Communicating Between the UI and Middle-Tier in COMCodebook

A discussion of the architectural issues

Overview

When developing an application that reads from and writes to relational databases, the question of where the hierarchical relationship between tables that form a resource should be managed. It is possible to create various resources that provide different levels of hierarchy, and have the front-end application call whichever resource is appropriate. It is also possible to have the resources be a single layer, with the application front-end describing the relationships necessary at the time, allowing the middle-tier to handle the formalities of retrieving and updating things in the proper order. COMCodebook has selected the latter approach, believing that it is more flexible over time.

The Issue: Converting from Relational to a Hierarchical View of Data

In any complex database design, it is possible to view the data from multiple viewpoints, and to require that the data be accessed along relations to a varying number of tables. For instance, let’s assume the following, rather simple, hierarchy:

Customer->Invoice->Line Item->Inventory Item

As you can see, this hierarchy does not include any many-to-many relations, negating the viewpoint issue; it does show the issue involved in accessing levels of data. From these four tables, we may require resources as follows:

1. Customer Resource that contains only customer information. This would be used when modifying customer information such as the address. 

2. Invoice Resource that contains customer and invoice information. This would be used when reviewing a customer and the number of orders they’ve made in each quarter of the year. 

3. Full Invoice Resource that contains customer, invoice, and line item information. This would be used to review a customer and the invoices they’ve paid for. 

4. Inventory by Customer Resource that contains all four tables. This would be used to review the inventory items that the customer has ordered, as well as their current in-stock status. 

Note that this list doesn’t even include any hierarchical views that may begin at the customer or inventory item level.

The question now arises, do we require one resource for each approach that our application may require, requiring that new resources be created as new applications are brought into our organization, or is there another approach? We believe that there is: a resource is created for the lowest hierarchy level possible, and the COMCodebook framework provides a method of joining them at the UI level, sending the information to the middle-tier where it is combined as necessary.

The Solution: A Resource Manager Controller

In this approach, we delegate the responsibility for managing the hierarchical updates, etc., to a type of process object that we call a Resource Manager Controller. We create a resource for each type of object; in our case, we create a resource for Customer, Invoice (which includes Line Items - unless we could think of a reason for Line Items existing on their own), and Inventory. If a form requires Customer and Invoice information, it would request them, setting Customer as the parent of Invoice. A Resource Manager Controller would control each resource’s manager, calling them in the proper order as needed by the front end.

For a technical discussion of the architecture, see A Brief Overview of the Interface Architecture for COM Codebook.

 

