Windows DNA Development – Tools Overview

Introduction

This article discusses the various tools and technologies used in developing a distributed application according to Microsoft’s Windows Distributed interNet Application development approach. In general, Windows DNA merges a number of tools and Windows NT operating system services to provide for an efficient, scalable and modifiable approach to the problems of distributed object development.

Before we begin looking at the various technologies, let’s discuss DNA. DNA is Microsoft’s roadmap towards creating a server-based infrastructure for developing and deploying distributed applications. Using this approach, Microsoft hopes that companies will use Microsoft server products to enable the next generation of applications. These applications will be based on components that interact with a core set of services to provide a flexible, robust and scalable architecture for multiple front-ends. Using this approach, instead of scaling up to bigger servers (the Unix approach), companies will "scale out" to multiple inexpensive servers that work in concert. Consider it the server version of RAID.

The technologies that we’ll discuss include:

· Universal Data Access

· COM and DCOM

The tools that we’ll cover include:

· SQL Server

· Transaction Server (MTS)

· Message Queue Server (MSMQ)

· Internet Information Server

Finally, we’ll discuss where these various tools and technologies are located, and what you type of hardware and operating system must be running in order to make use of these services.

A quick note about XML

While XML is not a service that is provided by Microsoft, I should mention that it plays a key role in Windows DNA applications. XML is the standard messaging approach used throughout DNA. When information is passed between tiers in a multi-tier DNA application, it is passed as XML. Additionally, a standard called SOAP (Simple Object Access Protocol) is gaining strength as the XML-based approach for calling methods via HTTP. For more information on SOAP, please see: http://msdn.microsoft.com/xml/general/soap_faq.asp

Universal Data Access

Universal Data Access (UDA) is essentially what its name implies: the ability to access any data of any type from anywhere. It is made up of two main components: OLE/DB which is the mechanism that surfaces the data from a data provider, and ActiveX Data Objects (ADO) which is a standardized programmable front end to OLE/DB. Additionally, Remote Data Services (RDS) allows the developer to move ADO data from a server to a client via HTTP.

Figure 1: ADO and OLEDB

OLE/DB

OLE/DB is Microsoft’s successor to ODBC. Whereas ODBC was enormously successful in providing fast, ubiquitous access to any relational data source, OLE/DB is meant to provide the same fast, ubiquitous access to any data source, relational or not. OLE/DB ships with a standard provider for ODBC, which gives it immediate access to all ODBC data sources for which you have an existing driver.

ADO

ADO is a standardized, COM-based, programming interface for OLE/DB. It allows access to any OLE/DB data source from any COM-based programming language. ADO is a successor to the alphabet soup of data access mechanisms that Microsoft has shipped over the years (DAO, RDO, Jet). It is designed to provide fast access to any type of data and is not optimized for any particular back-end. In this respect, it is similar to Visual FoxPro’s view and cursor model, where development takes place against a representation of the data with VFP optimizing the access for you.

Microsoft has learned from its previous COM-based data access approaches, and has created ADO as a flat hierarchy with no need for accessing objects through a list of other objects. There are seven objects in the ADO object model:

	Object
	Description

	Command
	This object allows the developer to send a command to the data source. This command will typically be either a SQL statement or a stored procedure call. It can, however, be any command that the data source understands.

	Connection
	This object surfaces the connection to the data source. The Errors collection is accessed through the connection.

	Error
	The Error object contains information about any errors that happened when working with this data source.

	Field
	This Field object provides a representation of one column of data from the data source.

	Parameter
	The Parameter object provides a means of passing and changing parameters that are used in SQL statements or stored procedures.

	Property
	This object allows a data source to surface any unique information about itself that may not be standardized in a "fields" representation. For instance, a database may provide a "bookmarkable" property that show whether or not a particular database provide bookmarks.

	Recordset
	The Recordset object provides a rectangular view of the data that has been retrieved from the data source.

Remote Data Services (RDS)

Remote data services provide a mechanism for moving an ADO recordset to a separate, partially connected machine (e.g. HTTP and the Web). This service is typically used for limiting data traffic over a network connection. It is automatically installed with Internet Information Server and Internet Explorer 4 and above, and allows a developer to control where data will reside during editing.

