

Component Guide

COPYRIGHT
1989 - 2001 by ZUCCHETTI TOOLS S.r.l.
Tutti i diritti riservati
Questa pubblicazione contiene informazioni protette da copyright. Nessuna parte di
questa pubblicazione può essere riprodotta, trascritta o copiata senza il permesso
dell'autore.

TRADEMARKS
Tutti i marchi di fabbrica sono di proprietà dei rispettivi detentori e vengono riconosciuti
in questa pubblicazione.

ZUCCHETTI TOOLS S.r.l. SOFTWARE TECHNOLOGY
PADOVA - BELLARIA - RIMINI
E-mail: clabrn@codelab.it
Indirizzi Sito Web:
 http:\\www.zucchettitools.com
 http:\\www.codepainter.com
 http:\\www.codelab.it

C O M P O N E N T G U I D E

S O M M A R I O - I

Sommario

Introduction ...1

The Component Guide..3

2.1 Objects Options.. 3

2.2 Available Objects... 6
2.2.1 Cruscotto (Dashboard) ..7

Calc ..8
Property..8

2.2.2 Esegui procedura batch (Execute Routine) ...8
Events...9
Property..9

2.2.3 Calendario (Calendar) ...10
Calc ..10
Property..10

2.2.4 Semaforo (Traffic Lights) ...11
Calc ..11

2.2.5 Richiesta file (Ask File) ..11
Property..12

2.2.6 Richiesta BitMap (Ask Bitmap) ..12
Property..13

2.2.7 Immagine Bitmap (Display Bitmap Image)13

C O M P O N E N T G U I D E

S O M M A R I O - I I

Calc.. 14
Property ... 14

2.2.8 Documento MS Word (MS Word Document).................................. 14
Calc.. 15

2.2.9 Zoom... 15
Calc.. 15
Events .. 16
Property ... 16

2.2.10 Zoom con selezione (Zoom With Selection)................................ 18
Calc.. 18
Events .. 19
Property ... 19

2.2.11 Grafico (Graph) .. 21
Calc.. 22
Events .. 22
Property ... 22

2.2.12 TreeView.. 25
The Issue.. 25
The Solution .. 25
Solution Implementation ... 26
Examples ... 33
Technical Notes ... 40

2.2.13 Timer .. 40
Implementation Options .. 41
Examples ... 44

2.2.14 Displaying The Internet Explorer Browser 45
Examples ... 47

2.2.15 Controllo Proprieta' Visuali (Check Visual Properties) 50
Calc.. 51
Property ... 51

2.2.16 Stringa Calcolata (Calculated String) ... 51
Calc.. 52
Property ... 52

C O M P O N E N T G U I D E

I N T R O D U C T I O N 1

Capitolo 1

Introduction

The 'Component Guide' guides you through the functionalities of CODEPAINTER
REVOLUTION Visual Objects.

The next chapter describes all available objects, its characteristics and how these
objects can be used.

WARNING

Class titles and property strings in CodePainter are currently still in Italian. This
manual therefore maintains the Italian names and strings. You will always find the
English translation next to the titles and under the strings.

We apologize for any inconvenience this may cause to you and we commit amending
the problem as soon as possible.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 3

Capitolo 2

The Component
Guide

2.1 Objects Options

Visual Objects can be added to dialog windows of your application. Go to
CodePainter Front End and open the Painter corresponding to the desired entity
(Master File, Detail File, Master/Detail, Dialog Window, Routine Painters). Open the
'Item' menu and select 'Object'.

C O M P O N E N T G U I D E

4 T H E C O M P O N E N T G U I D E

You can also add a Visual Object clicking the 'Object' button on the 'Painter Tools'
toolbar.

Once the object has been added you need to define its parameters in the 'Object
Definition' dialog window.

CodePainter has a set of predefined Visual Objects that belong to predefined classes.
When you select a Visual Object some simple guidelines help you defining the object.
These guidelines are taken from a list of predefined classes.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 5

The class list is stored in the OBJECTS directory of CODEPAINTER REVOLUTION.
Objects are defined in the CP_CLASS.PRG routine, which is stored under the
VFCSIM directory of CODEPAINTER REVOLUTION.

A new class can be defined creating a subdirectory to OBJECTS, which will be named
after the class. The new class must be also defined in the routine.

In each directory that identifies a class a file with the extention '.CPL' is required. This
file can be created/modified using a Text Editor, such ad NotePad, MS WinWord, etc.
Each .CPL file contains a standard command ('GenericObject….') as well as the
initialization of class properties (in the "Init()" method).

Example of a CPL File for an additional class

f r om Gener i cOb jec t impor t Ob jec t

c l a s s cp_<nome c la s se>(Ob jec t)

 p roc In i t ()

 desc r ip t i on :="<C lass Desc r ip t i on>"

 b i tmap:=" immag ine .bmp"

 w :=< in i t i a l w id th >

 h :=< in i t i a l h igh t >

 <add i t i ona l p rope r ty > :=<add i t i ona l p rope r t y va l ue>

 . . .

 use rp roper t i e s ["<prope r ty>"] := '<va lue> '

 end

end

For more information on object class definition please refer to manuals of the used
programming language under the heading CP_CLASS.PRG.

C O M P O N E N T G U I D E

6 T H E C O M P O N E N T G U I D E

To enter an object in the Class field click the '? Button: a pick-list containing
predefined and additional classes is opened. Basing on the class type selected, some
fields within the 'Object Definition' window are valorized. Typically, valorized fields
are 'Calc' and 'User Def'". For more details on the meaning of fields please refer to
the User Reference Guide.

To add Visual Objects select the '?' button next to the Class field. A pick list is
opened and a set of class types shown. Depending on the class type selected, fields in
the dialog window are automatically entered. The class values are entered in the 'Calc.'
field, and the field classes characteristics in the 'Property' area . For the meaning and
use of other fields in the dialog window please refer to the 'User Reference Guide'.

