Validating Data In COMCodebook

September 1, 2000
By Michael G. Emmons

Overview

COMCodebook provides a data validation mechanism that is flexible, fast and easy to implement. Validation can be created on the field row and record set level. Since validation is provided as a separate service, it allows data validation to occur on any tier of the application that it is needed. This flexibility is extremely important in n-tiered applications because having the data validated on the front-end, for example, can save bandwidth by not having to make a round-trip to the server to validate the data. This paper will discuss the design of the validation service and how to implement data validation in a COMCodebook application. The example used herein can be found in the TimeTrac application. The TimeTrac application is a demonstration application that comes with COMCodebook. This paper assumes you have this application installed and are able to run it.

The Validation Service Design

Validation in COMCodebook is provided as a separate service, that is to say it’s own DLL. The programmatic base classes for validation can be found in the cvalidators.prg. Let’s examine the cvalidator class found in cvalidators.prg so that we can get a better idea of how things work. The Cvalidator class has the following properties:

· LTranslateDataPackageToVFPCursor - By default, the CValidator class will translate whatever data package is passed to it, i.e. ADO or XML, into a VFP cursor and manipulate the cursor. This allows the validation service to take advantage of the powerful data manipulation features found in VFP. There are some cases where you may not want to use VFP cursors but rather manipulate the original data package directly, in which case this property can be set to false.

· CPackageTranslatorClass - Determines which class will be used to translate the original data package passed to the class to validate to a VFP cursor. By default this will be COMCodebook’s "CCOMUtil" class. The CCOMUtil class provides much the same functionality as VFP’s VFPCOM.DLL. CCOMUtil contains methods for converting VFP data to/from ADO recordsets and XML among other things.

· OTranslator - This property will hold an object reference to the translator class specified in CpackageTranslatorClass.

· CCursorName - Specifies the name of the VFP cursor that will be created when the data package is translated to a VFP cursor, by default "cdataset". Ignored if the property lTranslateDataPackageToVFPCursor is false.

· CMessagingType - Determines what will be returned in the rxMessage parameter passed by reference to the Validate() method. The types supported are: MessageServiceParameter, XML, ADO. If cMessagingType is "MessageServiceParameter" the message service parameter object specified in the cMessageSericeParameterClass will be created and returned in the rxMessage paramter. If cMessagingType is "XML" an XML package will be returned in the rxMessage paramter. If cMessagingType is ADO an ADO record set object will be returned in the rxMessage parameter.

· CMessageServiceParameterClass - This property serves two functions. First, it indicates which class will be used to collect validation information. Second, if cMessagingType is "MessageServiceParameter" this class will also be used to return validation information in the form of an object in the rxMessage parameter from the Validate() method. Otherwise, the class will return the validation information in the appropriate format (XML, ADO) and that will be returned in the rxMessage parameter.

· OMessageServiceParameter - Stores reference to the message service parameter object (bridge).

The cvalidator class also has the following methods:

· Init() - If package translation is turned on, this method will call the CreatePackageTranslator() method.

· CreatePackageTranslator() - Creates an object reference to the class specified in the cpackagetranslatorclass property and stores the object reference in the oTranslator property.

· CreateMessageServiceParameterObject() - Creates an object reference to the class specified in the cmessageserviceparameterclass property and stores the object reference in the oMessageServiceParameter property.

· Validate(txVisitor, rxMessage) - This is the entry point into the validation algorithm. It can be called by the resource manager when it saves or directly by the developer. This is the method that is called to validate data for a particular resource. This method requires two parameters, txVisitor, which is a data package object, and rxMessage, which is an empty variable passed by reference which will be populated with validation information in the format specified by the cMessagingType property. This method makes calls to the Validate_Pre(), Validate_Implementation(), and Validate_Post() methods. If the Validate() method returns false then presumably the validation for the resource has failed. There is a mechanism for determining which part of the validation has failed and displaying the appropriate error messages when using the message service parameter object. This mechanism will be discussed later in the paper.

