNECT.HTM and WCONN1.HTM. The conversion program also updates the dynmically generated links in CGITEST.PRG, CGIMAIN.PRG and WWDEMO\WWDEMO.PRG.

How Web Connection works

Using Web Connection with Visual FoxPro code is a snap. This product is designed to be easy to use and provides you with the tools to make connecting VFP to the Web as quick and painless as possible. The following examples are taken straight from the demonstration program which is supplied with this demo.

Web Connection Components

The essential purpose of Web Connection is to pass CGI requests from the Web server to your Visual FoxPro application and back. The following diagram shows how this task is accomplished:

[image: image1.png]CGI Translator
(wwCGl.exe)

Visual FoxPro
(wwCGlServer)

Weh Server

Visual FoxPro
(user code)

This diagram shows how CGI requests reach Visual FoxPro and your user code. Once your code has control it's responsible for creating an HTML document that gets passed back to the Web Server to display.

Here's a description of the four software components that make up West Wind Web Connection:

· wwCGI.exe/.dll - wwCGI is the intermediary program that is called by your HTML forms and passes CGI request on the VFP CGIServer that is already running and waiting for requests. HTML forms never call your programs directly - every CGI request goes through wwCGI.exe (or a renamed version) first which routes the request to the wwCGIServer to process. This program file must reside in the Web Server's /cgi-win directory.

· wwCGIServer Class - The wwCGIServer class handles requests that are generated by the wwCGI program file. It is responsible for receiving incoming CGI requests, decoding them and passing a wwCGI object to a user defined procedure of your choice.

· wwCGI Class - This class encapsulates all the CGI information made available by the Web Server. This includes the contents of form variables and status information about the Web server and the browser that called it. Your processing routine receives a wwCGI object as a parameter for you to use in generating an HTML document in response to the server's request.

· wwHTML Class - The HTML class provides an optional highlevel interface to creating HTML documents by providing a variety of methods that output HTML formatted strings either directly to file or as string return values. This class can be used to either create entire documents, or as an assisting tool to create documents from the report writer or other HTML output mechanism.

Setting up the VFP CGI Server

Once the Web server is installed and running, the following code sets up Visual FoxPro to respond to CGI requests in Server mode. What this means is that VFP displays a status form and waits for incoming CGI requests, which are processed and passed on to a user defined function of your choice. Here's the code that accomplishes the task:

**
FUNCTION CGITEST

*** Author: Rick Strahl
*** (c) West Wind Technologies, 1995
*** Function: Web Connect demonstration program.
*** Assume: called from WCONNECT.HTM form test.
*** Website is running and calling
*** \Website\cgi-win\wwcgi.exe?Optional_Parm
**
#INCLUDE FOXPRO.H

#INCLUDE WCONNECT.H

*** Load the wwCGIServer class which retrieves CGI requests and passes
*** them to a specified Fox Program/Function
SET PROCEDURE TO CGIServ ADDITIVE

*** Load the wwCGI class which allows accessing the CGI information
*** passed by the server. Get variable information and server formats
*** MIME headers etc.
SET PROCEDURE TO CGI ADDITIVE

*** Load the wwHTML class used to make creation of HTML documents easier
SET PROCEDURE TO HTML ADDITIVE

*** Starts up the server and gets it ready to poll
*** for CGI requests.
*** You can optionally pass the program name that
*** is called, in this case Process() (further down in the code),
*** and a number (-2,-1,0,1,2,15) to indicate the tasking priority
*** of the CGI processing operation. Higher numbers mean faster
*** operation, but affect other system processes
oCGIServer=CREATE("wwCGIServer","Process",1)
IF TYPE("oCGIServer")#"O"
 =MessageBox("Unable to load the CGI Request Server",;
 MB_ICONEXCLAMATION,"Web Connection Error")
 RETURN
ENDIF

*** This actually puts the server into polling mode
*** Displays a modal window
oCGIServer.show()

*** Done
RETURN

The program starts by loading the appropriate class libraries and then loading the wwCGIServer class which is responsible for retrieving incoming CGI requests and passing them on to a program of your choice. When you run this code your program goes into server mode waiting for incoming CGI requests until you exit the server by pressing the Exit button. Web Connection will respond to any request that is generated from a form that calls the wwCGI.exe stub program. A sample link that calls your VFP CGI processor looks like this:

 Simple CGI Test<P>

Receiving a CGI Request

The particular request above is generated off a standard HREF link, but the method is similar when using HTML forms and the SUBMIT button. What happens with this request once activated by a click from the browser? The wwCGI.exe program is called and formats the request so that the wwCGIServer set up in the above code can see it and process it. The server kicks in and translates the request by internally creating a new CGI object from the wwCGI class. This CGI object encapsulates all the CGI information that the Web Server supplies as part of the Windows CGI protocol. It sounds fancy, but in actuality the CGI object simply translates the Web Server's commandline to find an INI file, called the ContentFile, that contains all the CGI settings. The wwCGI class interface simply returns the values contained in this file in a clearly defined method structure. The wwCGIServer now takes this wwCGI object and calls your user defined procedure with it. The called procedure looks like this:

**
FUNCTION Process

*** Function: This is the program called by the CGI Server that
*** handles processing of a CGI request.

*** This example creates a process class, which
*** simplifies error handling and validation of
*** success. However, you can use procedural
*** code if you prefer.
*** Pass: loCGI - Object containing CGI information
**
LPARAMETERS loCGI

*** Demonstrate how to get some CGI vars
lcParameter=UPPER(loCGI.GetCGIParameter()) && Optional CGI params following EXE name
lcOutFile=loCGI.GetOutfile() && The HTML output file

lcIniFile=loCGI.GetContentFile() && The CGI content File (INI)

*** Now create a process object. It's not necessary
*** to use an object here, but it makes error handling
*** document and CGI handling much easier!
loCGIProcess=CREATE("CGIProcess",loCGI)

*** Call the Process Method that handles routes request types

*** to methods in the loCGIProcess class
loCGIProcess.Process

*** Debug: See what the input and output files look like
*RELEASE loCGIProcess && Must release first or file isn't closed
*COPY FILE (lcIniFile) TO TEMP.INI
*COPY FILE (lcOutFile) TO TEMP.HTM

RETURN

Note that your called procedure must accept a wwCGI object as a parameter. For demonstration purpose the first block of code copies the most important CGI parameters to local variables: The CGI parameter and the Output File.

The output file name, extracted with the .GetOutfile() method is the most important piece of information you get from a CGI request. Your HTML output needs to be stored in this output file in order for the Web Server to complete the CGI request. Once processed and created the Web Server displays the output file to the Browser that generated the CGI request.

You can use the CGI parameter string which is passed after the ? on an HTML commandline and retrieve it .GetCGIParameter(). This method identifies each request made on the Web Server. Since your VFP code is likely to process more than one type of request (for example you might display a customer form, a sales detail form, or an inventory item list) you usually end up with a routing program that contains a large CASE statement that uses the CGI method parameter you assigned to decide what type of action to take. Think of it as the method parameter - in the above request wwCGI?Test_Page everything following the '?' or ‘Test_Page’is returned to you. You can also stack parameters with special characters to pass keys and output text back to your CGI processing code that allow you to customize requests based on choices made on the previous form or query. For example you could use the following in a link to display a specific customer based on a selection:

/cgi-win/wwcgi.exe?ShowClient~BGP+Productions

The ~ and + signs are optional choices, but I use the tilde to seperate parameters past the first and the plus to indicate spaces. CGI parameters do not support spaces so translating them into another character is necessary. You can use the .aCGIParms() method of the wwCGI class to get all parameters returned to you in decoded form and then use .GetCGIParameter(x) to retrieve a specific parameter number.

Processing CGI Requests

Once the request is received a processing routine is set up to handle the different types of requests that your CGI service needs to handle. As mentioned above this code consists of nothing more than a large routing CASE statement with entries for each request to process. The code (in this case the CGIProcess class' Process method) looks something like this:

**
* CGIProcess :: Process

*** Function: This is the callback program file that handles
*** processing a CGI request
*** Pass: THIS.oCGI - Object containing CGI information
*** Return: .T. to erase Temp File .F. to keep it
**
FUNCTION Process
LOCAL lcParameter, lcOutFile, lcIniFile, lcOldError

*** Optional CGI parameters following EXE name
lcParameter=UPPER(THIS.oCGI.GetCGIParameter(1))

DO CASE
 *** Simple Test Page
 CASE lcParameter = "TEST_PAGE"
 THIS.TestPage()

 *** Display results from Client Form Query
 CASE lcParameter = "SHOWHOURS"
 =THIS.ShowHours()

 *** Display Client List
 CASE lcParameter = "CLIENTLIST"
 =THIS.CLientList()

 *** Backfill the Client Name
 CASE lcParameter = "FILLQUERYFORM"
 =THIS.FillQueryForm()

 *** Drill Down from Query Result shows client info
 CASE lcParameter = "SHOWCLIENT"
 *** Show the Client Specified
 =THIS.ShowClient(lcParameter)

 *** Drill Down From Query Result shows Time Slip
 CASE lcParameter = "SHOWSLIP"
 =THIS.ShowSlip(lcParameter)

 CASE lcParameter = "REDIRECT"
 =Redirect()

 OTHERWISE
 *** Display an error message
 *** The error method creates an error document
 *** describing the error and overwriting any existing
 *** HTML output to the output document.
 *** Uses the HTMLError Message to create error doc
 THIS.ErrorMsg("The server was unable to respond "+;
 "to the CGI request."+;
 "Parameter Passed: '"+PROPER(lcParameter)+"'...",;
 "This error page is automatically called when a "+;
 "Visual FoxPro code error occurs while processing "+;
 "CGI requests. It uses the wwHTML::HTMLError() method to "+;
 "output two error strings and generic server information, "+;
 "as well as overwriting existing HTML output for this request.")
ENDCASE

RETURN .T.

As you can see this routine does not do much more than route the individual types of CGI requests that your code is set up to handle to the appropriate processing method of this class. As I mentioned above you don't need to use a class to handle this - this process routine could simply be your top level program file called by the CGIServer. Nevertheless, use of a class has a distinct advantage by setting up the CGI and HTML objects once and then always allowing access to it, as well as being able to handle errors with an error method that can properly shut down the class by displaying a special error HTML document.

Finally, the routines called from the routing routine need to actually create the HTML document. There are many ways to accomplish this task from manually coding the HTML strings, to using the report writer to output ASCII text files or merging documents with embedded HTML strings. Whichever method you use, you'll find the included wwHTML class handy. The class provides for an easy mechanism of creating and outputting HTML text to a file, by providing a variety of methods to simplify generation of common HTML tags under program control. All class methods can either send their output to a file or return the individual HTML strings as string return values.

The example code uses this HTML class in code to generate the output to illustrate the class' functionality, but you can use any method you see fit to create the document. In its simplest form you can simply use the Send and SendLn methods to output text to the file:

loHTML=CREATE("wwHTML","TEST.HTM")

loHTML.HTMLHeader("Visual FoxPro CGI Hello","Page Title","Back.gif")

loHTML.HeaderText("H1",[Hello World Wide Web World!])
loHTML.SendLn([<HR>])
loHTML.SendLn([<h2>Local time is:]+TIME()+[</h2>])

loHTML.SendLn([<p>])
loHTML.SendLn("This page was dynamically generated by the CGI request that you "+;
 " see in your browser's 'Location' or 'Address' line.")
loHTML.HTMLFooter()

To make it easier to create simple output pages like this, Web Connection includes wrapper.scx which allows you wrap text lines from the clipboard with a leading and trailing string. With this you can simply copy an existing page and generate code on immediately from it. The majority of forms only contain small portions of dynamic data, so this comes in quite handy.

There's much more functionality in the wwHTML class to create links, images, tables, lists and manange memo formatting, merge text with table data etc. The following is an example from the demo, which generates a customer list containing hotlinks to another CGI request by querying the supplied TT_CUST customer table:

**

PROCEDURE ClientList

*** Modified: 11/11/95

*** Function: Shows List of clients and allows selection of

*** Client to back fill query form by running another

*** CGI request to redraw the original form.

lcOutFile = THIS.oCGI.GetOutfile()

loCGI=THIS.oCGI

loHTML=THIS.oHTML

*** Get all entries that have time entries (expense=.F.)

SELECT tt_cust.Company, MIN(expense) AS HasTimeEntries ;

 FROM TT_CUST, TIMEBILL ;

 WHERE tt_cust.custno=timebill.custno ;

 GROUP BY 1 ;

 INTO CURSOR TQuery

IF _TALLY<1

 =THIS.Error("No Clients available.")

