A Brief Overview of the Interface Architecture for COM Codebook

One of the primary directives for the design of the interface side of COM Codebook is to make it just as flexible as the previous version of Codebook. The software developer must be able to hook up "business objects" in any conceivable fashion … just like before.

Several hurdles stood in the way of this goal. The most daunting one was the fact that the Resource Manager Proxy … the interface representation of what has become the new business object in COM Codebook … is no longer derived from the Container class. Instead, it inherits from the Line class to increase instantiation speed. The second hurdle revolved around the fact that the Resource Manager Proxy is a programmatically defined. Both of these facts mean one simple thing, no visual class existed, on the form, that allowed an interface programmer to manipulate the Resource Manager Proxy to accomplish the goals of the interface being created.

CResourceManagerProxyLoader – CUTILS.VCX.

The purpose of the Resource Manager Proxy Loader (RMP Loader) is twofold: 1) create a reference to the Resource Manager Proxy as the form is being instantiated and 2) transfer interface specific properties to the Resource Manager Proxy after it is created but before it is registered with the form.

Identifying the Resource Manager Proxy to Load

The use of the RMP Loader closely parallels the way you manipulated business objects in the old Codebook. To load a Resource Manager Proxy you simply drag an instance of the RMP Loader onto the form (or specialized container) and identify the class name of the desired Resource Manager Proxy using the cResourceManagerClassName property. When the RMP Loader instantiates it calls the ::CreateResourceManagerProxy() method, whose function should be self evident.

Creating the Resource Manager Proxy

Creating the Resource Manager Proxy is the three-step process. The first step involves creating a reference to the object using the class definition provided above. The next step involves transferring the interface specific properties that were defined by the interface programmer onto the newly created object. The final step is to register the object in a permanent place so it persists through the life of the form.

Step One: Simple process that uses CREATEOBJ() to create a reference to the desired Resource Manager Proxy.

Step Two: Involves transferring the following properties from the RMP Loader onto the newly create Resource Manager Proxy.

loRMProxy.cParentResourceProxy = THIS.cParentResourceProxy
loRMProxy.lPrimaryResource = THIS.lPrimaryResource
loRMProxy.lNewChildOnNew = THIS.lNewChildOnNew
loRMProxy.lNewRecordOnNewParent = THIS.lNewRecordOnNewParent
loRMProxy.lAllowNew = THIS.lAllowNew
loRMProxy.lAllowSave = THIS.lAllowSave
loRMProxy.lAllowDelete = THIS.lAllowDelete
loRMProxy.lConfirmOnDelete = THIS.lConfirmOnDelete

IF VARTYPE(THIS.PARENT) == "O"
loRMProxy.oControlContainer = THIS.PARENT
ELSE
loRMProxy.oControlContainer = .NULL.
ENDIF
Notice that these properties are very similar to the properties located on the old business object. .cParentResourceProxy allows you to identify a parent Resource Manager Proxy. .lPrimaryResource allows a programmer to identify the Resource Manager Proxy responsible for intercepting all messages coming from the form, like .New(), .Cancel(), .Delete() and .Save(). The .lNewChildOnNew and .lNewRecordOnNewParent allows the automatic addition of records to specified child objects. The .lAllowNew, .lAllowSave, .lAllowDelete properties allows a programmer to control the Create, Update and Delete functionality of a particular interface. The .lConfirmOnDelete property forces a use to confirm deletion when desired. The .oControlContainer property allows the Resource Manger Proxy to identify the container where it resides. This can either be the form itself or a specially designed (and incomplete) container object.

Notice that the number of properties transferred from the Loader to the Proxy will increase over time as the design of the interface reaches completion.

Step Three: Involves registering the Resource Manager Proxy. There are three places to do this, with the Resource Manager Proxy Controller, with the Form itself, with the container on which the Resource Manager Proxy resides. The last two are legacy code and are slated for removal. The Resource Manager Proxy Controller, which resides in a property on the Form, is the central place for storing and manipulating all Resource Manager Proxies that participate in the interface.

Registering the Resource Manager Proxy with the Form

To register the Resource Manager Proxy with the form, the Resource Manager Controller object to be specific, a reference is passed to the form’s oRMController object using the oRMController’s Add() method. The oRMController class definition is located in the CCOLLECT.VCX and is defined in the cResourceManagerProxyCollection class. The .Add() method takes responsibility for validating the type of object being passed to it as well as adding a reference of the object to a property and adding a row to the array responsible for tracking the identity of the objects being added.