2.2 Available Objects

Let us now see the list of available objects.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 7

2.2.1 Cruscotto (Dashboard)

The object 'Cruscotto' displays a dashboard that changes depending on the value of a
field or of a numeric variable. To add the dashboard you need to define the following
parameters:

C O M P O N E N T G U I D E

8 T H E C O M P O N E N T G U I D E

Calc
The 'Calc' field defines the numeric value ('??? Numeric' defines the
parameter type) to which the arrow position changes. The syntax
is:'??? Numerico'

Translation:'??? Numeric'

Property

The 'Property' area contains the parameters required for the value definition. The
syntax is: Min=0,Max=100

Parameter Name Description

Min Minimum Dashboard Value.

Max Maximum Dashboard Value.

To display the weighting of the item price defined in the field PRZART you need to
define the price working variable in the 'Calc' field, namely:

W_PRZART

If the price value can be minimum 0 and maximum 1000 you need to change the
'Property' in:

Min=0,Max=1000.

2.2.2 Esegui procedura batch (Execute
Routine)

The 'Esegui Procedura Batch' object allows executing a routine when one or more
defined events are triggered. An event is a specific happening in the program
execution.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 9

The 'NotifyEvent' procedure is defined in each program and allows notifying these
happenings so that they can be managed by the 'Event' procedure defined in Visual
Objects.

CodePainter supports predefined events that are notified at fixed points of each
procedure and cannot be changed. Some of these events are INIT, DONE, INSERT
START, INSERT END, etc.; e.g. the 'Update End' event is added after a record
update to start a routine performing specific tasks.

 To add the 'Execute Routine' object you need to define the following parameters:

Events

The 'Events' field defines the event or the list of events (divided by commas) that
trigger the routine procedure. The field is optional. Clicking the '?' button next to the
field all available events are listed. Events are stored in the EVENTS.CPL file under
the CLASSES directory.

The syntax used is:'??? Evento_1, Evento_2, Evento_n...'

Translation'??? Event_1, Event_2, Event_n...'

Property
The 'Property' field contains the name of the routine procedure that
must be executed. The syntax used is:Prg='??? nome del programma da
eseguire'

TranslationPrg='??? procedure name that must be executed'

To execute the routine procedure EXPL_DIS after the current record is saved, the
'Property' field must be defined as follows:

Prg='expl_dis'

In the 'Events' field you need to type the following event:

C O M P O N E N T G U I D E

1 0 T H E C O M P O N E N T G U I D E

Update end

2.2.3 Calendario (Calendar)

The 'Calendario' object displays a calendar and gives you the possibility to select a
date. To use this object you need to define the following parameters:

Calc
In the 'Calc' field define a 'date' type variable. The syntax used
is:'??? Data'

Translation'??? Date'

Property

In the 'Property' field define a 'date' type variable in which you want to input the
selected date. The date is selected double clicking it on the calendar.

The syntax used is: Var='w_???'

To display the calendar with the date stored in the field 'DATAMOV' in the 'Calc' field
type

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 1 1

W_DATAMOV

In the 'Property' field type:
var='W_DATMOV'

2.2.4 Semaforo (Traffic Lights)

The 'Semaforo' object displays green or red traffic lights, depending on the logical
expression associated to the object. To use traffic lights you need to define the
parameters as follows:

Calc
In the 'Calc' field define the logical expression that influences the
traffic lights color. The syntax used is: '??? logico (.t.=verde
.f.=rosso)'

Translation '??? logic (.t.=green .f.=red)'

To display green traffic lights when the price in the field PRZART is greater than 100
you need to define the following parameter:

In the 'Calc' field type the expression:
W_PRZART>100

2.2.5 Richiesta file (Ask File)

The 'Richiesta File' object displays the 'Open' dialog window so that a file can be
selected. A file name and its path can be associated to a working variable (of a field or
variable). This class can be used for example to associate a MS Word document to be
opened with the class 'Word Document'.

C O M P O N E N T G U I D E

1 2 T H E C O M P O N E N T G U I D E

To use this object you need to define the following parameters:

Property
In the 'Property' field you need to add the working variable
containing the path of the selected file. The syntax used is:
Var='w_???'

Must contain the path and the MS Word Document name that must be opened in the
'Property' area. E.g. if you want to ask for DOCFILE , you need to define the
following:

var='W_DOCFILE'

2.2.6 Richiesta BitMap (Ask Bitmap)

The 'Richiesta Bitmap' object displays a button to call the 'Open' dialog window so
that a Bitmap file can be selected. The object is associated to the 'Bitmap Images' class
so that images can be displayed as Bitmaps or Icons (*.ICO)

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 1 3

To use this object you need to define the following values:

Property
In the 'Property' area you need to define the working variable
containing the name and path of the selected Bitmap image. The syntax
used is: Var='w_???'

2.2.7 Immagine Bitmap (Display Bitmap
Image)

The 'Immagine Bitmap' object displays a Bitmap image or Icon. To use this object you
need to define the following:

C O M P O N E N T G U I D E

1 4 T H E C O M P O N E N T G U I D E

Calc
In the 'Calc' field define the working variable containing the file
name and path. The syntax used is: '??? nome bitmap'

Translation '??? bitmap name'

Property
In the 'Property' field define the name and path of the Bitmap image
or Icon that must be displayed. The syntax used is: 'bitmap di
default'

Translation 'default bitmap'

2.2.8 Documento MS Word (MS Word
Document)

The 'Documento MS Word' object creates/opens a MS Word document. To use this
object you need to define the parameters as follows:

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 1 5

Calc
In the 'Calc' field you need to define the name of the MS Word
document that must be created or opened. The name must be typed
between apexes. You can also define a working variable containing the
file name and path. In this latter case the apexes are NOT required.
The syntax used is: '??? nome documento'

Translation '??? document name'

2.2.9 Zoom

The 'Zoom' object adds integrated zooms in dialog windows. To use this object you
need to define the parameters as follows:

Calc

In the 'Calc' field add the variable, field, or expression that triggers the re-execution of
the query. Clicking the '?' button next to the field you can select the file from a pick-
list.