 RETURN

ENDIF

*** Create the document header

loHTML.HTMLHeader("Complete Client Listing","Web Connection Client List")

loHTML.SendLn("<i>* --- Client has time entries to review.</i><p>")

loHTML.sendln(loHTML.HREF("/cgi-win/wwcgi.exe?FillQueryForm~","No Selection",.T.)+"<p>")

SCAN

 *** Create a HLINK to another CGI script for each client

 lcCGICompany=STRTRAN(TRIM(Company)," ","+")

 loHTML.sendln(loHTML.HREF("/cgi-win/wwcgi.exe?FillQueryForm~"+;

 lcCGICompany,company,.T.)+;

 IIF(!HasTimeEntries,"*","")+;

 "
")

ENDSCAN

loHTML.SendLn("<HR>")

loHTML.SendLn([Return to the Web Connect Demo form...])

loHTML.HTMLFooter()

RETURN

For more examples of how the wwCGIServer, wwCGI and wwHTML classes are used in code take a look at the CGITest.prg program file which contains all the examples used for the demo. You can use the examples as templates to get your own applications off the ground.

Creating output quickly with ShowCursor and ShowMemoPage

To make creation of HTML quick and easy use a pair of wwHTML methods that greatly reduce the time it takes to put together forms.

The ShowCursor method can create a table (HTML or <PRE> formatted based on your browser) simply by calling it when a VFP table is open in the current workarea. All fields and and values are automatically displayed with a single line of code, including column headers and the ability to sum all numeric columns. Using the ShowCursor method looks something like this:

SELECT SUM(hits) AS Hits, ;

 TRIM(lower(location)) as Location ;

 FROM webdetl ;

 WHERE &lcFilter ;

 GROUP BY 2 ;

 &lcOrder ;

 INTO CURSOR Tquery

IF lcDisplay="H"

 *** Allow HTML Table to display if count is Ok

 loHTML.SetAllowHTMLTables(loCGI.IsNetScape())

ENDIF

loHTML.HTMLHeader("Web Hits for "+lcBasePath,,BACKIMG)

loHTML.ShowCursor(,,.t.)

loHTML.HTMLFooter(PAGEFOOT)

USE IN TQuery

USE IN WebDetl

RETURN

That’s it. Create a query, set up a page header then simply show the table with ShowCursor and finally put a footer to the HTML document. Simple stuff. Note that you can embed links simply by having your SQL statement embed the HREF or other codes directly into the query result!

The ShowMemoPage method allows you to store HTML pages containing Visual FoxPro text expressions either in a memo field of a special system table (wwHTML.dbf) or inside of text files. You can create your HTML output without writing any code, and send the HTML document to the output file with a single command.

A sample page stored in wwHTML might look like this:

<html>

<TITLE>Windance Item Profile</TITLE>

<body bgcolor="#ffffff" text="#000000">

<table width=100%>

<tr><td rowspan=10 align=LEFT valign=top width=85%>

Windance Item Profile: Item # #con2.itemcode##

<P>

</p>

<P>

<pre>

 Item Code: ##con2.itemcode##

 Year: ##con2.year##

Description: ##TRIM(con2.Descrip)##

 Size: ##con2.size##

 Condition: ##con2.condtn##

 Price: ##TRANSFORM(con2.askprice,"$$$,$$$.99")##

 Comments: ##TRIM(con2.Comments)##

</pre><p>

##IIF(plAddUsedItem,

 THIS.SendLn([Item Added to this order],.T.),

 THIS.SendLn([<FORM ACTION="wwcgi.exe?windance~adduseditem

 METHOD="POST"><INPUT TYPE="SUBMIT" NAME="SubmitButton"

 VALUE="Add item to to Shopping Cart" SIZE="40"></FORM>],.T.))##

</td></tr>

<tr><td rowspan=10></td></tr>

<tr><td valign=top><center>

Windance

108 Hwy 35

Hood River, Or. 97031

Ph. (503)386-2131

Fax (503)386-3151

E-mail windance@gorge.net

</center></td></tr>

</TABLE>

Copyright© 1995, Windance Sailboards, Inc. All rights reserved.
Page design by Gary Gorman

</BODY>

</HTML>

Note the embedded Visual FoxPro text expressions delimited by the ## characters. These expressions are evaluated by the wwHTML::MergeText method which is called by ShowMemoPage(). The code required to display this page looks like this:

**

* WindanceProcess :: ShowAddedItem

*** Function: Adds used item to the shopping bag.

**

FUNCTION ShowAddedItem

loCGI=THIS.oCGI

lcItemId=loCGI.GetCGIParameter(3)

*** Now make sure item exists

IF !USED("CON2")

 USE CON2 in 0

ENDIF

SELE CON2

SET ORDER TO ITEMCODE

=SEEK(lcItemId)

*** Must be Private so MergeText can access it in scope

PRIVATE plAddUsedItem

plAddUsedItem=.F.

THIS.oHTML.ShowMemoPage("WD_ShowItem.htm")

USE CON2

RETURN

Again the code to display this page is minimal. Since the stored page contains all HTML code and the ShowMemoPage() method automatically adds a content type header a single VFP method call will create the page described above. Pretty cool, eh?

Version 1.49 and later also adds the ability to embed entire code blocks directly into your HTML page! See the wwHTML::MergeText() documentation for more information.

Note: While the ShowCursor() and ShowMemoPage() mthods make it quite simple to quickly put together output from VFP content, keep in mind that these methods are slower than the equivalent hand coding using the Send/SendLn methods. ShowCursor() especially makes heavy use of EVALUATE() for each record to parse out the fields and display the data which takes a toll on speed. For returning large data sets or time critical operations I would suggest prototyping using these two methods, then possibly capturing output and handcoding the pages for speed.

Running Web Connection with Web servers other than WebSite

Web Connection by default is set up to work with a WebSite server. When using WebSite with Web Connection on a local machine, setup and file placement is automatic and no further set up is required for running the VFP CGI process server.

Web Connection has been tested sucessfully with the following WinCGI / ISAPI compliant Web servers:

· WebSite 1.0, 1.1 by O’Reilly Associates (http://website.ora.com/)
WebSite is the original WinCGI compliant server that is responsible for the WinCGI standard. This server is solid, widely and well supported and is very easy to set up and maintain. It uses WinCGI so you need to use wwcgi.exe.

· Commerce Builder 1.5 by The Internet Factory (http://www.aristosoft.com/)

Commerce Builder is a high performance and very solid secure Web server that supports WinCGI. This server is consistently providing the best performance with WinCGI and is the only WinCGI compliant server that supports secure transactions. The internal macro language is also very powerful providing many database and system features that would normally be administered through CGI scripts. Commerce Builder supports both WinCGI and ISAPI, so you can use either the wwcgi.exe or wwcgi.dll to process requests.

This is our server of choice for all of our Web online development!

· Microsoft Internet Information Server 1.0
Microsoft's free offering into the Web server market. This high performance server runs only under Windows NT and uses ISAPI to interface with Web Connection so you need to use wwcgi.dll. It's fast, but majorly lacking in tools and support.

Web Connection works with any true WinCGI 1.2/1.3 or ISAPI compliant Web server under Windows 95 or Windows NT, but you might have to take a few additional steps to point Web Connection at the temp files that are generated as part of the WinCGI protocol. ISAPI compliance is implemented with an ISAPI DLL that converts the ISAPI Server structure information into WinCGI compliant output files but without the overhead of calling an external EXE program.

The WinCGI protocol generates temporary files that contain the CGI information generated by HTML forms. Since Web Connection needs to access these files to retrieve the CGI information and return the HTML output, it needs to know where these temporary files are created.

Important: Most Web Servers store WinCGI variables in the System Temp directory. Windows NT returns \WINNT\SYSTEM32 as the TEMP directory unless the TEMP and TMP system variables are defined in the System Environment. However, by default these are defined in the User environment - move them to the System Environment! Go to Control Panel, System and add TEMP and TMP variables to the System Environment to get temp files generated in the correct directory. For more info see Troubleshooting below…

By default Web Connection looks for the WinCGI temporary files in one of the following directories (in this order):

· The location specified by the SetCGIFilePath method. This parameter should match the setting in the wwcgi.ini file’s Path entry. If none is specified the system's temp directory is used.

· The location specified by the WebSite registry key (not relevant when using the ISAPI DLL) HKEY_LOCAL_MACHINE\SOFTWARE\Denny\WebServer\Currentversion\Tempdir. Obviously this will only work if you are running WebSite on your machine. Be aware that you need to override this setting if you have WebSite installed, but are running another WinCGI server that possibly sticks temporary files into directory other than the one specified by the registry key.

· The TEMP directory that is returned by the GetTempDirectory() API call.

If the WinCGI temp files are going to another location, or you want to access these files across the network you have to override these defaults in two places:

· Using the oCGIServer.SetCGIFilePath() method.

This method tells the VFP CGIServer portion of Web Connection where to look for the temp files.

OCGIServer.SetCGIFilePath("C:\NONTEMPPATH\")

· In wwcgi.ini.

The Path setting in wwcgi.ini tells the cgi translation program where to find the temp files generated by the Web server. Remember this file is created only after you run wwcgi.exe/dll at least once!

Path=C:\NONTEMPPATH\

To be absolutely sure where temporary files are going I suggest you set both of the above settings explicitly, even though the default directories might seem the right place to go. That way the only variable element is the Web Server and its placement of temp files.

Using Web Connection with ISAPI based Web Servers

Starting with version 1.45 Web Connection supports ISAPI based Web Servers. ISAPI stands for Internet Server Application Interface which is maintained by Process Software/Microsoft. This API provides a high performance interface which makes more efficient use of Web Server resources by allowing CGI executables to reside as DLLs in the server's address space, thus avoiding starting a new process for each CGI request.

ISAPI is supported by Commerce Builder, MS IIS and Purveyor. All examples provided here use plain WinCGI syntax for running CGI scripts by calling wwcgi.exe from the HTML pages. Web Connection provides wwcgi.dll which is an ISAPI compliant equivalent of wwcgi.exe that should substitute all references to wwcgi.exe here and in your code and HTML pages.

Making the change to ISAPI from WinCGI is very simple: All calls to wwcgi.exe need only be converted to wwcgi.dll! The DLL takes care of the rest, translating the DLL call to the proper WinCGI compliant output. So a standard URL would look like this:

 \cgi-win\wwcgi.dll?TestPage

Troubleshooting

There are a few gotchas to watch out for when working with these alternate file paths.

Finding WinCGI Temp Files

If the WinCGI temp files are not going to the TEMP directory it can be tricky to find these files. Common places to look for them are:

· Temp Directory

· Winnt\System32

· Web Server's document directory

· Web Server's CGI directory

· Web Server's Temp directory

Common file skeletons are the server's initials (for example WebSite uses WS*.TMP), or CGI*.TMP or *.CGI. There should be two files generated which should have nearly identical names.

Windows NT and TEMP Files

There's a configuration problem under Window NT related to the TEMP path that can cause some problems with Web Connection and WinCGI in general. When installing Windows NT it places the TEMP and TMP environment variables into the user's private environment string pool. The result of this is that Windows NT does not properly retrieve the temp directory using the GetTempDirectory() API call which causes all temporary files to go to WINNT\SYTEM32.

Since SYSTEM32 contains a huge number of files file lookup in this directory is extremely slow and causes a major slow down when running file polling loops like those used by WinCGI and Web Connection. If your temp files are going to this directory make sure you move the TEMP and TMP variables from the User string pool to the System Environment string pool in the Control panel.

Clean up the temp directory

Along the same lines it's important to keep the temporary used for WinCGI and Web Connections files clean. The less files the quicker file lookups will run. Under normal operation WinCGI web servers and Web Connection will clean up all their temporary files. However, while testing and failing on CGI requests both Web Connection and most Web servers will occasionally fail to erase all temporary files created as part of a CGI request. Therefore do an occasional DEL *.* on the temp directory or the use of a maintainence routine that's part of the VFP server to do it for you.