· Validate_Pre(txVisitor) - The pre-hook for validation. This is where the data package is translated to a VFP cursor. The value returned from this method is passed along to the Validate_Implementation() method.

· Validate_Implementation(txVisitor, tlPreStatus) - This method is responsible for calling the Validate_Field(), Validate_Row(), and Validate_Table() methods. The txVisitor parameter is the data package object. The tlPreStatus parameter is the value returned from the Validate_Pre() method. This parameter is useful for verifying that the data package translation went smoothly before continuing to validate the data.

· Validate_Field(txVisitor, tlPreStatus, roMessage) - This method validates data at the field level by iterating through the names of the fields in the record set. The name of each field in the record set is then parsed with the letters "vld" in front, for example "vldCustomerName". The class is then checked to determine if a method with this name exists. If the method exists it is called, passing txValue, tlPreStatus, and roMessage as parameters and the return value is stored. It is the responsibility of the developer to create field validation methods with appropriate names in COMCodebook’s A-layer. A field validation requirement example might be that the field CustomerName may not be empty. In this example the method vldCustomerName would have code to make sure the field was not empty.

· Validate_Row(txVisitor, tlPreStatus, roMessage) - This template method should be overridden by the developer in COMCodebook’s A-layer to provide row level validation.

· Validate_Table(txVisitor, tlPreStatus, roMessage) - This template method should be overridden by the developer in COMCodebook’s A-layer to provide table or record set level validation. A table validation requirement example might be that the total of a customer’s purchases my not exceed a certain amount.

· Validate_Post(txVisitor, tlValidationStatus) - The post-hook for validation. Once again we see the txVisitor parameter. The tlValidationStatus parameter holds the value returned from the Validate_Implementation() method. By default this method is a template that returns tlValidationStatus and can be overridden in subclasses.

· TranslateDataPackageToVFPCursor(txVisitor, tcCursorName) - This method translates the ADO or XML data package into a VFP cursor. The parameter txVisitor is the data package in question and tcCursorName is the name of the VFP cursor to translate the data package to. This method makes calls to TranslateADORecordsetToVFPCursor() or TranslateXMLTextStringToVFPCursor() depending on the data package type. Returns true if the translation is successful.

· TranslateADORecordsetToVFPCursor(txVisitor, txCursorName) - The name says it all. Uses the translator’s RSToCursor() method to create a VFP cursor from the ADO recordset. Returns true if successful.

· TranslateXMLTextStringToVFPCursor(txVisitor, txCursorName) - Uses the translator’s PackageToObject() method to create a VFP cursor from the XML string. Returns true if successful.

· GarbageCollect() - This method is defined in a parent class and is called automatically when the object is released or destroyed. Releases all object references.

There are not a lot of properties and methods. The CValidator class design is very straightforward in concept and implementation. We will take a look at creating a CValidator subclass that we can use in the TimeTrac application in a bit, but first let’s examine the message service parameter class we’ve been hearing so much about.

Overview of the Message Service Parameter Class

The class definition for the message service parameter class can be found in the cparameterobjects.prg. The full name of the class is CAbstractMessageServiceParameter. This is a parameter class whose purpose is to allow table based messaging to be passed from methods in one tier to methods in another tier. You’re probably saying to yourself, "Another class? I think those guys over at Flash try to make things way too complex and here I have to figure out yet another class!" While it may seem at first glance that some class designs in COMCodebook are unnecessarily complex upon closer examination it becomes clear that the design provides a flexible and robust environment for the developer. In the case of the CAbstractMessageServiceParameter class, the need becomes apparent when you consider how validation occurs in a 3-tier application.