If the dialog window has the variable/field 'DESART' and you want to re-execute the
query every time that 'DESART' is changed you need to define 'w_DESART' in the
'Calc' field.

C O M P O N E N T G U I D E

1 6 T H E C O M P O N E N T G U I D E

The syntax used is:'al variare di questa espressione riesegue la
query'

Translation'when this expression changes re-execute the query'

Events
The 'Events' field defines the event or the list of events divided by
commas that trigger the routine procedure. This field is optional.
Clicking the '?' button next to the field the list of available events
is displayed. The list of events is stored in the EVENTS.CPL file
under the CLASSES directory. The syntax used is: '??? Evento_1,
Evento_2, Evento_n...'

Translation '??? Event_1, Event_2, Event_n...'

Property
The 'Property' field contains the parameters to define values basing
on the following
syntax:bAdvOptions=.t.,bReadOnly=.t.,cTable='tabella',cZoomFile="
",bOptions=.t.

TranslationbAdvOptions=.t.,bReadOnly=.t.,cTable='table',cZoomFile="
",bOptions=.t.

Parameter Name Description

bAdvOptions=.t. Flag that activates the configuration options button ('Options').

bReadOnly=.t. Determines whether zoom rows must be edited or not.

cTable='nome_tabella' Table name on which the zoom is executed.

cZoomFile=.f. Configuration Name

bOptions=.t. Flag that activates various zoom buttons, namely 'Ask
Parameters', 'Configuration', Execute Report, etc.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 1 7

The 'cTable' variable contains the table name on which the zoom is executed, i.e. the
name of the table that in the configuration file comes before '_VZM'. To work on the
configuration file of the zoom 'MyConfiguration.<Transactions>_vzm', the value
'Transactions' must be associated to the 'cTable' variable. You therefore need to type
cTable='Transactions'.

N. B.

If you want to use a memory cursor in MS Visual FoxPro you can simply type the cursor name
in the 'cTable' variable. The cursor must not be stored in the application databases. The system
does not find the cursor in any database and therefore searches in the memory for an active cursor
having the same name .

The 'cZoomFile' variable contains the configuration name that must be used. The
default value .f. allows using the configuration of the default zoom that has been
created for the table defined in 'cTable'. The system will search for the configuration
<Table_Name>_vzm'.

You can also use a custom zoom configuration typing the zoom configuration name
between apexes next to the variable 'cZoomFile='. To associate the configuration file
'MyConfiguration.<Table_Name>_vzm' to the zoom you need to type 'MyConfiguration'
next to 'cZoomFile='. If the zoom is based on a query the system will search for
query parameters in the dialog window from which the zoom is executed. The zoom
result is saved in the memory cursor "cCursor", which contains the extracted records

Let us assume you integrated a zoom in 'Items' that filters all transactions of the item
you are working on. The filter parameter for the Visual Query is 'w_ARCODART'.
The variable is defined in the 'Items' window and in the query in the 'Field Name' of
the 'Filter Parameter' tabstrip. The 'Example' area in the 'Filter' tabstrip has the
variable '?w_ARCODART'. The Visual Query will not use the working variable
defined in 'Items'.

You can use values defined in the zoom associating a name, i.e. reference, to the
object. Adding a unique identifier in the 'Ref' field a working variable representing the
object is created. You can thus create reference zoom fields using the GetVar().
function.

To carry over values of zoom fields in dialog window fields or variables, you need to
type 'MyZoom' in the 'Ref. Field'. The variable 'w_MyZoom' is automatically created
and values are read with the 'GetVar' function using the following syntax:
w_Myzoom.getvar('<FieldName>'). To associate the zoom field value to the dialog
window field or variable, you need to define the field or variable as 'Calculate' and in
the 'Cal/Init/Def' field type: w_Myzoom.getvar('<FieldName>'), whereby the
<FieldName> is the name of the zoom field that must be carried over.

C O M P O N E N T G U I D E

1 8 T H E C O M P O N E N T G U I D E

You can edit and change zoom rows setting the parameter bReadonly to .f. Changes to
zoom rows affect the temporary file and are not saved.

2.2.10 Zoom con selezione (Zoom With
Selection)

The 'Zoom con selezione' object adds integrated zooms having a selection checkbox.
To use this object you need to define the parameters as follows:

Calc

In the 'Calc' field add the variable, field, or expression that triggers the re-execution of
the query. Clicking the '?' button next to the field you can select the file from a pick-
list.

If the dialog window has the variable/field 'DESART' and you want to re-execute the
query every time that 'DESART' is changed you need to define 'w_DESART' in the
'Calc' field.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 1 9

The syntax used is:'al variare di questa espressione riesegue la
query'

Translation'when this expression changes re-execute the query'

Events
The 'Events' field defines the event or the list of events divided by
commas that trigger the routine procedure. This field is optional.
Clicking the '?' button next to the field the list of available events
is displayed. The list of events is stored in the EVENTS.CPL file
under the CLASSES directory. The syntax used is: '??? Evento_1,
Evento_2, Evento_n...'

Translation '??? Event_1, Event_2, Event_n...'

Property
The 'Property' field contains the parameters to define values basing
on the following
syntax:bAdvOptions=.t.,bReadOnly=.t.,cTable='tabella',cZoomFile="
",bOptions=.t.

TranslationbAdvOptions=.t.,bReadOnly=.t.,cTable='table',cZoomFile="
",bOptions=.t.

Parameter Name Description

bAdvOptions=.t. Flag that activates the configuration options button ('Options').

bReadOnly=.t. Determines whether zoom rows must be edited or not.

cTable='nome_tabella' Table name on which the zoom is executed.

cZoomFile=.f. Configuration Name

bOptions=.t. Flag that activates various zoom buttons, namely 'Ask
Parameters', 'Configuration', Execute Report, etc.