Setting up Web Servers

When using a non-Website server you'll need to explicitly tell the Web Server that the script you are running is a WinCGI script (Note that FolkWeb automatically recognizes WinCGI calls). Usually this accomplished by adding the EXE files to a list of CGI script files and identifying each as a WinCGI script. If you don't perform this initialization calling wwCGI.exe will not work correctly as the temporary WinCGI files are not generated.

· Commerce Builder (ISAPI, WinCGI)
· Set up CGI Extensions - You can install either WinCGI or ISAPI CGI extensions or both in Commerce Builder.
· WinCGI - Select the Web server you have set up and select the CGI Extensions tab. On the CGI tab enter a new CGI type as EXE. Enter %cgi-script% as the script to execute, then set Protocol to WinCGI 1.2 and check the Always invoke on GET requests checkbox.

· ISAPI - Repeat the above procedure above, except this time select ISAPI as the Protocol.

· Directory Mapping for the CGI path - Set up a directory mapping for the cgi-win directory on the Virtual Paths tab. Enter a path name of "cgi-win" and enter the full path of the directory that contains the Web Connection CGI programs.

· Microsoft Information Server (ISAPI)
· Directory Mapping for the CGI path - From the server setup go to the Directories tab and add a mapping for "/cgi-win" and map the path to the directory that you used to store the Web Connection CGI files. (ie. C:\HTTP\CGI-WIN). Make sure you check the Execute check box on the bottom of the page to allow scripts to be executed.

· WebSite (WinCGI)
· CGI Setup - Make sure the WinCGI Exec template reads "~p ~v" on the CGI tab of the control panel.

· Directory Mappings - Select the Windows CGI directory by selecting the Windows CGI radio button. Make sure that you have a mapping for /cgi-win/ and it's pointing at the directory that you have copied the Web Connection wwcgi.* files to.

· Temp Path - This is a handy option with Website that allows you to specify where temp files are going. If you're running a VFP CGI server over a network you can stick the Temp files onto the VFP machine directly!

Running Web Connection over a Network

It's possible to run Web Connection over a network to move the CPU load of processing CGI requests off the machine that is running the HTTP Web server. By offloading the data base processing off the Web server CPU overhead on the Web server is minimal allowing the server to process more simultaneous requests without loss of response. Using this approach it's possible to scale your VFP processing server's to any CGI request load simply by adding VFP sessions and/or machines on the network, without adversely affecting Web server performance.

Setting up Web Connection to work over a network link involves setting it up so that it looks for the temporary WinCGI files generated by WinCGI requests across the network and mapping the filenames properly to locally assigned drives.

To set up Web Connection in this manner your CGIServer setup code needs to tell it where to look for the temp files:

· Using the oCGIServer.SetCGIFilePath() method.

This method tells the VFP CGIServer portion of Web Connection where to look for the temporary WinCGI files.

OCGIServer.SetCGIFilePath("H:\TEMP\")

No special setup is required on the Web server or with wwcgi.exe/ini. The server operates as before placing the files onto its local drive. The VFP Web Connection CGI server process on the other hand is looking across the network polling for incoming CGI requests on the Web server's drive. All filenames returned by the wwCGI class methods are automatically mapped to this network path (the actual filenames will be Web server pathed - the translation is necessary to properly translate the path into the network path), so that no code changes are required internally when moving a CGI process off the local machine onto the network.

Setting up SMTP Mail Capability

Note: This feature is available only in the registered source code version!

SMTP mail capability is implemented via an OCX that is delivered in the \MAILOCX directory of the distribution. To install the OCX copy MAIL.OCX and OC30.DLL files into your \WINDOWS\SYSTEM\ directory and create a form in Visual FoxPro. Add an OLE Container control to the form and when prompted for a control, select the Controls radio button, then Add New. Go to the \WINDOWS\SYSTEM directory to find the MAIL.OCX file and select it to install. Once added to the registry in this manner the SMTP OCX should display on your temp form as a black icon. After installation is complete you can exit the form without saving.

If you run into installation problems with the OCX it's possible you're missing the MSVC40 runtime library files. These are available on my FTP server at ftp://outdoornet.com/rick/shareware/…

To enable the mail capability in Web Connection you need to set the following line of code in WCONNECT.H:

#DEFINE SMTPMAIL_ENABLED .T.

Make sure that you recompile CGIServ.prg to make the changes in WCONNECT.H take and enable the mail capability.

The SMTP control is an object on the Web Connection Server window so it can operate in the background while other processing takes place. The mail capability is accessed via the wwCGIServer::SendMail() method which provides single line access to mail sending capabilities. Please note that no error checking is performed at this time in order to allow server processing to continue while email is sent in the background.

Here's an example on how to send email in code:

#DEFINE EMAILFROMNAME "Windance"

#DEFINE EMAILFROM "windance@windance.com"

#DEFINE CCLIST "rstrahl@west-wind.com"

lcEmail=loCGI.GetFormVar("EmailAddress")

*** Create predefined message stored in expression file - plain text

pcMessage=File2Var(HTMLPAGEPATH+"ordemail.wc")

pcMessage=loHTML.MergeText(pcMessage,"##",.T.)

*** Note we're accessing the GLOBAL (PUBLIC) oCGIServer here

*** NOTE: Hardcoded Mail Server at Gorge.net

oCGIServer.SendMail("000.000.000.000",;

 EMAILFROMNAME, ;

 EMAILFROM,;

 lcEmail,CCList, ;

 "Windance Order Confirmation. Order # "+ALLTRIM(lcId),;

 pcMessage)

For more information on the SendMail method see wwCGIServer::SendMail() in the class reference below.

The wwCGI EXE and DLL files

The wwcgi program file is a standalone executable that is called by your HTML forms. It comes in two varieties: As an EXE for WinCGI compliant Web Servers (Commerce Builder, WebSite, FolkWeb) and as a DLL for ISAPI compliant Web Servers (Commerce Builder, MS IIS, Purveyor). The intermediary program approach serves three purposes:

· It does away with the overhead involved to load Visual FoxPro, instead letting a Visual FoxPro session sit in ‘server’ mode waiting for an incoming CGI request. Without the load time, request parsing overhead is somewhere just below a second plus the actual time it takes to perform the query and generate the HTML document (on a Pentium 90).

· wwCGI handles time-outs and VFP program errors by using a time-out value contained in an INI file to determine when to consider a CGI request as failed. Since the Web Server will wait indefinitely for a CGI request to succeed, it’s possible to hopelessly tie up a machine with never ending CGI requests. By using a time-out the intermediary program can terminate the CGI process if VFP has not returned a result on time, which frequently occurs while debugging HTML page code in response to requests.

· The intermediary program allows remote execution of the CGI processing program, namely our VFP code. Since the messaging approach used by Web Connection and wwCGI.exe is file based, the request file can be accessed across the network and be processed accordingly. Since only the result document travels over the network, network overhead is minimal, yet provides maximum flexibility in terms of CPU load by seperating the Web service from the data service.

Note: The following examples all use wwcgi.exe in the HTML page URLs. If you are using an ISAPI based server replace all EXE extensions with a DLL extension instead. Otherwise the functionality is identical.

How to use it

The wwCGI program acts as an intermediary between the web server and Visual FoxPro. Essentially, it receives a commandline from the web server, creates a temporary file that saves this command line, which is in turn picked up by the VFP CGI server process.

A typical CGI request from a simple HTML HREF link might look like this:

Simple CGI Test

When the user of the HTML document clicks on the hot link the CGI request specified in this HREF reference is executed. Note the ‘?’ to specify additional parameters. This additional parameter is a very important tool to pass information to the VFP server process. In my examples I always use the first parameter as a method key - it tells the VFP program which request is incoming. For the sample page the methods are: Test_Page, ClientList, ShowHours etc.

Of course, you can also generate CGI requests as part of HTML input forms:

<FORM ACTION="/cgi-win/wwcgi.exe?ShowHours" METHOD="POST">

Client Name:

<INPUT NAME="Client" TYPE="TEXT" ROWS=1 SIZE="40">

<p>

<PRE>

From: <INPUT NAME="StartDate" TYPE="TEXT" ROWS=1 SIZE="10">

 To: <INPUT NAME="EndDate" TYPE="TEXT" ROWS=1 SIZE="10">

</PRE>

Again, note the ‘?’ and the following ‘ShowHours’ method parameter.

Note that spaces are not allowed in the parameter portion of CGI requests, so you commonly have to translate strings that include spaces to use another character. In my examples I use the plus sign (‘+’) to indicate spaces as part of a parameter and a tilde (‘~’) to indicate a separator between individual parameters. Individual parameters? Sure, sometimes you want to supply a method and additional information as part of a CGI request. For example, each entry on the client list that is dynamically generated by clicking on the client name button needs to create a ShowClient request and also pass along the name of the client to lookup. The generated URL looks like this for each client in the list:

Bank of America

What does it do?

While VFP is processing the CGI request the wwCGI program continues to check for a result file that is generated by VFP CGI Server code once it has completed processing. A CGI request is considered completed successfully once an output HTML page has been generated to a web server designated file name.

When the result file and HTML output page are received, wwCGI erases the temporary files and exits, which in turn returns control to the web server, which then goes ahead and displays the newly generated HTML page or other HTML directive (for example you can redirect the server to display another page depending on query results for example).

In case there is a problem on the VFP end of processing, the wwCGI program also handles time-out issues. In order to free up the web server a preset time-out value is used to determine when to abort a CGI request. If the time-out expires wwCGI will terminate the request and return control to the server, which in turn will generate a server error to the effect that the output document could not be created. The time-out value can be controlled by setting a value for it in the wwCGI.ini file described below.

The wwCGI.ini file

The wwCGI file is generated the first time the wwCGI.exe file is run in a new directory. This file contains several runtime options that are used by the program to determine how to operate. A typical wwCGI file looks like this:

[wwCGI]

Timeout=60

PollTime=100

Path=H:\TEMP\

Template=wc_

The last two entries can only be created manually and should only be set under special circumstances. Use Path when you need to access CGI files across a network or the Web servers temp files are going into a non-standard directory. The template setting allows you to control the first letters of the name of the temporary files that Web Connection creates. By renaming wwcgi.exe to another name it is possible to create separate VFP sessions that respond to separate CGI messages that are application specific.

	Syntax
	Timeout

	Arguments
	This entry determines how many seconds wwCGI waits for a response from your VFP application. If the time-out period passes and VFP has not responded (or completed) the request by returning the result file and HTML page, the CGI process is canceled, which results in an error page generated by the web server.

You can set this value to 0 to allow wwCGI to check endlessly. While this setting is not recommended, it might be necessary for queries that may take a long time to complete.

	Example
	Timeout=60

	Remarks
	

	Syntax
	PollTime

	Arguments
	This entry determines how often wwCGI checks for the existence of the result file. The value is given in milliseconds and defaults to 100ms or 1/10 of a second. The larger the PollTime value the less load is placed on the processor. Keep in mind though that the longer the PollTime the longer the possible delay of being able to complete the CGI request and return control to the Web Server.

	Example
	PollTime=100

	Remarks
	The default value of 100 is a good compromise between speedy response and processor load.

	Syntax
	Path

	Arguments
	This optional entry determines where wwCGI places its temporary commandline files. By default wwCGI uses WebSite’s temp directory the path of which is stored in the registry. But you can specify any path you wish as long as it is on the same drive as the temp files created by WebSite.

If you assign this option to a directory other than the default TEMP directory, you also have to use the wwCGIServer’s commandline option to look for files in this same directory.

	Example
	Path=H:\TEMP

	Remarks
	Don’t use this option unless you’re having problems storing or accessing files in the default directory.

	See Also
	wwCGIServer::Init(); wwCGIServer::SetCGIFilesPath()

	Syntax
	Template

	Arguments
	This entry determines tells Web Connection the first three letters that the CGI message files should bear. This is useful to run multiple separate sessions of wwcgi.exe (or renamed file) and have each create different message files that can be picked up seperately by the VFP CGI server.

	Example
	Template=wc_

	Remarks
	In order to use this setting you need to also set the CGI Server to look for this template filename by using the wwCGIServer::SetCGITemplateFile() with the same pararmater as the template above.