Creating Parent and Child Relationships

Once the creation of the Resource Manager Proxies is complete, the form sends the message to the oRMController to begin the process of linking children RMPs to their parents. Before this can successfully occur, the interface programmer must identify the identity of each RMP parent. Programmers do this by entering the name of the parent resource manager proxy in the .cParentResourceManagerProxy property of the child object’s Loader. After instantiation, the form calls the RMController’s LinkParentChildResources() method from its Init(). Since the parent and child relationships are established after instantiation of all Resource Manager Proxies the Z-Order of these proxy loaders is not important to the functionality of the framework.

Automatically Setting the Primary Resource Manager Proxy

Just as in the older version of Codebook you can, in the new COM Codebook, automatically register another Resource Manager Proxy to be the primary resource for the form. You do this by using the .lAutoPrimaryRMProxy property of the RMP Loader object. Set this property to .T. if you want the RMProxy to become the primary resource manager of the form when the page on which it resides enables. See the UIEnable() method of the Resource Manager Proxy Loader to see how this is accomplished.

CResourceManagerProxyCollection – CCOLLECT.VCX

It only takes a quick glance at the class design to discover the importance of the Resource Manager Controller. In the old version of Codebook, both the Form and the Business object contained quite a bit of code that performed various tasks. In COM Codebook, most of this functionality has been thrust upon the oRMController.

As an example, take a look at the code in the CResourceForm::Save() method.

LOCAL lnRetVal, llOldLockScreen
=LockScreen(.T., @llOldLockScreen)
lnRetVal = THIS.oRMControl.Save()
THISFORM.Refresh()
=LockScreen(llOldLockScreen)
goApp.RecordActivity("FormSave")
RETURN lnRetVal

The Form’s .Add() method is primarily responsible for locking the screen of the form and passing the .Save() message to the RMController. Once the save processing is complete, it refreshes the form, unlocks the screen and informs the application that a FormSave action took place. The final step allows the application to keep track of user activities throughout the life of the application. The design goal for this is to allow a developer to close the application down if no type of Create, Read, Update or Delete functionality has taken place within a specified period of time. Notice that this code is pretty simple. However, and I assure you, that the process of saving a record in a distributed environment is anything but simple. The complexity of this, however, is encapsulated elsewhere … not in the interface object.

Canceling Updates

Canceling updates is a simple process of telling the primary resource manager proxy to cancel the changes made to it and all of its children. It does not require any communication with the Resource Manager located on the server. To see how this is accomplished examine the Cancel() function in the CResourceManagerProxy.PRG.

Adding New Records

Adding new records requires only minimal communication with the server. This minimal communication consists of getting the structure of the data to be added, using the GetEmptyResource() method, but if and only if the structure has not yet been retrieved. To see how this is accomplished, examine the New() function in the CResourceManagerProxy.PRG.

Deleting Records …

… posed and interesting problem. The fact of the matter is that an interface can be extremely complex. It is possible for a user to request a delete of a parent record that, due to referential integrity, causes the cascading delete of many other records in potentially many other tables. It was not feasible to try and duplicate the cascading delete process in the Resource Manager Proxies, especially when this logic is already defined in the data layer itself. Therefore, we opted for a simpler approach. Once the delete is completed, requery all of the required information for a remaining parent object and let the cascade take care of itself. The requery of the parent brings back all of the information required to view a remaining record while allowing the cascading delete to be processed on the data server.

Saving Records

This activity, was by far, the most interesting of all the processes. The reason revolves around the fact that it had to be possible to rollback or commit a business transaction in its entirety. Before this release of COM Codebook it was possible to commit or abort only the save process of an individual Resource Manager Proxy. Unfortunately, this meant that if the Invoice object (parent) successfully saved its information to the server but the Purchases object (child) did not, it was impossible to rollback the save of the parent, or Invoice, object.

To get around this we devised an architecture that mimics the interface environment (existence of and relationships between resource managers in the interface) on the business server. Examine the CresourceManagerProxyCollection::Save() method to view how this was accomplished.

Basically, the process is to create an equivalent to the interface’s Resource Manager Proxy Controller on the business server, recreate references to the Resource Managers and link them up in the exact parent child relationship that exists on the interface. Next, marshall the data by transferring record sets from the Proxies to the actual Resource Managers themselves. Once these steps are successfully accomplished it is then time to tell the business layer to save the data. This save, now that all of the data is located on the business server, can then be bracketed by an MTS transaction which can then be committed or rolledback depending upon the success or failure of the individual parts.

In summary, the Resource Manager Controller is the hub of activity for the COM Codebook VFP Implementation of the interface.