C O M P O N E N T G U I D E

2 0 T H E C O M P O N E N T G U I D E

The 'cTable' variable contains the table name on which the zoom is executed, i.e. the
name of the table that in the configuration file comes before '_VZM'. To work on the
configuration file of the zoom 'MyConfiguration.<Transactions>_vzm', the value
'Transactions' must be associated to the 'cTable' variable. You therefore need to type
cTable='Transactions'.

N. B.

If you want to use a memory cursor in MS Visual FoxPro you can simply type the cursor name
in the 'cTable' variable. The cursor must not be stored in the application databases. The system
does not find the cursor in any database and therefore searches in the memory for an active cursor
having the same name.

The 'cZoomFile' variable contains the configuration name that must be used. The
default value .f. allows using the configuration of the default zoom that has been
created for the table defined in 'cTable'. The system will search for the configuration
<Table_Name>_vzm'.

You can also use a custom zoom configuration typing the zoom configuration name
between apexes next to the variable 'cZoomFile='. To associate the configuration file
'MyConfiguration.<Table_Name>_vzm' to the zoom you need to type 'MyConfiguration'
next to 'cZoomFile='. If the zoom is based on a query the system will search for
query parameters in the dialog window from which the zoom is executed.

Let us assume you integrated a zoom in 'Items' that filters all transactions of the item
you are working on. The filter parameter for the Visual Query is 'w_ARCODART'.
The variable is defined in the 'Items' window and in the query in the 'Field Name' of
the 'Filter Parameter' tabstrip. The 'Example' area in the 'Filter' tabstrip has the
variable '?w_ARCODART'. The Visual Query will not use the working variable
defined in 'Items'.

Records selected with the Zoom are saved in the temporary cursor 'cCursor'. The
cursor has as many fields 'XCHK' as records defining whether the record has been
selected (Value 1) or not (Value 0).

You can use values defined in the zoom associating a name, i.e. reference, to the
object. Adding a unique identifier in the 'Ref' field a working variable representing the
object is created. You can thus create reference zoom fields using the GetVar().
function.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 2 1

Using the object reference you can pass on the cursor name and the
selected records to a routine procedure. For example, if you defined
the 'Ref' field as 'MyZoom' and you want to pass on the cursor name to
the routine procedure, you need to recall the procedure using the
following syntax: <RoutineName>(w_Myzoom.cCursor)

You can edit and change zoom rows setting the parameter bReadonly to .f. Changes to
zoom rows affect the temporary file and are not saved.

The 'Zoom con selezione' object notifies four different events. These events allow
defining complex procedures and are defined in the following table:

EVENT DESCRIPTION

"<ZoomName> row checked" When a row is selected

"<ZoomName> row unchecked" When a row is deselected

"<ZoomName> after query" Before the query is executed

"<ZoomName> before query" After the routine procedure has been executed

2.2.11 Grafico (Graph)

The 'Grafico' object adds graphs linked to Visual Query data. To use this object you
need to define the parameters as follows:

C O M P O N E N T G U I D E

2 2 T H E C O M P O N E N T G U I D E

Calc
In the 'Calc' field define the field, variable, or expression that
triggers the query re-execution. Clicking the '?' button next to the
field you can select the required element from a pick-list. If e.g.
you want to re-execute the query when the field 'ARDESART' in the
dialog window is updated you need to type 'w_ARDESART' in the 'Calc'
field. The syntax used is:'al variare di questa espressione riesegue
la query'

Translation'when this expression changes re-execute the query'

Events
The 'Event' field defines the event or the list of events divided by
commas, that trigger the routine procedure. The field is optional.
Clicking the '?' button next to the field the list of available events
is opened. The list is read from the EVENTS.CPL file under the CLASSES
directory. The syntax used is: '??? Evento_1, Evento_2, Evento_n...'

Translation '??? Event_1, Event_2, Event_n...'

Property
The 'Property' area contains parameters for the definition of values.
The syntax used is:cModel='modello', cExclCol='esclude colonne',
bTitle='titolo', bMod=.f., bByCol=.f., cQuery='query/cursore'

TranslationcModel='model', cExclCol='exclude columns', bTitle='title',
bMod=.f., bByCol=.f., cQuery='query/cursor'

Parameter Name Description

cModel='modello' ('model') Graph model name with or without
the extention 'VGR'.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 2 3

cExclCol='esclude colonne' ('exclude columns') Columns of source data (Query) that
must be excluded from the graph.
The format used is: <Column
Number>, [<Column Number>].
Defining for example
cExclCol='1,5,8' will exclude the
columns 1 5 and 8.

cTitle='titolo' ('title) Graph title. It will be ignored if a title
has been already given to the graph
model.

bMod=.f. When the parameter is defined as
FALSE the graph is 'display only'.
When the parameter is defined as
TRUE the graph can be modified
double clicking on it.

bByCol=.f. When the parameter is defined as
FALSE the graph is created 'by row'.
When the parameter is defined as
TRUE the graph is created by
column, which is useful when
dealing with queries that have no
Pivot functionalities.

cQuery='query/cursore' ('query/cursor') Name of the Query or of the
Memory Cursor on which the graph
creation is based. Defining the
extention as 'VQR' it will be
interpreted as Visual Query. If the
extention is left blank it will be
interpreted as Cursor.

To display the graph 'LIS_ART' in 'Items' you need to add a 'Grafico' object in the
'Items' dialog window and define the parameters as shown in the following picture:

C O M P O N E N T G U I D E

2 4 T H E C O M P O N E N T G U I D E

In particular the 'Property' area has been defined as:
cModel='LIS_ART', cExclCol='2', cTitle='Item List',
bMod=.t.,bByCol=.f., cQuery='LIS_ART.VQR'

When the field w_ARCODART is updated the query LIS_ART.VQR is re-executed
and data is passed on to the graph having the same name. The column 2 is excluded
(cExclCol='2'), the graph title is the one defined in cTitle, the graph can be changed
(bMod=.t.) and has been created by row (bByCol=.f.). The end result should look like
the following picture:

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 2 5

2.2.12 TreeView

The Issue

Structured data can not always be easily displayed because it is usually complex. You
need to identify the components of structured data and again the components of
components, etc. down to the lowest level. Data is typically organized using two
structures linked by a Parent/Child relationship, no matter if the link is between two
entities (a Master File and a Detail File) or within a Master Detail Entity.