Class wwCGIServer

Parent Class: Form

The wwCGIServer Class is responsible for retrieving incoming CGI requests and passing them on to a user defined program or procedure for processing, passing a wwCGI object as a parameter. The user procedure is responsible for creating an output HTML document or command. When it returns the wwCGIServer class lets the Web server know that it has completed its task and returns to checking for the next request.

How it works

The CGI server is implemented as a class that activates a form and uses a timer to check for incoming CGI request files generated by the wwCGI.exe program. This program is called directly from your CGI commands embedded in the HTML pages. These request files contain the Web Server’s command line arguments used to call the wwCGI.exe program, which acts as an intermediary to channel CGI requests to Visual FoxPro (VFP) without requiring a new VFP session to be started for each request. The idea is that VFP sits in server mode, waiting for a CGI request to occur, then activating and processing that request by spitting back an HTML page, or a server command as a response.

A CGI request from the Web Server is picked up by looking for a CGI request file which is generated by the wwCGI.exe program. This program works by taking the commandline arguments passed from the Web Server and storing them inside a small file that follows a specific naming convention - CGIxxxx.tmp where the xxxx represents a unique hex number. The wwCGIServer checks for the existence of such a file, and if found, opens it and retrieves the command line. The commandline is then passed to a wwCGI object, which parses the command line and can pull the CGI information from the appropriate sources (for more info see the wwCGI class description). This object is then passed to the user procedure which is responsible for creating the HTML output. The information in the CGI object contains form variables, server statistics and information about the calling machine etc. required to process the form.

How to use it

Using the wwCGIServer class is a snap. The steps come down to initializing the server and then simply showing the server form, which handles the entire server process. Here’s the code to get the server started and waiting for incoming CGI requests:

SET PROCEDURE TO CGIServ ADDITIVE

oCGIServer=CREATE("wwCGIServer","Process",.T.)

oCGIServer.show() && Modal Form

RETURN

That’s it. This code says to create a new instance of the CGIServer and call the Process procedure (or program) when a request is incoming. The final parameter of .T. on the Init tells the server to make itself the topmost window when a request is incoming for faster operation.

Exposed Methods:

wwCGIServer::Init

The class constructor for the wwCGIServer class sets up the basic options for the server class by specifying the program to execute when a CGI request is received.

	Syntax
	oCGIServ=CREATE(“wwCGIServer”,cProgramToRun,;

 nTaskingPriority)

	Return
	Nothing

	Arguments
	cProgramToRun

When a CGI request is coming in the server calls this program or procedure with a wwCGI object as a parameter:

FUNCTION Process

PARAMETERS loCGI

The cProgramToRun parameter is optional and default name of this procedure is “Process”.

nTaskingPriority

Determines the system level priority of the CGIServer task. Setting this value can dramatically speed up VFP’s processing of CGI requests while operating as a background task.By default this value is set to 1 or above normal priority. See wwCGI::SetTaskingPriority for more details.

	Example
	oCGIServ=CREATE(“wwCGIServer”,”ProcessCGI”,.T.)

	Remarks
	The tasking options may require some experimentation when running multiple VFP sessions.

	See Also
	wwCGI::SetTaskingPriority; wwCGIServer::Show; Class wwCGI

wwCGIServer::Show

The Show method is the do all function that creates the process form, timer and initiates the event loop used to process incoming CGI requests. By default the form created is modally, but you can pass a parameter of .T. to allow non-modal server operation.

	Syntax
	oCGIServ.Show(nModal)

	Return
	The size or the array, 0 if nothing found.

	Arguments
	nNotModal

1 - Modal (default)

0 - Modeless

By default the server comes up modally, ie. it waits until the form is closed before processing the next command. You can however, run the server in non-modal mode by passing the lNotModal parameter as .T. which allows you for example to place the server as a desktop operation, while still allowing access to the command window.

	Example
	oCGIServ=CREATE(“wwCGIServer”)

oCGIServ.Show()

In this example the server is started and will sit on the Show() method until the form’s Exit button or close button is clicked.

PUBLIC oCGIServ

oCGIServ=CREATE(“wwCGIServer”)

oCGIServ.Show(1)

In this example the server will continue to run once you return to the FoxPro command window. Note, that due to the way the VFP timer, used to periodically check for CGI request files,works the server will not check for requests whileVFP commands non-interactive commands are operating. This means it’ll only work non-modally from the command window, or while sitting on a READ EVENTS while waiting for input.

	Remarks
	

	See Also
	wwCGIServer::Init

wwCGIServ :: SetCGIFilePath

Allows you to set the path where the CGI server looks for CGI request files. By default this is the local machine’s TEMP directory as received through Windows, but you can specify another path, most notable a network drive to move the VFP CGI Server process onto a machine other than the one running the web server. To run remotely VFP and the entire VFP Web Connection code resides on a separate network machine, while the web server and wwcgi.exe execute on a dedicated Web Server machine. In this situation you usually assign the path to something like H:\TEMP where H: is the network drive that contains the web server. This setting must match the path that is used by the web server and wwcgi.exe to place temporary files, which with WebSite is in the local machine’s TEMP directory.

	Syntax
	oCGIServ.SetCGIFilePath(cPath)

	Return
	Nothing

	Arguments
	cPath

The path where to look for CGI request files generated by the wwCGI.exe CGI program.

	Example
	oCGIServ=CREATE(“wwCGIServer”)

oCGIServ.SetCGIFilePath(“F:\TEMP\”)

oCGIServ.Show()

	Remarks
	Use this method to effectively separate the web server and VFP CGI server process by pointing at the Web Server’s TEMP over a network link.

NOTE: The TMP and TEMP environment variables must match exactly in order for mapping to work correctly. The CGIServer will not load if these environment variables do not match. You can set these in your CONFIG.SYS or in the Control Panel under NT.

	See Also
	wwCGIServer::Init

wwCGIServ :: SetProgramToRun

Allows you to specify the program file or procedure that is run when a CGI request is received.

	Syntax
	oCGIServ.SetProgramToRun(cProgram)

	Return
	Nothing

	Arguments
	cProgram

The program to run. The default is “Process”.

	Example
	oCGIServ=CREATE(“wwCGIServer”)

oCGIServ.SetProgramToRun(“ProcessCGI”)

	Remarks
	The Init method’s lcProgramToRun parameter performs the same task.

	See Also
	wwCGIServer::Init

wwCGIServ :: SetTaskingPriority

Allows you to set the operating system tasking priority of the VFP server process. By default VFP operates as a background task on the Windows desktop. By bumping up the priority level VFP can drastically speed up processing of requests. Keep in mind that setting priority levels on VFP will affect other sessions. You need to experiment to find a balance that will allow you to run multiple VFP sessions with equal response times.

	Syntax
	oCGIServ.SetTaskingPriority(nPriority)

	Return
	Nothing

	Arguments
	nPriority

This is the priority level to set the CGIServer task to. VFP’s normal status is 0 and when set to a background task results in abysmal performance. The default value set is 1, and is also set by the Init method (higher priority). Valid values are:

0 - Normal (background operation)

1 - Above Normal (recommended)

2 - Highest

15 - Critical (not recommended)

31 - Real Time (not recommended)

Levels above 2 are not recommended as they will shut down even system tasks and mouse operation.

	Example
	oCGIServ=CREATE(“wwCGIServer”)

oCGIServ.SetTaskingPriority(2)

	Remarks
	This option can also be set with the Init method’s nTaskingPriority parameter.

Setting this option may require some tweaking depending on your configuration and on how you use the VFP Web sessions. As a generic starting point priority 1 works very well. In addition I find these priority settings adequate:

Single session:
 NT: 1

 95: 2

Multi-Session:

 NT: 0 and set Control Panel Tasking to equal back and foreground

 95: 1

	See Also
	wwCGIServer::Init

wwCGIServ :: SetTimerInterval

Allows you to specify the timer resolution of the polling loop used to check for incoming CGI requests. Shorter intervals provide quicker response, but more CPU overhead. This method allows you to control the proper balance on your own.

	Syntax
	oCGIServ.SetTimerInterval(nInterval)

	Return
	Nothing

	Arguments
	nInterval

The timer interval value in milliseconds. The default (if not called or called without a parameter) is 250 milliseconds, which works well on Pentium class machines. Slower machines should use larger numbers to minimize CPU load while polling.

	Example
	oCGIServ=CREATE(“wwCGIServer”)

oCGIServ.SetTimerInterval(500)

	Remarks
	Use only if you have CPU Load problems. You can check process load with the System Monitor program in Win95 and NT.

	See Also
	wwCGIServer::SetTaskingPriority

wwCGIServ :: SetLogToFile

Turns file logging of CGI requests to a table on or off. By default no logging of requests takes place, but when passed .T. this function sends all request statistics to the CGILOG.DBF table.

	Syntax
	oCGIServ.SetLogToFile (lLoggingOn)

	Return
	Nothing

	Arguments
	lLoggingOn

Turn logging on if .T. off if .F. .F. is the default at form creation time.

	Example
	oCGIServ=CREATE(“wwCGIServer”)

oCGIServ.SetLogToFile(.T.)

	Remarks
	Use only if you need to keep a log of CGI requests since it affects performance slightly. If you receive lots of requests the log file can big quickly and cause overhead.

CGILOG table logs: Date/Time, CGI parameter string, remote address (if available) and the processing duration of the query/process.

	See Also
	wwCGIServer::SetStatusWindow; wwCGIServer::LogEntry

	
	

wwCGIServ :: GetLogToFile

Tells whether file logging is turned on or off.

	Syntax
	oCGIServ.GetLogToFile ()

	Return
	.T. or .F.

	Example
	llLoggingON=oCGIServ.GetLogToFile()

	Remarks
	

	See Also
	wwCGIServer::SetLogToFile; wwCGIServer::LogEntry

wwCGIServ :: LogEntry

Places an entry into the log file, but only if request logging is turned on with SetLogToFile(.T.). When logging is enabled this method is called automatically following each CGI request. Entries are logged into CGILOG.DBF.

	Syntax
	oCGIServ.LogEntry(cDescription, cRemoteAddress, nSeconds)

	Return
	Nothing

	Arguments
	cDescription

When automatic logging is enabled the CGI parameter is passed as the first description. If you manually call this method use any string that describes the entry. This can be very handy for writing error messages to the log file in case the program bombs.

There are two template values that you can pass:

START - Server Startup Entry

STOP - Server Shutdown Entry

cRemoteAddress

When automatic logging is enabled the remote address if available is placed into this parameter. Note that some browser do not pass this information along for privacy reasons. Use Local for system messages.

nSeconds

When automatic logging is enabled this parameter receives the time that it took to process a CGI request by the user defined process. This is the same value that is displayed in the server status window. Use 0 for system log entries or errors.

	Example
	PUBLIC oCGIServer, glExitCGIServer

ON ERROR DO ERROR WITH ERROR(), MESSAGE(), MESSAGE(1)

oCGIServ.SetLogToFile(.T.) && Turn Logging on

oCGIServ.LogEntry("START") && Send Start Message to log

oCGIServ.Show

oCGIServ.LogEntry("STOP")

PROCEDURE ERROR

LPARAMETER nErrorNo,cErrorMsg1,cErrorMsg2

lcError="Error #"+STR(nErrorNo)+CR+;

 cErrorMsg1+CR+cErrorMsg2+CR+CR+;

 "CGI Parameter String: "+

 oCGIServer.oCGI.GetCGIParameter()

oCGIServer.LogEntry(lcError,"Local",0)

CLOSE DATA

RETURN TO MASTER

	Remarks
	

	See Also
	wwCGIServer::SetLogToFile

wwCGIServ :: SetStatusWindow

Determines whether the status window shows the CGI server status by displaying the processing light and showing the recent request in the client area. Turning off the status window can speed operation slightly, since VFP's I/O operations are notoriously slow. Use this only if you want to eek out every last bit of speed from a processing request or if you are already logging the info to file.

	Syntax
	oCGIServ.SetStatusWindow(lUpdateWindow)

	Return
	Nothing

	Arguments
	lUpdateWindow

Set to .F. if you don't want the status window to display the last request information.

	Example
	oCGIServ=CREATE(“wwCGIServer”)

oCGIServ.SetStatusWindow(.F.)

	Remarks
	Only minor performance enhancements can be achieved by using this option.