Take a scenario where a user has a form or ASP page into which they enter information and press a save button. This data is then passed to the middle tier to be validated. Suppose the validation algorithm determines that the user did not enter a required field, how do you display this fact to the user? You can’t display a message in the middle tier because only the front-end has any connection to a user interface. You could, I suppose, return an error number to the front-end, have the front-end look up the message associated with the error in an error table, and then display the message. However, in this case you would need two sets of error tables, one in the middle tier to determine the error number and one in the front-end to determine the error message that is associated with the error number. A third option would be to return the error number and the error text. While this approach is better than the first two, it still maintains a separate error display mechanism, which is not as clean a design as it could be. Luckily good object-oriented design provides us with an elegant solution to these problems: why not wrap the validation error number, the validation error text and the functionality to display the validation error message in an object? This solution allows the message to be displayed on the front-end where it belongs, it does not duplicate lookup data, and the display mechanism is passed along with the validation information. Moreover, with this design the class can be subclassed and modified to fit the specific needs of the application.

However, although passing an object between tiers to encapsulate error gathering and display constitutes a good design, like most things there are exceptions to the rule. COM objects do not marshal very well over the internet. They are relatively heavy and require special firewall ports to be opened. For these reasons, in the case where the object would be passed over the internet, a better design would be to simply pass back the validation information in an XML string or ADO record set. It so happens that the Message Service Parameter class will allow messages to be retrieved in several formats, including XML and ADO. Let’s look at how the class is put together.

The Message Service Parameter Class Design

The design of the CAbstractMessgeServiceParmeter class is not very complicated. Let’s look at each of the properties and methods of the class to better understand how we can use the class in applications. The CAbstractMessgeServiceParmeter class has the following properties:

· LdisplayMultipleMessages - Default is true. When true the class will display all messages in its message array when calling the DisplayMessage() method. When false only the first message will be displayed.

· LReturnMessagesInXMLFormat - Default is false. When true messages in the message array will be stored in XML format.

· CPackageTranslatorClass - Default is "CCOMUtil". This is the class that will be used to translate messages to various formats.

· OTranslator - An object reference to the package translator class.

· CMessageServiceTable - The name of the table that contains the validation keys and messages. Can be only the name or a full path and name.

· CMessageServiceTableAlias - The alias that will be used for the message service table.

· AMsgSvc - A two-dimensional array containing the validation message ids and texts.

· AXMLMessages - A one-dimensional array containing the validation message ids and texts in XML format, if used.

The CAbstractMessgeServiceParmeter class has the following methods:

· DisplayMessages(txParm1, txParm2, txParm3) - If no parameters are passed, the method will display the messages in the message array. If parameters are passed, this method will call MsgSvc directly with the parameters. For more information on the MsgSvc that is integrated with COMCodebook see the documentation on the Fox Wiki forum: http://fox.wikis.com/wc.dll?Wiki~MsgSvc

· AddMessage(txMessageID, tcObjectName) - Adds a message to be displayed on the client to the aMsgSvc member array. The txMessageID parameter is the message ID or key found in the MsgSvc table. The tcObjectName parameter is the name of the object that is calling the AddMessage() method.

· ContainsMessages() - Returns true if the class contains any messages.

· InsertMessages() - Inserts the messages in the aMsgSvc member array into the MsgSvc table.

· GetMessagesInXMLFormat(rxMessages) - Returns all validation messages in XML format. RxMessages is an empty string passed by reference that will be populated with the XML messages. Returns the number of messages.

· GetMessagesInADOFormat(rxMessages) - Returns all validation messages in an ADO record set. RxMessages is an empty string passed by reference that will be populated with an ADO record set. Returns the number of messages.

· GetMessagesInArrayFormat(raMessages) - Returns all validation messages in a VFP array. RaMessages is an empty string passed by reference that will be populated with the array. Returns the number of messages.

We have now reviewed the design of both the validation class and the message service parameter class and are ready to put these classes to work for us. So, let’s get our hands dirty and begin writing some code!

Validating Data In The TimeTrac Application

Recall that the TimeTrac application is a 3-tiered application. It has four VFP projects associated with it: TimeTrac, ResourceMgr, Validator, and DataSource. When compiled the application will become an executable and three DLL’s. Go ahead and open VFP, change to the directory your TimeTrac application is sitting in and open all four projects. You can open the projects manually or by typing "do startcb" once you have changed to the TimeTrac directory.