The Solution

 The 'Treeview' object has been developed to graphically display structured data. When
the object is integrated into a dialog window, it displays data that is passed on using
the treeview. It is therefore fundamental that the data has a clearly defined structure.
To achieve this you need to define the level of each component. If you think e.g. of a
Personal Computer, the PC will be the first level, the mouse the second level and the
mouse ball the third level as it is a component of the mouse.

C O M P O N E N T G U I D E

2 6 T H E C O M P O N E N T G U I D E

When data is saved the level of the component is still unknown. This is why the
'Treeview' object is supported by a routine procedure that structures data. The routine
gathers all components in a cursor and to each component it adds a field defining the
level. The 'Treeview' object processes the cursor and produces the graphical
organization of data.

Solution Implementation

Routine

The routine procedure supporting the 'Treeview' object is made of two main
instructions:

• the creation of a temporary cursor containing data that can be processed
and then displayed;

• the creation of a cursor that contains a field that defines the treeview level
at which the record must be placed.

To create the temporary cursor you need to define a query for the data selection (using
the 'Query Painter') and to execute with a routine the following 'external program':

VQ_EXEC WITH "<query_name>", THIS, "<cursor_name>"

The query must always work on the 'Parent' database, which is selected depending on
the result required. The cursor containing the Visual Query result must be passed on
to one of the following external programs: cp_ExpDB, or cp_Level, whereby
cp_ExpDB is called to display data of Bills Of Materials and cp_Level to display the
structured data as treeview.

These two routines do not necessarily need to be integrated in the 'Treeview' object.
They can be also used to create cursors that process data and order it in levels.

Bills Of Materials (BOMs) are a typical component of commercial/business
applications. BOMs are complex and structured on multiple levels. Developing BOMs
is usually costly in terms of time and resources. In CodePainter BOMs are readily
available simply implementing the routine procedure 'cp_ExpDB'.
The 'cp_ExpDB' routine creates cursors that can be used to treeview BOMs or to
cancel possible BOMs balances. The routine basically adds two fields to the cursor:

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 2 7

• LvlKey: character field defining the level of the record within BOMs. This
field is used when the cursor is displayed in the 'Treeview' object.

• QtaComp: numeric field defining the sum of the table's field containing
the total. This field has been defined in the routine as parameter. E.g. to
create a BOM for warehouse items, the table must detail the item
components. The total number of components making up the item could
be one of the total fields.

The call to the routine procedure cp_ExpDB must be integrated:

• In the 'Exec' command of the Routine Painter or of procedures having the
'External Prg.' option.

• In CodePainter Painters where the call to a 'Program' object is defined.

• In the manual areas.

The parameters of the 'cp_ExpDB' class are the following:

C O M P O N E N T G U I D E

2 8 T H E C O M P O N E N T G U I D E

Parameter Name Description

cOutCursor Output cursor name that will contain the data.

cInpCursor Input cursor name that is opened.

Usually the cursor is the result of a Visual Query executed on the
'Parent' object. The cursor fields are a subset of the fields in the
reference table 'cRifTable'. Therefore the cursor can not be the
result of a join between other tables.

cRifTable Name of the referenced table.

Usually it is the 'Parent' table defined in the 'Parent/Child'
relationship.

cRifKey List of reference table key fields involved in the link between the
'Parent/Child' and the table that must be opened.

The syntax used is: '<campo chiave 1>, ..., <campo chiave n>'.

Translation

'<key field 1>, ..., <key field n>

cExpTable Name of the table that must be opened.

This table contains fields and data required to open the BOM.

Usually it is the 'Child' table defined in the 'Parent/Child'
relationship.

cExpKey List of key fields of the table that must be opened, involved in the
link between the 'Parent/Child' and the reference table.

The syntax used is: '<campo chiave 1>, ..., <campo chiave n>'.

Translation

'<key field 1>, ..., <key field n>

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 2 9

cRepKey List of repeated key fields of the table that must be opened,
referring to the the 'Parent' table key fields defined in the
parameter 'cRifKey'.

Usually these fields are involved in a 'Relationship' link with the
referenced table.

The syntax used is: '<campo chiave 1>, ..., <campo chiave n>".

Translation

'<key field 1>, ..., <key field n>

cExpField Name of the total field of the table that must be opened.

The field must be numeric. The value contained in the field is
multiplied by the value contained in the same field of the record
which is one level above.

The total is displayed in the output cursor field 'QtaComp'.

cOtherField Name of the fields of the table that must be opened. These fields
must be included in the cursor result 'cOutCursor'.

In routines supporting the 'Treeview' object you need to define the call to an 'external
Program' and name it "cp_Level". This class returns a cursor where the character
field 'LvlKey' has been added. This field defines the unique level of the record. The
cursor is displayed in the 'Treeview' object as input parameter. The parameters of the
class 'cp_Level' are the following:

C O M P O N E N T G U I D E

3 0 T H E C O M P O N E N T G U I D E

Parameter Name Description

cCursor Name of the cursor that creates the field that defines the level.

cCursorNodes List of fields of the cursor 'cCursor', separated by commas, having
a node functionality.

cTotField List of node total fields, separated by commas.

The Treeview Object

No matter whether you are defining treeviews or BOMs, when you add a 'Treeview'
object the 'Objects Definition' window must be always defined as shown in the next
picture. You can distinguish the use of the 'Treeview' object when you define the
'External Program' ('cp_ExpDB' or 'cp_Level').