	See Also
	wwCGIServer::SetLogToFile

wwCGIServ :: SetCGITemplateFile

Sets the template for the message file that the CGI server is looking for. The template consists of the first few letters plus a unique hex string plus a TMP file extension. For example a template of “ww_” would yield: ww_xxxxxx.tmp where the xxxxx would be a unique hex number. You have to use this method in conjunction with the Template entry in the wwcgi.ini (or renamed) file setting to create files with this template.

	Syntax
	oCGIServ.SetCGITemplateFile(cTemplateChars)

	Return
	Nothing

	Arguments
	cTemplateChars

First letters of the temporary message files that the CGI server is looking for. Default is “wc_”, which is also the wwcgi.exe default.

	Example
	oCGIServ=CREATE(“wwCGIServer”)

oCGIServ.SetCGITemplateFile(“wwWeb_”)

	Remarks
	This method is useful only if you decide to rename the wwcgi.exe file to something else and edit the corresponding .ini file to create message files with the new template. Using this approach allows you to essentially separate VFP CGI Servers to process only requests specific to a particular application for example.

	See Also
	wwcgi.ini Template setting

wwCGIServer::SendMail

The SendMail method allows your Web Connection server to send SMTP email messages via an accessible mail server.

Note: Function is available only to registered users of Web Connection. To enable this functionality you need to set #DEFINE SMTPMAIL_ENABLED .T. in Wconnect.h.

	Syntax
	oCGI.SendMail(cMailServerIP, cSenderDisplayName,;

 cSenderEmailAddress, cRepientList, cCCList,;

 cSubject, cMessage, cAttachment)

	Return
	nothing

	Arguments
	cMailServerIp

The IP Address of the mail server that will handle sending the message. The mail server must be accessible via a TCP/IP connection at the designated IP address and you must have a valid account on this mail server to successfully send email. IP Addresses are in the format “205.111.111.2”.

cSenderDisplayName

The return address name that is displayed on the email message when received. This is the display name only, not the email address. Note that most mail servers override this with the name set up on the account.

cSenderEmailAddress

The actual return address email address that is displayed on the email message. This should be the address that you want replies to be sent to.

cRecipientList

The list of recipients represented as a comma delimited string. All recipients should be entered as fully qualified email addresses.

cCCList

List of CCs represented as a comma delimited string. All recipients should be entered as fully qualified email addresses.

cSubject

The subject for the email message.

cMessage

The actual message text. This string can be of any length and can contain line breaks as necessary.

Cattachment

You can attach a single file to the email message. The attachment must be specified as a fully qualified pathname. The file will be attached via UUEncoding.

	Example
	oCGIServer.SendMail(;

 "205.000.000.000",;

 "Rick Strahl",;

 "rstrahl@west-wind.com",;

 "budney@bbatech.com, dan@gorge.net",;

 "glenn@gorge.net, webmaster@surplus.com",;

 "Test Message",;

 "This is a test message."+CR+"End of Message",;

 "c:\update.zip")

	Remarks
	Currently no error checking is performed. In fact the SendMail operation occurs entirely in the background so a result might never actually be retrieved. The only indication of success or failure at the moment is a WAIT window that pops up and returns a result code after sending a message. If this value is 0 the message was sent successfully.

However, once you have a valid IP address for you mail server sending email is a reliable affair.

	See Also
	

Class wwCGI

Parent Class: Custom

The wwCGI class’ purpose is to allow your programs to receive information from the web server and the HTML page that generated a CGI request. With it you can retrieve values from variables placed on HTML forms and information about the web server, the client and its browser.

An instance of this class is passed to your VFP program that is responsible for creating an HTML form in response to a CGI request generated by the server.

How it works

A CGIServer object waits for incoming CGI requests. When the Web Server generates a CGI request it is picked up by the VFP CGI request server which in turn passes the wwCGI object to your user defined procedure or program.

The wwCGI class’ methods provide easy access to all of the CGI options provided by the server. Website uses an INI file that contains all of the CGI parameters and envrionment variables which are easily accessed with the wwCGI classes methods. The various Get Methods of this class provide specialized and formatted access to all of the CGI variables made available by the web server with specialized methods available for the most commonly used variables.

How to use it

Your use of the wwCGI class consists mainly of retrieving variables and server stats from the CGI request. Here’s the startup code for the Process procedure that is called when there is an incoming CGI request:

PROCEDURE Process

LPARAMETERS loCGI

LOCAL lcParameter, lcOutFile, lcIniFile

lcParameter=loCGI.GetCGIParameter() && Optional CGI parameters following EXE name

lcOutFile=loCGI.GetOutfile() && The output HTML file

lcLastName=loCGI.GetVar(“LastName”) && Retrieve the last name entered into form

The procedure receives a CGI object as a parameter and then immediately pulls some vital information from the CGI request: The optional parameter passed on the CGI command line (ie. /cgi-win/wwcgi?Test_Page) which is used to determine the type of request we’re dealing with, the output file name which is the name of the output HTML file we need to create. For illustration purposes the example also pulls a form variable from the CGI request, but normally this is better left to the specific request handler code that processes a given CGI request.

Exposed Methods

wwCGI::Init

This constructor of the wwCGI class takes a CGI commandline and assigns a basic set of CGI variables that allow retrieval of all CGI variables from the CGI content file created by the Web Server. In addition, you can specify a path where wwCGI looks for its temporary file. The latter parameter is used to map file names to network drives if the web server is running on a non-local machine.

	Syntax
	oCGI=CREATE(“wwCGI”,cCommandLine,cTempFilePath)

	Return
	Nothing

	Arguments
	cCommandLine

The constructor of the wwCGI class must be passed a CGI command line that was passed by the web server. The webserver calls the wwCGI.exe file, which in turn captures the commandline. This commandline contains the filenames of the content INI file, the output file, as well as any of the optional CGI parameters that where passed as part of the CGI command issued by the HTML form following a ‘?’ or other CGI path directive.

CTempFilePath

This optional parameter is important only when the web server is not running on the local machine and is accessed over a network connection. By passing the path that contains the temporary files the web server generates its temporary files to the GetOutFile() and GetContentFile() are automatically translated and mapped to the remote drive.

By default this value is assigned by the wwCGIServer class when it passes the CGI request to you - the path is determined by the server’s SetCGIFilePath method.

	Example
	oCGI=CREATE(“wwCGI”,”ProcessCGI”,lcCommandline)

	Remarks
	You shouldn’t have to worry about this constructor, since the CGI object is created for you in the wwCGIServer class code and both parameters are passed to you pre-set.

	See Also
	wwCGI::LoadCGIFileNames; wwCGI::ForcePath

wwCGI::LoadCGIFileNames

This method assigns the filenames passed on the Webserver command line. Each time a request is incoming the filenames are updated to reflect the latest input and output files specified by the CGI request.

	Syntax
	oCGI.LoadCGIFileNames(cCommandLine)

	Return
	Nothing

	Arguments
	cCommandLine

The Web Servers command line passed to the wwCGI.exe program file.

	Example
	oCGI.LoadCGIFileNames(lcCommandLine)

	Remarks
	You shouldn’t have to worry about this method, since this assignment is made automatically for you when the wwCGIServer class receives a request.

	See Also
	wwCGI::Init

wwCGI::GetCGIVar

This is the low level method that allows accessing all CGI variables contained in the Website content file. The content file contains information about form variables, the web server and the calling web browser.

More specialized methods that retrieve and format specific values from the CGI file are provided below. For all available CGI variables check your WebSite documentation.

	Syntax
	oCGI.GetCGIVar(cEntry,cSection,lForceNull)

	Return
	CGI Variable string or .NULL.

	Arguments
	cEntry

The entry/key from the INI file to return.

Csection

The INI file section from the INI file to return. This parameter is optional and defaults to the ‘CGI’ section which contains standard CGI variables.

LForceNull

Pass as .T. if you want .NULL. to be returned for missing entries. Otherwise a null string is returned, which also applies to empty entries.

This optional parameter allows you to specify how non-existant entries are returned. The wwAPI::GetProfilestring method returns a .NULL. value by default, but for the CGI purposes it is more useful to return a null string (“”) instead so no additional checking for .NULL. has to take place.

	Example
	oCGI.GetCGIVar(“Query String”,”CGI”)

	Remarks
	This function allows you access to those values that aren’t as commonly accessed and thus have no specific methods associated with them below. Use the specialized methods when available.

	See Also
	Specific variable retrieval methods

wwCGI::GetFormVar

This method retrieves HTML form variables from the CGI content file. It works both with plain variables and for long text vars or variables with embedded control characters.

	Syntax
	oCGI.GetFormVar(cVarname)

	Return
	Value entered on the form or “”

	Arguments
	cVarname

The name of the form variable to retrieve a value for as defined on the HTML form’s NAME property.

	Example
	oCGI.GetFormVar(“LastName”)

	Remarks
	The format used follows CGI conventions for the various variable types like SELECT MULTIPLE, radio buttons and lists. Variables are formatted (ie. Spaces and control characters are properly translated).

	See Also
	wwCGI::GetFormMultiple

wwCGI::GetFormMultiple

This method retrieves multiselect HTML form variables from the CGI content file into an array. Multiselect variables can be returned when using scrolling HTML lists with the SELECT MULTIPE option.

	Syntax
	oCGI.GetFormMultiple(@aVars,cVarName)

	Return
	Count of variables returned.

	Arguments
	aVars

This is the array that will return the selected values. Must be passed by reference!

cVarname

The variable name used on the HTML form to define the SELECT MULTIPLE tag.

	Example
	DIMENSION laVars[1]

lnVars=oCGI.GetFormMultiple(@laVars,“LastName”)

	Remarks
	The format used follows CGI conventions for the various variable types. Variables are returned formatted and decoded (ie. Spaces and control characters are properly translated).

	See Also
	wwCGI::GetFormVar

wwCGI::GetOutFile

This method returns the name of the output file that the web server expects to receive as a result of the CGI request. The output file must be a MIME/HTML compliant document (see your WebSite or general CGI documention for details).

	Syntax
	oCGI.GetOutFile()

	Return
	The output file name

wwCGI::GetContentFile

This method returns the name of the CGI content file. This method is probably most useful for debugging purposes so you can capture the output file and save it for closer examination.

Under normal circumstances you shouldn’t need to know what the Content file name is as the class encapsulates it for you and automatically accesses it for all CGI variable requests.

	Syntax
	oCGI.GetContentFile()

	Return
	The Content file name

wwCGI::GetCGIParameter

This method returns the CGI commandline ‘parameter’ or Query String that was used in the HTML document following the wwCGI.exe file name. For example:

 /cgi-win/wwCGI.exe?ClientForm

returns “ClientForm” as a result when using this method from generated CGI request. Multiple 'parameters' can be passed on the commandline by seperating them with separate characters. Note that spaces are not allowed as part of the parameter string, since many browsers will terminate input after a space. To pass multiple parms use syntax like the following:

 /cgi-win/wwCGI.exe?ClientForm~West+Wind+Technologies~ID0001

where the tilde is optionally used here as a parameter separator and the plus sign to replace spaces. You can parse this commandline manually or use wwCGI::aCGIParms to parse them into an array, then use the optional first numeric parameter to pull the specific parameter from the array.

The parameter is extremely important in setting up your VFP program - the parameter can be used to determine what type of request is incoming so that your program can easily identify the request and respond accordingly.

	Syntax
	oCGI.GetCGIParameter(nParameterIndex)

	Return
	Entire parameter string when no arguments or 0 are passed, or the parameter value specified by index. If the parameter specified does not exist a null string ("") is returned.

	Arguments
	nParameter

The parameter number to retrieve.

	Remarks
	In order to return a specific parameter you have to first call aCGIParms() to populate the parameter array.

	Example
	lcQueryString=loCGI.GetParameter()

loCGI.aCGIParms()

lcName=loCGI.GetParameter(2)

	See Also
	wwCGI::aCGIParms

wwCGI::aCGIParms

This method takes the query string returned by GetCGIParameter() and parses the individual parameters into a wwCGI internal array property, translating the decoding parameters. This array of arguments is then accessible by using GetCGIParameter(nParameterIndex).

	Syntax
	oCGI.aCGIParms(cSeperator, cSpaceChar)

	Return
	count of parameters

	Arguments
	cSeparator

This optional character that is used to separate individual parameters on the CGI commandline following the ?. By default this is a Tilde ('~')

cSpaceChar

Optional character used to replace spaces on the CGI parameter commandline. By default this is a plus sign ('+').