Let’s begin my adding some validation to projects. The projects database has the following design:

[image: image1.png]Key [1d__|Name DataType Size
& Froedld i 7
Cusomeld 0
MenageiD udid 4
Name udsckbess @
StarDate i 8
EnDa i 8
Status udid 4

There will be only a few validation rules for this simple table:

1. The name of the project must not be empty.

2. The start date and the end date must not be empty.

3. The end date must be greater than the start date.

4. The status must not be empty.

5. The customer ID must not be empty.

6. The manager ID must not be empty

Here we have five field validation rules and one row validation rule (item 3). Let’s implement these rules in our project. In VFP, go to the validator project and open up the avalidators.prg. Add the following code to the program:

*--
DEFINE CLASS ProjectValidator AS IValidator OLEPUBLIC
*--
Name = "ProjectValidator"
*--
FUNCTION vldName(txValue, tlPreStatus, roMessage)
*--
LOCAL llRetVal
llRetVal = .F.
llRetVal = .NOT. EMPTY(txValue)
IF .NOT. llRetVal
roMessage.AddMessage("ProjectEmptyName", THIS.Name)
ENDIF
RETURN llRetVal
ENDFUNC

*--
FUNCTION vldStatus(txValue, tlPreStatus, roMessage)
*--
LOCAL llRetVal
llRetVal = .F.
llRetVal = .NOT. EMPTY(txValue)
IF .NOT. llRetVal
roMessage.AddMessage("ProjectEmptyStatus", THIS.Name)
ENDIF
RETURN llRetVal
ENDFUNC

*--
FUNCTION vldCustomerID(txValue, tlPreStatus, roMessage)
*--
LOCAL llRetVal
llRetVal = .NOT. EMPTY(txValue)
IF .NOT. llRetVal
roMessage.AddMessage("ProjectEmptyCustomer", THIS.Name)
ENDIF
RETURN llRetVal
ENDFUNC

*---
FUNCTION vldManagerID(txValue, tlPreStatus, roMessage)
*---
LOCAL llRetVal
llRetVal = .NOT. EMPTY(txValue)
IF .NOT. llRetVal
roMessage.AddMessage("ProjectEmptyManager", THIS.Name)
ENDIF
RETURN llRetVal
ENDFUNC

*---
FUNCTION vldStartDate(txValue, tlPreStatus, roMessage)
*---
LOCAL llRetVal
llRetVal = .NOT. EMPTY(txValue)
IF .NOT. llRetVal
roMessage.AddMessage("ProjectEmptyDate", THIS.Name)
ENDIF
RETURN llRetVal
ENDFUNC

*---
FUNCTION vldEndDate(txValue, tlPreStatus, roMessage)
*---
LOCAL llRetVal
llRetVal = .NOT. EMPTY(txValue)
IF .NOT. llRetVal
roMessage.AddMessage("ProjectEmptyDate", THIS.Name)
ENDIF
RETURN llRetVal
ENDFUNC

*---
*-- Use ROW validations when the contents of two or more
*-- fields must be used to perform the validation test.
*-- In this case there are two tests that must take
*-- place involving the start and the end dates of the project
*-- Note the use to two variables to store test results
*-- The first one, llRetVal, is initialized to .T. and
*-- changed to .F. as soon as any validation fails.
*-- It never gets changed back to .T. llValid on the
*-- other hand is used to store the results of each
*-- individual test and triggers the message addition
*-- for each test as they fail.
*---
FUNCTION Validate_Row(txVisitor, tlPreStatus, roMessage)
*---
LOCAL llRetVal
llRetVal = .T.
llValid = TTOD(cDataSet.EndDate) > TTOD(cDataSet.StartDate)
IF .NOT. llValid
llRetVal = .F.
roMessage.AddMessage("ProjectStartDateGreater", THIS.Name)
ENDIF
RETURN llRetVal
ENDFUNC