In the 'Object Options' you need to define the parameters as follows:

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 3 1

In the 'Calc' field you need to define the variable, field, or
expression that triggers the query re-execution. Clicking the '?'
button next to the field the list of available working variables is
displayed. For example if you want that the query is re-executed when
the field 'ARDESART' in the dialog window is up-dated, in the 'Calc'
field you need to define the variable 'w_ARDESART'. The syntax
displayed is:'al variare di questa espressione riesegue la query'

Translation'when this expression is changed re-execute the query'

In the 'Events' field define the event or list of events divided by
commas, that trigger the routine execution. This field is optional.
Clicking the '?' button the list of available events stored in the
CLASSES.CPL file are displayed. The syntax used is:'??? Evento_1,
Evento_2, Evento_n...'

Translation'??? Event_1, Event_2, Event_n...'

The 'Property' area contains the parameters that must be passed on to
the template. The syntax used is:cCursor='cursore',cShowFields='lista
dei campi da visualizzare'

TranslationcCursor='cursor',cShowFields='list of fields to be
displayed',cNodeShowField='campo da visualizzare nei
nodi',cLeafShowField='campo da visualizzare nelle foglie'

Translation,cNodeShowField='field to be displayed in the
nodes',cLeafShowField='field to be displayed in the
subdirectories',cNodeBmp='lista dei bitmap dei nodi',cLeafBmp='bitmap
dell'elemento'

Translation,cNodeBmp='list of the node bitmaps',cLeafBmp='element
bitmap'

Parameter Name Description

cCursor Name of the cursor created, i.e. 'cp_ExpDB' or 'cp_Level'. In
both cursors there must always be an indexed level field named
'LvlKey' that has the following syntax:

 <nodo 1>. <nodo 2>.<nodo n>.

 Translation

 <node 1>. <node 2>.<node n>.

C O M P O N E N T G U I D E

3 2 T H E C O M P O N E N T G U I D E

cShowFields String containing the list of cursor fields divided by commas that
must be displayed in the various levels of the treeview. If there are
n levels and m fields the level x will display the field having the
sequence number calculated with the following formula: x=n
module m.

cNodeShowField String containing the name of the cursor field that must be
displayed in the nodes together with fields defined in the
parameter 'cShowFields'.

cLeafShowField String containing the name of the cursor field that must be
displayed in the leafs, together with fields defined in the parameter
'cShowFields'.

cNodeBmp List of bitmap files (<bitmap name>.bmp) divided by commas,
that will be added to the treeview nodes having elements. If there
are n levels and m bitmaps, the level x will display the bitmap
having the sequence number calculated with the following
formula: x=n module m.

cLeafBmp Name of the bitmap file (<bitmap name>.bmp) that must be
displayed in the treeview leafs.

The field name that is added to the treeview parameter must be a valid MS Visual
FoxPro instruction containing the file name and other data. For example:

cNodeShowField="arcod_art"

cNodeShowField=""Item "+Trim(arcod_art)+"
.Price:"AllTrim(Str(prz_art))"

The second half of the parameter definition in the example above completes the
information on the node that can thus be read.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 3 3

cShowFields='" "+ardes_art'

cNodeShowFields='"Code: "+arcod_art'

cNodeShowFields='"Price:"+Trim(Str(prz_art))'

Using this definition the fields of the parameters 'cNodeShowField' and 'cShowField'
are displayed in the subelement nodes. The fields of the parameters 'cLeafShowField'
and 'cShowField' are displayed in the leafs.

Using the Treeview in the application is very easy and similar to the standard MS
Windows Explorer in Windows 98. The structure looks like a tree. When the Treeview
is opened only the main nodes are displayed (roots). You can extend them clicking on
the '+' next to the nodes. The node detail can have other nodes that again can be
expanded in the same way, or final elements (leafs) that can no longer be expanded.
When you expand a node the '+' next to it turns into a '-'. Clicking on the '-' you can
close the node's detail.

The Treeview 'GetVar ()Method' allows building references on field values included in
the Treeview. Open the 'Object Options' window and define a unique identifier in the
'Ref.' field. A working variable representing the object is created. Through this variable
you can access the 'GetVar()' and other element's methods and properties. Using the
syntax w_<rif_treeview>.getvar('<FieldName>') you can access the field values of the
element you selected in the treeview.

 Treeview objects generate two kind of events. The first is called NodeClick and the
second NodeRightClick. The 'NodeClick' event is generated double clicking an
element. The 'NodeRightClick' is generated right clicking an element.

The event notification is transparent to the application execution. To have some
impact on the application events need to be associated to objects that can answer the
notification, like e.g. the Esegui procedura Batch (Execute Routine). In the 'Object Options'
window of the answering object you need to define the treeview reference name (in
capital letters) followed by the name of the event. The syntax is: RIF_TREEVIEW
EventName

Examples

Here to follow you will find the example of an application that gives you a complete
overview on the 'Treeview' object.

C O M P O N E N T G U I D E

3 4 T H E C O M P O N E N T G U I D E

Bill Of Materials

To build the Bill Of Materials (BOMs) you need to define two entities: a Master File
named 'Items' and a Detail File named 'Components'. Define two links: a
'Relationship' link and a 'Parent/Child Relationship'. The 'Relationship' link connects
the primary key (arcod_art) of the 'ArtDB' table in 'Items' and the repeated primary
key (art_com) of the 'CompDB' table in 'Components'. The 'Parent/Child
Relationship' links the primary key (arcod_art) of the 'ArtDB' table and the
unrepeated primary key (arcod_com) of the 'CompDB' table.

The BOM 'Treeview' dialog window will be made of the objects 'Treeview' and
'External Program'.