COM and DCOM

Microsoft’s Component Object Model (COM) is the programming standard for writing inter-operating applications on a single Windows machine. DCOM adds transparent network communication between applications that is protocol independent. Using DCOM, a developer simply calls a COM object, and the object is accessed, no matter where it is on the network.

COM Packaging

COM components can be packaged in two ways: DLLs and EXEs.

COM DLLs

A COM DLL is an in-process component. By working in the same process as the calling executable, DLLs provide fast access at the expense of some run-time uncertainty: if the DLL crashes, so does the application. A COM DLL must be on the same machine as the calling executable.

COM EXEs

COM EXEs are out-of-process components. If a COM EXE crashes, the application will continue to run (provided that it was designed to continue working in the event of a failure in a COM call). However, COM EXE communication is slower due to the fact that the call happens out-of-process, either through Local Remote Procedure Calls (if the EXE is on the same machine) or Remote Procedure Calls (if the EXE is on another machine on the network). COM EXEs can be placed on any machine on the network.

COM Registration

COM components are found during a CREATEOBJECT call by searching the registry. It is typically found through its ProgID (a human understandable name like Excel.Application), which is translated to its ClassID (a machine understandable hex ID that is a Globally Unique Identifier). The registry contains the location and name of the EXE or DLL.

DCOM

When DCOMCFG, a program that ships with Windows, is run, the developer can specify that a particular COM EXE can be run remotely, the machine name, security information, and the location of the EXE. This information is stored in the client machine’s registry, instead of the local location.

When a CREATEOBJECT calls a distributed COM object, the call is translated by a proxy into a Remote Procedure Call (RPC) which is sent to the server machine. The server has a stub that translates the RPC into a COM call which is sent to the object. Any return value is translated back into an RPC, sent back to the client, translated back to COM and delivered to the calling application.

SQL Server

SQL Server is Microsoft’s platform for building reliable distributed applications and is their stated direction for relational data storage. A relational database server, it performs all query optimization on the server and supports SQL ‘92, stored procedures, server-based security and on-line backup.

Version 7 is a massive rewrite of SQL Server. Changes have occurred in every aspect of the product from administration to tuning to memory requirements to physical storage approaches. It continues Microsoft’s two-direction approach with the product:: it scales higher, while being easier to use.

Better Scaling

In order to scale into larger installations, Microsoft has added the following key features:

· Support for larger multi-processor servers,

· Cluster-ready for high availability

· Support for additional memory

· Tight security integration with NT

Ease of Use

In order to make the product easier to use, Microsoft has added the following key features:

· Natural Language Interface

· Wizards for automatically managing many administrator functions

· Built in data warehousing capabilities

Microsoft Transaction Server

Microsoft Transaction Server (MTS) combines the features of an Object Request Broker and a Transaction Processing Monitor. In other words, it not only serves server-based objects to client machines, it also ensures complete transactions on any database changes that occur due to calls to those objects. Finally, it includes its own programming model for objects that wish to take full advantage of MTS.

Object Request Broker

As an Object Request Broker (ORB), MTS handles all references to COM objects in its domain, providing those references to client calls as necessary. MTS components must be COM DLLs, and work in-process to MTS for extra speed.

Currently, MTS provides runtime caching, allowing components to be instantiated quickly. It also provides Just-In-Time Activation which allows commonly used components to stay in memory, even though your client code releases references.

A touted benefit of MTS is object pooling. Currently, this is only available to free threaded servers in Windows 2000 that implement an optional interface. Unfortunately, this leaves out VB and VFP based components. When pooling is enabled, and an object is instantiated under MTS, the reference is kept in a pool so that it can be given to any clients that call it, eliminating the instantiation time on each call.

Additionally, MTS objects should be stateless, that is, they should not have any properties whose values they must save between method calls. This allows MTS to provide the objects to the clients most efficiently. The client passes state information to each method call. This allows one instance of an object to serve many clients instead of each client requiring their own instance.

MTS objects live inside MTS Packages (renamed COM Applications in Windows 2000 component services), which are used to provide fault isolation. All objects in a given package are instantiated in-process to each other, and out-of-process to the client. An object in one package will never interfere with objects in another package.

Figure 2 shows a sample of two clients calling into MTS. Note that the clients access the MTS components out-of-process, while the components in the same package are in process to each other.