ENDDEFINE

This code should be fairly self-explanatory, but let’s go over the highlights. Remember from our discussion of the validator class that the all the methods in the validate code will be called automatically. Also recall that "cDataSet" is the name of the VFP cursor the data package was converted to as specified in the cCursorName property. Finally, notice the call to the roMessage.AddMessage() method. This call will look up the key passed in the MsgSvc table and add the message text to the object. That’s all the code we need to have as far as the project validator is concerned. Save the program and build a new validator DLL.

We now need to add validation message information to the MsgSvc table. Open the msgsvc.dbf table found in the TimeTrac\InterFace\MsgSvc directory. The structure of the table is shown below:

[image: image2.png]Name Type \Width Decimal Indes NULL
ke Character 60 =

clunclon Charscler & C —
coignd Memo 4 e
cema Character 5

calmert Charscter 1 | |
cbell Character 5 Dekte
cion Character 3

cool Character 3

couivisud Character & =

We’ll need to add five new records to the table. For each record we need to fill in three pieces of information: the ckey field, the coriginal field and the cguivisual field. The ckey field is the name of the key that is being passed to the AddMessage() method. The coriginal field is the validation text that will be displayed when a validation fails. The cguivisual field is the name of the bitmap to use when displaying the validation error messages. Fill in the five new records as follows:

	Ckey
	Coriginal
	Cguivisual

	ProjectEmptyName
	The name of the project must be entered.
	info.bmp

	ProjectEmptyDate
	The start date and the end date must be entered.
	info.bmp

	ProjectEndDateGreater
	The project end date must be greater than the project start date.
	info.bmp

	ProjectEmptyStatus
	The project status must be entered.
	info.bmp

	ProjectEmptyCustomer
	The project customer must be entered.
	info.bmp

	ProjectEmptyManager
	The project manager must be entered.
	info.bmp

The final step in the validation process is to make sure the project resource manager knows to use the ProjectValidator class to validate its data before saving it. Open the aresourcemanagers.prg found in the resourcemgr project and find the class definition for project. If it’s not already there, override the resource manager’s cValidatorObjectAlias property to be "ProjectValidator" and make sure that it is included as part of the entity references array. The first few lines of the class definition should look something like this:

DEFINE CLASS Project AS aAbstractResourceManager OLEPUBLIC

cValidatorObjectAlias = "ProjectValidator"
cDataSourceObjectAlias = "ProjectDataSource"
Name = "Project"
*-------------------------------------
PROTECTED FUNCTION DefineParticipatingEntities()
*-------------------------------------
DIMENSION THIS.aEntityReferences[3,4]
THIS.aEntityReferences[1,1] = "DataSource.ProjectDataSource"
THIS.aEntityReferences[1,4] = "ProjectDataSource"
THIS.aEntityReferences[2,1] = "Validator.ProjectValidator"
THIS.aEntityReferences[2,4] = "ProjectValidator"
ENDFUNC

Recompile the resourcemgr DLL. The automatic validation for the project resource is now complete! Whenever data is saved the resource manager’s Save() method will automatically create the validator class associated with it and call the class’ Validate() method. The validator class takes care of the rest.

To verify the validator is working, run TimeTrac and open the TestResource form. Click on the projects button and refresh the project list. Now, select a project, delete the project name and try to save the project. You should see a validation message box popping up indicating that the name of the project must be entered, as seen below.

[image: image3.png]sssignments | Milestones | Time Worked
Projects
Vanager
=] | uanager
Custoner [1o, ary -
jv Customer
Prject List [Boenrocorn e =]
S
[S4K Project Test fame.
[Saers Bears
tuio one

Conclusion

Validation in COMCodebook is provided as a separate service and allows validation rules to be enforced from any tier in an application. The design allows field, row and record set validation, is fast, and is easy to implement.