The 'External Program' object calls a routine when the dialog window is opened
(triggered by the Event Init) and creates a cursor containing the data that must be
displayed. The routine associated to the object is as follows:

vq_Exec with "BOMQ", this, "BOM"

cp_ExpDB with
"View","BOM","ArtDB","arcod_art","CompDB","cod_com","art_cod","qta_com
","qta_com"

If used("BOM")

select BOM

use

End if

The first instruction executes the External Program and creates the cursor named
'View' that contains the fields of the query 'BOMQ'. The 'BOMQ' query selects all
fields of the table 'ARTDB'. The SQL Sentence used is:

SELECT artDB.cod_art, artDB.des_art, artDB.prz_art FROM artDB

The cursor is created using a query that has been build with the Query Painter and is
therefore transparent to all kinds of databases.

'cp_ExpDB' is the 'External Program' execution that creates the cursor 'View'
containing detailed data and a further field detailing the record level. The parameters
are:

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 3 5

• View: name of the temporary cursor containing detail data. The cursor has
been previously created with the SELECT instruction.

• BOM: name of the cursor in which data must be entered.

• ArtDB: name of the basic table from which data is selected.

• cod_art: primary key of the basic table.

• CompDB: name of the table from which detail data is selected.

• cod_com and art_cod: fields making up the key of the detail table
('CompDB').

• qta_com: name of the detail file of the detail table (optional).

• qta_com: quantity field name of the components table (optional).

The If instruction checks whether the 'BOM' cursor is opened. If so the instruction
selects and closes it.

After having created the cursor that will contain the data that must be viewed you can
define the 'Treeview' parameters.

Add a 'Treeview' object and in the 'Property' area define the following parameters:

'cCursor' as 'View'.

'cShowField as 'trim(ardes_art)+" Qta:"+alltrim(str(qta_com))', which is the string
with no blanks containing the values displayed on the different levels. The 'qta_com'
field refers to the quantity field of the 'Components' table.

cLeafShowField as 'Tot. Comp.:"+alltrim(str(qtacomp))+" art.', which is the string
with no blanks containing the values that will be added to strings of the various
'Treeview' levels.

The 'qta_com' field refers to the field of the external procedure 'cp_ExpDB'
containing the overall total of the 'Components' table.

The bitmap associated to the parameter 'CbmpNode' is 'esc.bmp' and the one
associated to 'cBmpElement' is 'word.bmp'. The final result should look like the
following picture.

C O M P O N E N T G U I D E

3 6 T H E C O M P O N E N T G U I D E

Now change the example to use the GetVar() method of the NodeRightClick event.

In the 'Treeview Object Options' window type 'TreeArt' in the 'Ref.' field. The
working variable w_TreeArt is thus created. The field values of the selected object are
read in the 'Treeview' using the syntax: w_<rif_treeview>.getvar('<FieldName>').
This means that in this example the read values are: "arcod_art", "ardes_art",
"udm_art", "prz_art", "iva_art", following the syntax
w_TreeArt.getvar('<FieldName>')

To manage the answers to the events you need to add a Esegui procedura Batch (Execute
Routine) object which executes a procedure when the event NodeRightClick is
triggered. In the 'Execute Routine' object option window add the string TREEART
NodeRightClick in the Events field. In the 'Property' area in the parameter prg type the
procedure name 'RClick'.

The RClick procedure opens the warning message used by the Visual FoxPro
instruction wait wind "Right mouse key of the selected element". As you can see in the next
window the bitmap parameters has changed as well as the cleafShowField parameter
that now displays the price instead of the quantity.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 3 7

Basic Treeview

You are now required to display the quantity of items ordered by various customers
divided by order form. In the application design define three entities, namely two
Master Files 'Customers' and 'Items' and a Master/Detail 'Orders'. The three entities
are linked by two 'Relationship' links. The first link is between the primary key
(cod_cli) of the 'CliDB' database ('Customers') and the customer field (cli_ord) in the
'OrdDB_m' table ('Orders'). The second link is between the primary key (cod_art) of
the 'ArtDB' table and the 'Items' field (ord_art) in the 'OrdDB' table.

The dialog window of the 'Basic Treeview' is made of the objects 'Treeview' and
'External Program'.

The 'External Program' routine calls a procedure when the dialog window is opened
and creates a cursor that contains the data that must be displayed. The routine
procedure associated to the object is:

C O M P O N E N T G U I D E

3 8 T H E C O M P O N E N T G U I D E

vq_Exec with "ViewQ", this, "View"

cp_Level with "View", "art_ord, cli_ord", ""

The first instruction executes the External Program that creates the
cursor View containing the fields of the ViewQ query previously
created with the Query Painter. The 'ViewQ' query selects the same
fields from the tables using the following SQL sentence:SELECT
ordDB_m.cod_ord, ordDB_m.cli_ord, cliDB.cli_des, ordDB.art_ord,
artDB.des_art, SUM(ordDB.qta_ord) AS qta_ord, FROM (((ordDB RIGHT
OUTER JOIN ordDB_m ON ordDB_m.cod_ord=ordDB.cod_ord) LEFT OUTER JOIN
artDB ON artDB.cod_art=ordDB.art_ord) LEFT OUTER JOIN cliDB ON
cliDB.cod_cli=ordDB_m.cli_ord) GROUP BY ordDB.art_ord,
ordDB_m.cli_ord, ordDB_m.cod_ord

The parameters of the vq_Exec procedure are:

• ViewQ name of the query from which the cursor is created.

• this is the pointer to the 'Routine' entity.

• View is the name of the cursor that will contain detailed data.

'cp_Level' is the execution of an External Program that creates the cursor 'View'.
The cursor contains the detailed data and the LvlKey field defining the record level.
The parameters used are:

• View is the name of the temporary cursor previously created by the
'vq_Exec' procedure containing the detailed data.

• art_ord, cli_ord is the list of fields of the created cursor. They are the
nodes of the treeview.

• "" no field is passed through as this nodes 'total' parameter is optional.