	Example
	loCGI.aCGIParms("~","+")

lcName=loCGI.GetParameter(2)

	Remarks
	

	See Also
	wwCGI::GetCGIParameter

wwCGI::GetCommandLine

This method returns the full commandline that was used to call the wwCGI.exe file. Again, this is more of a debugging or information tool, more than a truly useful method.

	Syntax
	oCGI.GetCommandLine()

	Return
	The command line the Web Server used to call the CGI exe file.

wwCGI::GetPreviousUrl

This method returns the URL of the previous page that was used to call this CGI script.

	Syntax
	oCGI.GetPreviousURL()

	Return
	The URL of the previously accessed page..

	Remarks
	If you nest CGI requests this value returns invalid URL addresses - it’s not possible to dynamically return to a previously generated CGI page other than using the browser’s ‘Back’ button. In these cases use a hardcoded URL instead

wwCGI::GetServerAdmin

This method returns the name of the server Administrator as specified in the web server’s setup. Usually this is an e-mail address.

	Syntax
	oCGI.GetServerAdmin()

	Return
	The server administrator’s email address.

wwCGI::GetServerName

This method returns the domain name of the server or the IP address if a domain name isn’t available.

	Syntax
	oCGI.GetServerName()

	Return
	The server name.

wwCGI::GetBrowser

This method returns the name of the Web Browser used to access the server.

	Syntax
	oCGI.GetBrowser()

	Return
	The name of the Web Browser (ie. Mozilla, Mosaic etc.)

	See Also
	wwCGI::IsNetscape

wwCGI::IsNetscape

This method returns .T. if the Browser in use is Netscape’s Mozilla extensions.

	Syntax
	oCGI.GetBrowser()

	Return
	.T. if the browser is Netscape.

	See Also
	wwCGI::GetBrowser()

wwCGI::GetRequestMethod

This method returns the CGI method used to generate this request. “GET”, “POST” or “TRANSPARENT” are common settings.

	Syntax
	oCGI.GetRequestMethod()

	Return
	The request method used to initiate CGI request.

wwCGI::GetRequestProtocol

This method returns the name of the protocol used by the Web Browser that initiated the CGI request.

	Syntax
	oCGI.GetRequestProtocol()

	Return
	Request Protocol (“HTTP/1.0” for example)

wwCGI::ForcePath

This utility method should be used on all CGI pathnames that are not retrieved with the specialized CGI methods. Forcepath will strip a file’s current path and replace it with the path where the temporary CGI work files reside.

	Syntax
	oCGI.ForcePath(cFilename)

	Return
	Adjusted Filename that contains the translated path.

Class wwHTML

Parent Class: Custom

The wwHTML class provides the tools to easily create HTML pages in program code. While this class is purely optional, the example code for Web Connection uses it exclusively to generate HTML output. Other methods of creating output are available, like using the report generator or merging text from tables, but hand coded HTML pages usually provide the fastest way to generate web output in real time. You can also combine use of these other methods with the text output options of this class.

How it works

The HTML class encapsulates the file output routines required, so that you don’t have to worry about accessing low level file functions for outputting your HTML text. All output can be sent either to a specified file or optionally be returned to you as a result string without actually sending the output to file by setting the tlNoOutput parameter to .T. on each of the methods used. The latter approach comes in handy to nest multiple HTML strings and formats into a single output command, or to use the HTML class only as a partial solution when generating web documents.

wwHTML Class: Exposed Methods

wwHTML::Init

The wwHTML constructor is responsible for setting up the HTML class by setting up the filename that is used to send output to.

	Syntax
	oHTML.Init(cOutFile,cType)

	Return
	Nothing

	Arguments
	cOutfile

The filename that all output is sent to. The file is created and must be accessible.

You can also pass “NOFILE” which results in output not being sent to a file. This is useful if you want to use the HTML class only partially to handle special HTML features, but handle I/O with another method (say the report writer for example).

Ctype (incomplete implementation)

This parameter describes the type of document created. By default this is HTML which is probably all you’ll ever need, but it can also be TEXT or PLAIN (which doesn’t include a MIME header required for CGI responses).

	Example
	oHTML=CREATE(“wwHTML”,loCGI.GetOutFile)

	Remarks
	

	See Also
	wwHTML::Destroy

wwHTML::Destroy

The wwHTML destructor is responsible for closing the HTML output file of output is sent to a file.

	Syntax
	oHTML.Destroy()

	Return
	Nothing

	Arguments
	

	Example
	RELEASE oHTML

	Remarks
	You will be unable to access the HTML file while the oHTML object is in scope, since the output file will open.

	See Also
	wwHTML::Init

wwHTML::Send

The Send method is used for all output that is sent to the HTML document in order to keep all file access localized to this one method. Output is sent as is without a trailing carriage return.

The optional lNoOutput parameter is used to avoid sending output to the file, returning a string as a result of the method instead. This tlNoOutput option is available for most other wwHTML class methods and passed through to the Send and SendLn methods.

	Syntax
	oHTML.Send(cText,lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	cText

The text to be output. This text can be plain, or HTML formatted - this method doesn’t care. It’s the low level output routine.

LNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	oHTML.Send(“<h1>Hello World Wide Web</h1>”)

	Remarks
	Output is send as is, without trailing carriage return.

	See Also
	wwHTML::SendLn; wwHTML::SendMemoLn

wwHTML::SendLn

The SendLn method sends a carriage return terminated string to the HTML file. The syntax is identical to the Send method, but operationally this method simply calls the Send method to carry out it’s output.

	Syntax
	oHTML.SendLn(cText,lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	cText

The text to be output. This text can be plain, or HTML formatted - this method doesn’t care. It’s the low level output routine.

LNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	oHTML.SendLn(“<h1>Hello World Wide Web</h1>”)

	Remarks
	Output gets an carriage return at the end.

	See Also
	wwHTML::Send; wwHTML::SendMemoLn

wwHTML::SendPar

This very simple method sends a hard paragraph break after the text specified if any. Same as SendLn(lcText+“<p>”) but easier to type.

	Syntax
	oHTML.SendPar(cText, lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	cText

Optional text to output before sending <p>

lNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	See Also
	wwHTML::SendLn

wwHTML::SendMemoLn

The SendMemoLn method formats mulit-line text output to look more like standard memo output you’d expect on a report. HTML tends to crowd lines together and skip over carriage returns, which makes unformatted memo/multi-line text look unprofessional. This method allows you to format the memo output by breaking up lines and indenting the text.

	Syntax
	oHTML.SendMemoLn(cText,lBreakLines,nColumns,;

 nIndent,lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	cText

The text to be output. This text can be plain, or HTML formatted.

lBreakLines

When set to .T. lines are broken at carriage returns in the memo or when the width specified with nColumns is exceeded.

nColumns

Column to break lines at.

nIndent

Number of columns to indent text with. Note this will only work if you are using a fixed font (using the <PRE></PRE> tag).

lNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	oHTML.SendMemoLn(“<h1>Hello World Wide Web</h1>”)

	Remarks
	Output gets an carriage return at the end. The indenting option only works appropriately when using the <PRE> pre-formmatted text tag.

	See Also
	wwHTML::Send; wwHTML::SendLn

wwHTML::BreakMemo

A simpler and faster routine to break long text that needs to be displayed as standard font HTML output. All double breaks are converted to <p> tags, all single breaks are converted to
 breaks. Lines are not broken as with the SendMemoLn method - only natural breaks are converted.

	Syntax
	oHTML.BreakMemo(cText, lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	cText

The text to be output.

LNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	oHTML.BreakMemo(lcLongTextField)

	Remarks
	This routine is much faster than SendMemoLn.

	See Also
	wwHTML::Send; wwHTML::SendLn; wwHTML.SendMemoLn

wwHTML::ShowCursor

This method allows easy display of an entire table, simply by having a table or cursor selected and calling this method. You can optionally pass an array of headers as well as a title and the option to automatically sum all numeric fields.

	Syntax
	oHTML.ShowCursor(@aHeaders, cTitle, lSumNumbers, lNoOutput)

	Return
	“”

	Arguments
	aHeaders

An array that should contain as many text headers as they are columns in the table/cursor to display. If this parameter is not passed the field names are used as column headers.

The header names may be followed by a colon followed by a number indicating the width of the header to override the field width which is used by default.

Ctitle

Title text to display above the headers.

lSumNumbers

Flag that allows automatic summing of all numeric fields in the table to display. The total is displayed at the bottom of the display below the appropriate numeric fields.

lNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	SELECT company, lname ;

 FROM TT_Cust ;

 INTO CURSOR Tquery

DIMENSION laHeader[2]

laHeader[1]=”Company”

laHeader[2]=”Last Name”

oHTML.ShowCursor(@laHeaders,”Client List”)

	Remarks
	By default an HTML table is used for output unless output size exceeds MAX_TABLE_CELLS (Wconnect.h) . To allow HTML tables you have to first call SetAllowHTMLTables with .T.

	See Also
	wwHTML::SetAllowHTMLTables

wwHTML::MergeText

The MergeText method lets you merge text contained in a string or memo field with embedded FoxPro string expressions. The embedded expressions are evaluated and replace the expressions in the text. Very useful for storing entire HTML pages in memo fields or in a file file and using the expression parsing to customize the document with data from files, embedded code or external custom UDF()s.

In addition to simply evaluating expressions you can also embed entire functions into the HTML code by starting off the text inside of the delimiters with FOXCODE. The following code should be a valid FoxPro function that returns a character string result. Any valid FoxPro commands can be used. Here's an example HTML/Code mix that displays a list of time entries for a given client. Note that the Merge Delimiter is ##:

##FOXCODE

*** Public Var we want to use throughout the page

PUBLIC wcClientName, wnTotalHours

wnTotalHours=0

*** CGIProcess::ShowFilePage provides two PRIVATE

*** and therefore accessible objects: poCGI and poHTML

*** Here we're grabbing a Form Variable named Client

wcClientName=poCGI.GetFormVar("Client")

*** Run Query - Note I'm creating the Hotlink right in the query

SELECT ;

 []+;

 tt_cust.company+[] AS Company,;

 [<A HREF="/cgi-win/wwcgi.dll?wwdemo~ShowSlip~]+CHRTRAN(timebill.ttId," ","+")+;

 [">]+DTOC(timebill.datein)+" - "+timebill.timein+[] AS Date,;

 timebill.totalHours as Hours ;

 FROM TIMEBILL,TT_CUST ;

 WHERE UPPER(tt_cust.company)=wcClientName AND ;

 TIMEBILL.custno=tt_cust.custno AND ;

 !expense ;

 INTO CURSOR TQUERY ;

 ORDER BY company,Datein

USE IN TT_CUST

USE IN TIMEBILL

*** Must always return a string!

RETURN ""

##

<!-- Now regular HTML with embedded string expressions (
<HTML>

<HEAD><TITLE>Time Entries for ##wcClientName##</TITLE></HEAD>

<BODY BACKGROUND="/wconnect/whitwav.jpg">

<H1>Hours for ##wcClientName##</H1>

<HR>

<p>

<CENTER>

<TABLE BORDER=1 CELLPADDING=5 WIDTH=80%>

<TR><TH COLSPAN="3"><h2>Hours worked</h2></TH></TR>

<TR BGCOLOR=#FFFFCC><TH>Company</TH><TH>Date</TH><TH>Hours</TH></TR>

##FOXCODE

wcOutput=""

SELE TQuery

SCAN

 wcOutPut=wcOutput+;

 [<TR><TD>]+TRIM(Tquery.company)+[</TD><TD >]+Tquery.Date+;

 [</TD><TD ALIGN="CENTER">]+STR(Tquery.Hours,6,2)+;

 [</TD></TR>]+CHR(13)+chr(10)

 wnTotalHours=wnTotalHours+TQuery.Hours

ENDSCAN

RETURN wcOutput

##

<TR BGCOLOR=#FFFFCC><TD COLSPAN="2" ALIGN="CENTER"><h2>Grand Total:</h2></TD><TD ALIGN="CENTER"><h2>##STR(wnTotalHours,6,2)##</h2></TD></TR>

</TABLE></CENTER><p><p>

<p><HR>

<I>Query created by Rick Strahl
using West Wind Web Connection for Visual FoxPro</I><p>[Web Connection demo page] [Show Code]

<p>

</BODY>

</HTML>

##FOXCODE

*** Always release PUBLIC VARIABLES

RELEASE wcClientName, wnTotalHours

USE IN Tquery

*** MUST ALWAYS RETURN STRING!

RETURN ""

##

Pages built fully self contained as in the example above can be called with a generic link provided by the Process Class and a single generic CASE entry in the main process class. Pages can then simply be called with:

wwcgi.exe?DisplayFile~filename.wc

Note: Since embedded functions get thrown to disk and compiled at runtime you'll want to keep the use of functions to a minimum for speed reasons. If you use excessive functions in your pages I would highly recommend you build a custom Processing routine instead of building the code into a page. Custom code is much easier to debug and maintain and also runs a bit faster since no on the fly compilation takes place.