[image: image1.png]Serverl
roc DLL

Serverl
oc DLL

HH

dilhost.exe

(Out of Process)

Figure 2: MTS In-Process and Out-of-Process calls

Transaction Processing Monitor

In addition to its ORB capabilities, MTS tracks any databases that are accessed from its objects and ensures that transactions will take place – even across databases. Any database that support either the COM/TX or the XA standards for transactions can be managed by MTS. This includes such common databases as Microsoft SQL Server, Oracle, and IBM’s DB2. Desktop databases such as Visual FoxPro and Access do not support these standards and MTS will not provide transactions to these databases.

Application programming model

MTS provides access to its transaction monitoring and security information through a COM object called an ObjectContext. Any object within MTS can access its own ObjectContext and query that ObjectContext for information

This context object is used whenever you need to access the outside environment while within a component. For instance, you use the context object in order to tell MTS whether a component has successfully completed its tasks or not. These calls (to SetComplete or SetAbort) hook into the MTS transaction processing and control whether or not database transactions succeed or are rolled back.

Additionally, the IsCallerInRole function can be used to see if the user calling the object exists in a particular security role that you can set up. In other words, you can assign any NT user or group to a role that is defined within the MTS package. Your code can check to see if the user that is currently accessing the component is part of any given role, allowing you to code accordingly. For instance, the following code gives different types of users differing signing authority amounts for a credit limit.

DO CASE
 CASE oContext.IsCallerInRole("Manager")
 lySigningAuthority = $10000
 CASE oContext.IsCallerInRole("Clerk")
 lySigningAuthority = $1000
ENDCASE

Microsoft Message Queue Server

Microsoft Message Queue Server provides for asynchronous messaging between servers with full routing, priority-based communications, delivery guarantees and support for transactions through MTS.

Unlike synchronous messages, which require an immediate response (for instance, a function call), an asynchronous message waits until the recipient asks for the message before delivery. The differences can be thought of as a live phone call versus an answering machine. One requires that a person be at both ends while the call progresses. The other simply requires one of the parties.

There are many cases where an asynchronous solution may be better than a synchronous one. For instance, when an airline takes a reservation for a flight, it can asynchronously message the server of its food vendor with specifics for any special meals. There is no need to keep a continuous connection with the food vendor – the message can get there when the scheduled connection occurs. Asynchronous messaging will become even more important as wireless clients come to the fore. A wireless connection can drop at any time, so it is important to design those applications as asynchronously as possible, so that when connection is reestablished, the requests continue to run.

Internet Information Server

Internet Information Server (IIS) is Microsoft’s web application server. It incorporates World Wide Web, File Transfer Protocol, Index Server and Secure Sockets Layer into one product. Additionally, it integrates transactions into Web applications through MTS.

Through its ISAPI interface, Microsoft has provided Active Server Pages, which are used to help create interactive web applications and dynamic content. ASPs can be transacted through MTS and are key in a web-based n-tier system. In n-tier systems, ASPs are used to orchestrate calls to COM components that exist under MTS. In essence, the web browser does an action, the ASP sees what the action is, calls the proper COM components and returns the proper pages to the browser.

Where are these tools found?

Now that we’ve looked at some basic information about the tools, let’s discuss where they are found. I’ll separate out those that are available as separate products, those that come on the NT4 option pack and those that install with Windows 2000, in order to make it easier.

Available as Separate Products

SQL Server is sold as a product and must be purchased. A developer’s version is available with Visual Studio Enterprise Edition.

Universal Data Access is available as a download called the MDAC. It is also installed with Visual Studio Professional Edition and higher. It can be downloaded from http://www.microsoft.com/data.

COM and DCOM ship with Windows NT and 98. DCOM for Windows 95 is available as a download (pre-SR3 releases did not include it).

Windows NT 4

MTS, MSMQ, and IIS are all located on the Windows NT Option Pack CD. Please note that MSMQ and IIS can only be installed on Windows NT Server. IIS can be replaced with Personal Web Server on a Windows NT client or 95/98 machine. Additionally, the "Install All" option on the NT Option Pack will not install MSMQ. MSMQ must be installed separately.

Windows 2000

MTS, MSMQ and IIS all are installed with Windows 2000. MTS and MSMQ have been repackaged as the Windows 2000 component services.

