Windows DNA and the Front End

Overview

A Windows DNA application is divided into three basic tiers: the User Interface tier, the Business tier, and the Data Tier. This white paper discusses the User Interface tier, and reviews the purpose of the tier, requirements in a DNA-based application, and some of the design decisions made when creating the User Interface. In particular, this session will focus on creating DNA apps that allow you to have multiple front ends. It will discuss the issues in creating DNA front ends including:

· When do I use ADO? XML? VFP Cursors?

· How do I handle rules that should go in the front end?

· What type of interfaces should I be creating? Web? Win32? 

· Should I use HTML 3.x? DHTML? 

What is the UI Tier?

The UI Tier in a Windows DNA application should be thought of as a view into a component-based model of the current business. Data is moved around a DNA application and is presented to the various user interfaces in myriad formats, which do not necessarily mirror the format of the data storage itself. In other words, we may use a relational database to persist the data used by our applications, but we may present the data in more of an object or hierarchical database fashion. Our interface may be written in a thick client (Win32-based) like Visual FoxPro, Visual Basic, or even one of the Office applications, or using a thin client through HTML or DHTML interfaces.

The key is that in every case, all of the business logic exists away from the front end, though some may be pushed to the front end as well – in order to provide a richer user experience.

A Quick Overview of the Business Tier

A three-tier application consists of a data tier, a middle tier and the user interface. The middle tier is itself broken down into two logical groupings: a set of components that access the data, and a set of components that provide an easy to call view of the business. This latter set of components typically provides three types of services:

A resource manager component that provides access to an object that carries state information across to the UI tier. We call this stateful object a resource. It is equivalent to the things a company works with: an invoice, a customer, etc.

A validation component who’s job it is to know how to validate the data in any one given resource.

A process component that understands how to do the things that involve multiple resources – like posting an invoice. The job of the process is to mirror the actions that take place in a company.

A diagram of how these components interoperate is provided in Figure 1.


Figure 1: A view of the components of a 3-tier system

Let’s take a closer look at what types of methods these business modeling components provide:

	Component
	Methods

	Resource Manager
	Get…() methods
	These methods are designed to let the UI tier ask for a resource by any given item. For instance, a GetCustomerByID() method would return a customer resource when given a customer ID.

	
	GetProxy() 
	This method returns a data proxy that is used to retrieve a particular resource. It typically consists of an ID and description that is bound to a listbox or combobox. When a particular item is selected, a Get…ByID() method is called to retrieve all the information about the item.

	
	Save()
	Saves the resource that is passed to the method after validating it.

	
	Delete()
	Deletes the resource that is passed to the method.

	
	GetEmptyResource()
	Returns an empty resource that can be used to add a new item.

	Validation
	Vld…() methods
	Each property of a resource that must be validated has its own validation method.

	
	Validate()
	This method validates the resource that is passed to it by calling all the vld() methods sequentially.

	Process
	Execute()
	These methods are designed to let the UI tier ask for a resource by any given item. For instance, a GetCustomerByID() method would return a customer resource when given a customer ID.


As you can see from the standard methods, these components allow a front end developer to retrieve the information that is needed, and to send it back to be validated or manipulated and finally saved by the middle tier. 

Managing State

Now that we have a basic overview of the services that our front end can call, let’s take a closer look at our resource object. The resource object is there to provide a means of passing information from the middle tier to the front end and back again. It is also used to pass information between the components on the middle tier, but that’s not germane to our discussion of front ends. A resource object must meet two requirements:

1. It must be able to provide one or more rows of information, with multiple columns in each row. To us, it must look like a rectangular piece of data – which is what our front ends are typically used to working with. 

2. The resource has to be able to create an exact duplicate of itself across the network – in other words, from the middle tier server to our client workstation. In this way, the middle tier can pass the state information to the front end, and then forget about it.

There are a number of approaches that allow us to store rectangular sets of data, including arrays, delimited strings, ADO recordsets, XML streams, and VFP cursors. However, not all of them meet the second requirement. Let’s take a closer look:

· Delimited strings become difficult to work with when we have either binary data or multiple sets of variable length text strings (like memo fields). 

· Arrays and VFP cursors cannot be easily sent across a network unless we convert them to some other format like XML and reconvert them at the end. 

· ADO recordsets can be disconnected and passed across the network – ADO takes care of automatically converting the recordset to either a MIME or XML format, and reconverting it back at the other end. 

· XML can, naturally, be passed across as a string.

Looking at the above list, we see that only two of the formats pass our test: ADO recordsets and XML strings. Since an ADO recordset gets converted (behind the scenes) to an XML string anyway, we end up with the use of either of these as our resource passing mechanism. 

Validation Issues

When creating a three-tier application, one of the natural questions is “where do I put my rules? I can put them in the database as stored procedures, in the middle tier as code, or in the front end as code or script – depending on the front end. Which is best?”

The answer is really all of the above. Let’s take a look at when you might put different rules in the various tiers:

· Data Tier – This tier may need to have rules that enforce referential integrity as well as domain information. Additionally, if any rules require complex data manipulation, placing them in the database as stored procedures allows us to cut down on network traffic.

· Middle Tier – This tier is where the bulk of rules that run the daily business go. The process components implement the “step by step” types of rules, while the validation components implement the field-specific types of rules. 

· Front End – This tier contains rules that are geared towards lessening network traffic to the middle tier. For instance, if a user hits cancel, the data is released without a call to the middle tier. If the user is entering a new password, this tier can check to be sure that both the password and its validation entry are equivalent before passing them to the middle tier.

There are a number of rules that we may prefer be on both the middle tier and the front end. For instance, checking that a field is not empty is a rule that may apply in a number of tiers. In this case, the validation components can be written to use Jscript with the Microsoft Scripting Engine, and they can be used to pass certain scripts to the front end in order to allow the testing to happen there. In this way, you only have the validation stored in one location, though it can be executed in multiple locations.

A Choice of Front Ends

Another common question is “what front-end should I use?” Here again, the answer tends to be “yes”. Select the front-end that works best for the view into the business that you are providing. For instance, an auditor may prefer a front-end written using Excel. A system for distributed offices may work best using a thin-client like Internet Explorer and DHTML if you can specify the browser. If you are writing a system for widespread use, having a plain HTML 3.2 interface makes sense. An internal system that requires pieces of Word, Excel and Project may work best with a Visual Basic front end. The key is that the code for all of these front ends becomes standardized through the use of middle-tier components. A basic view of the code looks like this:

oCustomer = CREATEOBJECT(“Resource.Customer”)
loProxy = oCustomer.GetProxy()
*--Let the user select one object from the list
oResource = oCustomer.GetCustomerByID(lnID)

This code works the same whether it’s in an ASP page, a VFP form, a Word document or a VB form.

Summary

In this white paper we reviewed some of the issues in creating Windows DNA front ends and discussed why using middle tier components allows us to easily move between different thick and thin clients. By implementing this approach, we are able to tune the interface for our clients, decide where the validation should be, and provide easy access to standard corporate information. Finally, we looked at some sample code from a front end.