	Syntax
	oHTML.MergeText(cText, cDelimiter, lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	cText

The text or memo field that contains embedded expressions.

Cdelimiter

The delimiter used to identify expressions contained within the text. The expressions must return a character value. Default is “##”.

LNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	oHTML.MergeText(docs.page, “##”)

Example Text:

“Dear ##Trim(cust.first)##,

Blah, Blah, Blah… on this date of ##DTOC(Date())##…”

	Remarks
	All but the first parameter are optional.

Embedded expressions must evaluate to character using EVALUATE(). An internal error handler catches invalid expressions and embeds the original unevaluated expression text into the output.

Note that memory variables in expressions must be scoped to persist inside of the HTML object which is the active object when expressions are evaluated. Thus variables referenced should be scoped PRIVATE or PUBLIC. Note that you can access the HTML object with THIS.HTMLMethod() from within expressions.

	See Also
	wwHTML::Send; wwHTML::SendLn

Using this method you can embed field names directly into the HTML text. Variables are a little more tricky, since they have to be scoped properly in order to retain scope for execution inside of the HTML class. What this means is that variables that you want to display in embedded expressions should be either PRIVATE or PUBLIC in order to retain scope. Note, that you can access the HTML class methods using the lNoOutput option in expressions, using the THIS.HTMLMethod() syntax since the HTML class is the active object while processing MergeText.

Here’s an example file:

<html>

<TITLE>Windance Item Profile</TITLE>

<body bgcolor="#ffffff" text="#000000">

<table width=100%>

<tr><td rowspan=10 align=LEFT valign=top width=85%>

Windance Item Profile: Item # ##con2.itemcode##

<P>

</p>

<P>

<pre>

 Item Code: ##con2.itemcode##

 Year: ##con2.year##

Description: ##TRIM(con2.Descrip)##

 Size: ##con2.size##

 Condition: ##con2.condtn##

 Price: ##TRANSFORM(con2.askprice,"$$$,$$$.99")##

 Comments: ##TRIM(con2.Comments)##

</pre><p>

##IIF(plAddUsedItem,

 THIS.SendLn([Item Added to this order],.T.),

 THIS.SendLn([<FORM ACTION="wwcgi.exe?windance~adduseditem

 METHOD="POST"><INPUT TYPE="SUBMIT" NAME="SubmitButton"

 VALUE="Add item to to Shopping Cart" SIZE="40"></FORM>],.T.))##

</td></tr>

<tr><td rowspan=10></td></tr>

<tr><td valign=top><center>

Windance

108 Hwy 35

Hood River, Or. 97031

Ph. (503)386-2131

Fax (503)386-3151

E-mail windance@gorge.net

</center></td></tr>

</TABLE>

Copyright© 1995, Windance Sailboards, Inc. All rights reserved.
Page design by Gary Gorman

</BODY>

</HTML>

Note that you can embed HTML methods by using THIS.Method()! In the above example THIS.SendLn(,.T.) is used inside of an expression to determine whether to display a confirmation message, or a Submit button and form. You can even use extended HTML methods like ShowCursor() to display a whole list of records embedded inside of your HTML script all driven by FoxPro expressions!

wwHTML::ShowMemoPage

The ShowMemoPage method is an extension of the MergeText method that allows you to display HTML text containing embedded FoxPro string expressions from either a memo field contained in the system wwHTML table, or from a disk file. Using this method it’s possible to design the majority of your HTML output without code and simply embed the data specific information as expressions inside of the HTML text and have a semi automated process of accessing the pages or disk files for output.

	Syntax
	oHTML.ShowMemoPage(cPageName, lFile, cContentType,;

 lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	cPagename

The id of the page as entered into the pagename field of the wwHTML table.

lFile

If set to .t. the cPageName parameter passed looks for a diskfile rather than accessing the wwHTML table

cContentType

By default this parameter creates an HTML formatted document header. You can specify any content type header, or “” to skip the content type header altogether. See ContentTypeHeader method for more details for valid options.

lNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	*** Output page in WWHTML.DBF

oHTML.ShowMemoPage(“WD_ShowItem.htm”)

*** Output page from a diskfile

oHTML.ShowMemoPage(“\\Web2\http\westwind\ShowItem.wc”,.t.)

	Remarks
	All but the first parameter are optional.

Embedded expressions must evaluate to character using EVALUATE(). An internal error handler catches invalid expressions and embeds and shows expressions un interpreted if an error occurs.

This method uses MergeText to actually do the text merging, using the default “##” delimiters for expression expansion.

	See Also
	wwHTML::MergeText; wwHTML::ContentTypeHeader;

wwHTML::CreateHTMLdbf

wwHTML::CreateHTMLdbf

This method creates the wwHTML table used to store HTML pages to be retrieved with the wwHTML::ShowMemoPage() method.

	Syntax
	oHTML.CreateHTMLdbf(cMode)

	Return
	.T. or .F.

	Arguments
	cMode

By default if this method is called and the wwHTML file does not exist it is created.

You can also pass an optional mode parameter of “REINDEX” which will cause the wwHTML table to be packed and reindexed.

	Example
	oHTML=CREATE(”wwHTML”,”test.htm”)

oHTML.CreateHTMLdbf()

	Remarks
	

	See Also
	wwHTML::ShowMemoPage

wwHTML::EnclosedText

This method encloses the specified text in a pair of HTML tags. For example, SendPar(“b”,”Hello World”) will generate “Hello World”.

	Syntax
	oHTML.EnclosedText(cTag, cText, lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	cTag

HTML Tag name without the enclosing <>’s

cText

The text to enclose

lNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	oHTML.EnclosedText(“b”,”This is a bold Statement”)

	Remarks
	No carriage return send at end of line. See wwHTML::HeaderText for sending headers that are followed by CRs. You’ll commonly use this with the lNoOutput option to embed enclosed text into another string.

	See Also
	wwHTML::HeaderText

wwHTML::HeaderText

This method encloses the specified text in a pair of HTML tags. For example, SendPar(“b”,”Hello World”) will generate “Hello World”. The text is followed by a carriage return.

	Syntax
	oHTML.EnclosedText(cTag, cText, lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	cTag

HTML Tag name without the enclosing <>’s

cText

The text to enclose

lNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	oHTML.HeaderText(“h2”,”Hello World”)

	Remarks
	A carriage return is send at end of line. See wwHTML::EnclosedText for sending in line tags that aren’t followed by a carriage return.

	See Also
	wwHTML::EnclosedText

wwHTML::HRef

This method creates a hypertext link to another document, section or CGI command using the HTML HREF tag.

	Syntax
	oHTML.HRef(cLink, cText, lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	cLink

The hypertext link or address.

Ctext

The text to enclose

lNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	oHTML.Href(“mailto:rstrahl@west-wind.com”,”Email Rick”)

or

oHTML.Href(“http://microsoft.com/index.htm:”,”MS Home Page”)

or

oHTML.Href(“/cgi-win/wwcgi?ClientList”,”Show Clients”)

	Remarks
	No carriage return send at end of line. See wwHTML::HeaderText for sending headers that are followed by CRs.

	See Also
	wwHTML::HeaderText

wwHTML::SetAllowHTMLTables

This method sets a class flag to allow ShowCursor and possibly future methods to determine whether they should use HTML Tables to display output. You can also specify a max cell count before tables revert to <PRE> tags.

	Syntax
	oHTML.SetAllowHTMLTables(lAllowTables, nMaxCells)

	Return
	nothing

	Arguments
	lAllowTables

If passed .T. ShowCursor will use HTML tables, otherwise a <PRE> formatted list is used.

nMaxCells

If .T. is passed you can also specify a max cell count value for HTML tables. Large HTML tables are very slow to display, so a max value is set to allow reverting to <PRE> format when the table gets too large. The default is 1500 cells.

	Example
	oHTML.SetAllowTables(loCGI.IsNetScape(),2000)

	Remarks
	

	See Also
	wwHTML::GetAllowTables

wwHTML::GetAllowHTMLTables

This method returns the current setting of whether HTML tables are allowed.

	Syntax
	oHTML.GetAllowHTMLTables()

	Return
	.T. or .F.

	See Also
	wwHTML::GetAllowTables

wwHTML::List

This method creates a HTML list of manually entered items. The list can be of any of the supported HTML list types. Currently there is no support for not sending the output directly to a file.

Fix it/Wish List: Add support for arrays, allow lNoOutput option
	Syntax
	oHTML.List(cType, cItem1, cItem2…cItem9)

	Return
	“”

	Arguments
	cType

Any legal HTML list type:

UL - unordered list

OL - ordered list

DL - definition list.

cItem1..cItem9

Text to be displayed for each list item.

In the future the first item may be an array.

	Example
	oHTML.List(“UL”,”Option 1”,”Option 2”,;

 oHTML.Href(“index.htm”,”Back to home page”,.T.))

	Remarks
	output cannot be returned as a string

	See Also
	

wwHTML::ContentTypeHeader

The ContentTypeHeader method sends an HTTP content type header which has to preceed any CGI processed request. A typical Content Type header looks like this:

Content-Type: text/html

<HTML>

…

</HTML>

In the above example the Content Type line plus a blank line is the actual text that makes up the Content type header.

Directly displayed text or HTML documents do not need a content type header, but any document that is sent via CGI to the HTTP server must include a content type header.

This method is provided mainly for internal use by various full page methods. You programs should use HTMLHeader instead which also calls this method to output the content type header.

	Syntax
	oHTML.ContentTypeHeader(cContentType, lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	CcontentType

CGI requests require a Content Type header which usually looks like this in the generated document:

 Content Type: text/html

Common types are:

“text/html” - Default

“Force Reload” - Force browser to always reload page

“text/plain”

“none”

This parameter basically creates a Content type line, so any Content Type that is legal can be passed. The default is “text/html”. Another commonly used type is “text/plain” which sends text without HTML formatting. Use “none” to skip creating the Content Type header for example when creating static, non-CGI HTML pages for later display.

LNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	oHTML.ContentTypeHeader ()

	Remarks
	Non-CGI pages should always set the cContentType parameter to “none”.

You can send a full HTTP1/0 header response using the Send/SendLn commands without this method.

The Force Reload option should be used on any pages that need to be reloaded each time the page is hit. For example an order form page should be always be recalculated even when the user moves back to the page with the Browser’s Back button. Force Reload immediately forces the cache to expire and causes any further access to reload the page from the CGI script. By default pages do not expire, so that the user can get back to a CGI page via the Back button or on some browsers (like MS IE) via a previously cached HREF link. This works well for lookup lists and provides better speed on the browser’s end…

Force Reload send a full HTTP header with a content type of text/html.

	See Also
	oHTML::HTMLHeader

wwHTML::HTMLHeader

The HTMLHeader method creates the beginning of a typical HTML document. By default this document includes a the content type header required for CGI generated documents, a title (displayed in the browser’s title bar) and header text or a header tag which can include images.

	Syntax
	oHTML.HTMLHeader(cHeaderText, cDocTitle,cBackground,;

 cContentType, lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	cHeaderText

This is typical header text displayed in the <h1> tag, followed by a <HR> line.

If you pass a preformatted string that contains tags (like an IMG SRC for example) the header text is placed unformatted.

CDocTitle

This text is the document title that is displayed in the Browsers title bar. If not passed this value is the same as the headertext.

CContentType

This optional parameter allows you to specify the MIME content type header for CGI documents. By default this parameter is set to “text/html”, but it can also be set to “text/plain” or “none”. “none” specifies that you don’t want a content type header, which is appropriate for creating standalone, permanent HTML documents.

Cbackground

Allows you to specify a form background image often used on HTML pages.

CcontentType

CGI requests require a Content Type header which usually looks like this in the generated document:

 Content Type: text/html

Common types are:

“text/html” - Default

“text/plain”

“Force Reload” - Force browser to always reload page from link.

“none”

This parameter basically creates a Content type line, so any Content Type that is legal can be passed. The default is “text/html”. Another commonly used type is “text/plain” which sends text without HTML formatting. Use “none” to skip creating the Content Type header for example when creating static, non-CGI HTML pages for later display.

LNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	oHTML.HTMLHeader(“Welcome to West Wind Technologies”,;

 “West Wind Technologies”,;

 “/images/background.gif”)

	Remarks
	Non-CGI pages should always set the cContentType parameter to “none”.

	See Also
	oHTML::HTMLFooter

wwHTML::HTMLFooter

The HTMLFooter method finishes up an HTML document by adding the </BODY></HTML> document tags to the document.

	Syntax
	oHTML.HTMLFooter(lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	LNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	oHTML.HTMLFooter()

	Remarks
	

	See Also
	oHTML::Href

wwHTML::HTMLRedirect

The HTMLRedirect method redirects output to another hyperlink rather than generating and displaying a page. This method simply points at another URL or directive and executes that link.

	Syntax
	oHTML.HTMLRedirect(cLink, lNoOutput)

	Return
	“” if sending to file and the output text if lNoOuput is .T.

	Arguments
	cLink

The hotlink or URL to goto or execute.

LNoOutput

When set to .T. output is not sent to file, instead returning the result as a string.

	Example
	oHTML.HTMLRedirect(“index.htm”)

	Remarks
	This method is useful when you need a program to decide which page should be displayed. This provides another option for quickly accessing a page under program control.

	See Also
	oHTML::HTMLHeader

wwHTML::HTMLError

The HTMLError method allows you to quickly generate a customized HTML error document. This method should be called anytime your VFP code fails (possibly as part of an error handler) or when unhandled conditions occur. When the HTMLError method is called all existing HTML output is overwritten with a standard error message that includes a pair of messages that can be supplied as parameter. In addition you can specify the name of the system administrator and the referring document.

	Syntax
	oHTML.HTMLError(cErrorHeader, cErrorMessage,

 cAdministrator, cReferDoc)

	Return
	Nothing

	Arguments
	cErrorHeader

This is the main header message displayed of the error document. Should be a general explanation in a few short words - uses <h1> tag, ie. big and bold.

CErrorMessage

This should be a more detailed description of the error that occurred. This text appears in bold using the <h3> tag after a general error message. Optional.

Cadministrator

This should contain an email address that is used as a hotlink in the document to be sent messages regarding the problem from users of the page. Usually this will be loCGI.GetServerAdmin(). Optional.

Creferdoc

The referring document that called the current CGI request. Again this should be passed from the CGI object with loCGI.GetPreviousUrl. Optional.

	Example
	oHTML.HTMLError(“Hold on to your hats!”,;

 “The requested CGI request could not be ”+;

 “completed, because the program is not “+;

 “set up to handle this operation yet.”,;

 loCGI.GetServerAdmin(),;

 loCGI.GetPreviousUrl())

	Remarks
	

	See Also
	

wwHTML::NoOutput

This method is used to keep output from going to file no matter how you call any of the above CGI routines. Useful after errors to turn off file further file output that might be created by incomplete HTML processing code. Only affects output through wwHTML of course.

	Syntax
	oHTML.NoOutput(lNoOutput)

	Return
	"" if sending to file and the output text if lNoOuput is .T.

	Arguments
	lNoOutput

If .T. output will not be sent to file.

	Example
	oHTML.NoOutput(.T.)

	Remarks
	Note that this is different than using the lNoOutput option on the various HTML functions, since it does not affect how text is returned to you from the HTML functions. If you want text returned as text instead of having it sent to file you still need to specify the lNoOutput parameter on the individual HTML method calls.

	See Also
	lNoOutput parameter

wwHTML::Table Functions

under construction…

Please note that the following functions greatly simplify setup of HTML tables, but at the same use of these methods cause significant processing overhead when creating tables. Weigh using these methods carefully over handcoding table formats using basic HTML methods above.

**

* wwHTML :: NewTable

*** Function: Initialize new table and send out the table

*** header codes.

*** Assume: Only works with Netscape.

*** Output to file only (no tlNoOutput)

*** Pass: tnColumns - Number of Table Columns

*** tcHeader - Title of the Table

*** tnWidth - Width of the table

*** tnBorderWidth Width of the seperator bars

*** Return: Nothing

**

**

* wwHTML :: NewTableCol

*** Function: Creates and initializes a new Table Column. No actual

*** output.

*** Pass: tnColumn - Column Number

*** tcHeaderText - Header Text displayed as legend

*** tcOptions - Any Column options (ie. ALIGN="CENTER")

*** Return: nothing

**

**

* wwHTML :: AddTableHeaders

*** Function: Sends a Table Header for all columns to output.

*** Return: nothing

**

**

* wwHTML :: AddTableRow

*** Function: High level routine that sends an entire row

*** of columns to the HTML output file.

*** Pass: tcColumn1..n - text to display for eacb column

*** Return: nothing

**

**

* wwHTML :: AddTableCol

*** Function: Outputs a table column.Outputs a table.

*** NOTE column 1 triggers start of Row Code

*** Last column triggers End of Row Code

*** Assume: Use in proper order or formatting will be off.

*** Use Column 1 and Last Column to trigger start

*** and finish of a row.

*** Pass: lnColumn - Column as set up with NewTableColumn

*** Return: Nothing

**

Here’s an example of how you can create table in code. Sure beats manually creating the tags, but keep in mind that this slows down processing a bit (up to 50% slower than using equivalent .SendLn() commands):

*** Example Code:

 oHTML.NewTable(3,"Hours Worked",500,2)

 *** Initialize columns and formatting

 oHTML.NewTableCol(1,"Company")

 oHTML.NewTableCol(2,"Date",[ALIGN="CENTER"])

 oHTML.NewTableCol(3,"Hours",[ALIGN="CENTER"])

 *** Output the column headers

 oHTML.AddTableHeaders()

 SELE Query

 SCAN

 *** Create a HLINK to another CGI script for each client

 lcCGICompany=STRTRAN(TRIM(Company)," ","+") && Convert Spaces

 lcCGITTID=STRTRAN(TRIM(TTId)," ","+")

 oHTML.AddTableCol(1,;

 oHTML.HREF("/cgi-win/wwcgi.exe?ShowClient~"+lcCGICompany,;

 company,.T.))

 oHTML.AddTableCol(2,DTOC(Datein))

 oHTML.AddTableCol(3,;

 oHTML.HREF("/cgi-win/wwcgi.exe?ShowSlip~"+lcCGITTId,;

 TRANSFORM(totalhours,"999.99"),.T.))

 *** You can also use this syntax, but it's a little slower

 *oHTML.AddTableRow(;

 * oHTML.HREF("/cgi-win/wwcgi.exe?ShowClient~"+lcCGICompany,company,.T.),;

 * DTOC(Datein),;

 * oHTML.HREF("/cgi-win/wwcgi.exe?ShowSlip~"+lcCGITTId,;

 * TRANSFORM(totalhours,"999.99"),.T.))

 lnGrandTotal=lnGrandTotal+totalhours

 ENDSCAN

 *** Summary section: Grand Total: 999.99 Hours

 oHTML.AddTableCol(1,"<h2>Grand Total:</h2>",[COLSPAN="2" ALIGN="CENTER"])

 oHTML.AddTableCol(3,"<h2>"+STR(lnGrandTotal,10,2)+"</h2>",[ALIGN="CENTER"])

 oHTML.SendLn([</TABLE><p>])

Class wwCGIProcess

Parent Class: Custom

The wwCGIProcess class is an optional class that can be used to process CGI requests. The class provides automatic initialization of CGI and HTML objects which become members of the class and are thus accessible for all process methods. In addition the class provides built in error handling with an Error Method that automatically displays an error page in case of any error (unless DEBUGMODE is set to .T. in WCONNECT.H in which case the error bombs for debugging purposes).

How it works

This class consists of only a few base methods. The Init method is responsible for setting the common settings in the CGI class and creating an HTML member object which is ready to send output to file. This simplifies access to the HTML object, since it’s available and already initialized for all member methods that create HTML output. The Process method is a virtual method that is to be implemented by any subclasses. This method should consist of a routing mechanism using a CASE statement. For examples see the Process methods in CGITEST.PRG and CGIMAIN.PRG. The Error method captures all errors that generated while processing CGIProcess code. Since all of your processing code will be implemented using new methods in this class this will catch 90% of coding errors. The error method simply returns an error message to the Web Server thus completing the CGI request even though the actual CGI process failed. The ErrorMsg method is a quick way to spit out an HTML error page, or any other quick message in response to unexpected events, either under program control or as a response to an error event.

This class is a virtual class, which means it should never be used directly, but always be subclassed into a custom version. The custom version will always override the Process method and add new processing methods that actually process any given CGI request called from the Process method.

wwCGIProcess: Exposed Methods

wwCGIProcess::Init

The wwCGIProcess constructor is responsible for setting up CGI and HTML member objects.

	Syntax
	oCGIProcess.Init(oCGI, cParmDelimiter, cParmSpaceChar)

	Arguments
	oCGI

A CGI object passed from the CGIServer process.

cParmDelimiter

This optional parameter determines the character that is used to separate CGI parameters passed as part of the CGI command line following the ? for the purpose of automatically parsing the parameters into an array.

For example: wwcgi.exe?Parameter~Optional+Arguments. The ~ here is a parameter separator. The default is the ‘~’ character. The above example will create a parameter array containing 2 elements: ‘Parameter’ and ‘Optional Parameters’. For more details see the wwCGI::aCGIParms method.

CParmSpaceChar

Since spaces are not allowed as part of the CGI command line, a replacement character is needed. This parameter specifies the character that is used. By default this character is a ‘+’..

	Return
	Nothing

	Example
	oCGIProcess=CREATE(“wwMyCGIProc”,”&”,”+”)

	See Also
	wwCGI::aCGIParms

wwCGIProcess::Process (Virtual)

This method needs to always be overridden by the subclassed version. This method should be a routing routine that figures out what task is to be performed based on the parameter(s) that were passed as part of the CGI commandline.

	Syntax
	oCGIProcess.Process(oCGI)

	Return
	Nothing

	Arguments
	oCGI

An wwCGI object as passed by the CGIServer process.

	Example
	oCGIProcess.Process(loCGI)

wwCGIProcess::Error

This method captures all errors that occur while processing occurs in the CGIProccess class. It calls the ErrorMsg method to display an error page.

wwCGIProcess::ErrorMsg

Besides its name this method can be used to quickly display an HTML page which looks somewhat like a server error page. This routine discards any existing HTML code and recreates a new HTML document. All subsequent HTML file output is supressed, although the code continues to perform the remaining processing.

	Syntax
	oCGIProcess.ErrorMsg(cTitle, cMessage)

	Return
	Nothing

	Arguments
	oCGI

An wwCGI object as passed by the CGIServer process.

	Example
	oCGIProcess.Process(loCGI)

Using Text Wrapper

Incomplete Documentation. For more info see WRAPPER.TXT in the TOOLS directory

To make it easier to create HTML code from existing pages Web Connection provides a tool called Text Wrapper. This little utility is contained in WRAPPER.SCX in the TOOLS directory and allows you to capture text stored on the clipboard and wrap the text with a set of strings before and after the string.

It’s very handy for quickly creating loHTML.SendLn([text line1]) for an entire page of HTML text. This utility makes it easy to go from page to code, allowing you to easily add fields and calculations to the generated code.

A great way to produce the fastest possible HTML output is to use highlevel methods like wwHTML::ShowCursor to quickly generate HTML output from a cursor or table then use the WRAPPER form to capture the generated HTML code and build more optimized, hand code from it. ShowCursor is great for quickly generating output, but unfortunately it's more than 2 times slower than the equivalent hand coded wwHTML.SendLn statement code.

- Page 1 -