Now that the cursor has been defined you can define the 'Treeview' parameters. In the
'Object Definition' window go to the 'Property' area and in cCursor type the cursor
name View. In the cShowField parameter type the three values that define the three
levels separated by commas, namely:

des_art, i.e. the item description - first level,

des_cli, i.e. the customer description - second level, and

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 3 9

'Order No.' '+cod_ord+' Qty '+ alltrim(str(qta_ord)), i.e. the string associated to
the third level defining the order number in which the item and the ordered quantity
are stored.

The other parameters are left empty.

The added Esegui procedura Batch (Execute Routine) object is triggered by the event
NodeClick. In the Treeview object you need to define the 'Ref.' field in the 'Object
Options' window as 'DblClick'. In the 'Object Definition' window of the 'Execute
Routine' object you need to type the string DBLCLICK NodeClick in the 'Events' field,
and the procedure name 'DoubleClick' in the prg parameter in the 'Property' area. The
DoubleClick procedure opens the Visual FoxPro warning message wait wind "Double
Click on the selected item". The result should look like the following picture.

C O M P O N E N T G U I D E

4 0 T H E C O M P O N E N T G U I D E

Technical Notes

The Treeview object instances the 'cp_Treeview' class, which is stored in the file
'cp_class.prg.' The dialog window where you add this object will include a 'Treeview'
control.

2.2.13 Timer

Business/Commercial Software Applications sometimes need to manage time-
controlled activities. For example the application may have to automatically close
down a dialog window after a given time-period, or it may have to start routine
procedures at a given time every morning/ evening.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 4 1

To facilitate the job to Software Developers, CodePainter introduces the Timer
object. When this object has been integrated into a dialog window it notifies events
basing on defined dates and times or in time-lapses. The main activities performed by
this object are:

• checking whether this event must be notified or not;

• notifying the event.

To define the trigger of the event there are four parameters defininig intervals (in
seconds) in which the objects must check whether the event must be notified or not;
the number of times the event must be notified; the date and time during which the
event must no longer be notified. The first parameter defines the deadline for
checking the other parameters. If these latter ones are fulfilled the event is notified.

The 'Timer' object simply notifies an event and must therefore be associated to
another object that answers to this event.

Implementation Options

The 'Timer' Object Options window is shown in the following picture:

C O M P O N E N T G U I D E

4 2 T H E C O M P O N E N T G U I D E

To use the 'Timer' object you need to define the following parameters.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 4 3

Events

In the 'Events' field define the name of the event that must be
notified by the 'Timer' object. The syntax used is:Timer Event

Property

In the 'Property' area you need to define the intervals in which
parameters must be passed on to the template to notify the event. The
syntax used is: nSeconds=300,cStartAt='',cStopAt='',nTimes=0

Parameter Name Description

nSeconds Time intervals expressed in seconds on which the control on other
parameters must be executed. If this parameter is set to '0' the
control is initialized every 300 seconds but will never be
executed.

cStartAt Date and time from which the object must start notifying the
event.

cStopAt Date and time by which the object must stop notifying the event.

nTimes Number of times that the event must be notified. If this
parameter is set to '0' the event will always be notified.

The 'Timer' object is executed only when the dialog window in which it is integrated is
opened. Every time the dialog window is closed the associated counters are set to
zero. Let us suppose that you define the parameters so that the event is notified only
once. If the dialog window at that time is closed the event is not notified. If the dialog
window is left opened for over a day, the event is notified only once. Indeed the
control on the notification is made also on the event itself. If the event has been
already notified the defined number of times, the event is no longer generated. To
notify the event every day you need to define also the time when the object must stop
checking: counters are set to zero.

C O M P O N E N T G U I D E

4 4 T H E C O M P O N E N T G U I D E

Examples

The 'Timer' object is not displayed in the application. The End-user will only see the
effects it has on the other associated objects. Here to follow you will find two
examples on how the 'Esegui procedura batch (Execute Routine Procedure)' can be
associated to a 'Timer' object.

Dialog Window Close Down

To automatically close down the dialog window after 300 seconds you need to add
two objects: Timer and Esegui procedura batch (Execute Routine).

The 'Timer' must notify the TimeOut event only once after 5 minutes. The Object
Options window must therefore be defined as follows: In the Events field type the
string TimeOut. In the Property area type 300 next to nSeconds; '''' next to cStartAt;
'''' next to cStopAt, and 1 next to nTimes.

The 'Execute Routine' must execute the 'CloseWindow' routine when the 'TimeOut'
event is notified. The Object Options window must therefore be defined as follows:
in the Events field define the string TimeOut. In the Property area type the name of
the procedure that must be executed between apexes ('CloseWindow') next to Prg. The
CloseWindow routine closes down the window using the ecpQuit method of the
Parent. object.

//5 minutes have passed

parent.ecpQuit()

Backup

You are now required to activate the back-up procedure every day between 6:00 p.m.
and 7:00 p.m.

The 'Timer' Object Options window must therefore be defined as follows: In the
Events field type the string Backup . In the 'Property' area type 300 next to
nSeconds= , '18:00' next to cStartAt=, '19:00' next to cStopAt= , and 1 next to
nTimes=.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 4 5

The 'Execute Routine' object executes the 'RunBakcup' procedure when the 'Backup'
event is notified. In the fields cStartAt and cStopAt no dates have been defined, but
only times. When the StopDate is reached the counters are set to zero. The next day
the event will be again notified between 6:00 p.m. and 7:00 p.m. Defining specific
dates the counters will not be set to zero daily.

The 'Timer' object is always enabled when the application dialog window is in the
Load or Change mode. This applies to Master Files, Master/Detail and Detail Files. If
you want that the object is enabled also in the 'Query' mode you need to activate the
'Always Enabled' flag.

2.2.14 Displaying The Internet Explorer
Browser

Many Business/Commercial applications require a link to a Web site in order to
receive information or to download real-time data as e.g. currencies exchange rates.

To facilitate the Software Developers' task, CodePainter introduces two objects:

• "Browser Internet Explorer 4.0".

• "Bottoni per Browser IE 4.0" (Browser IE 4.0 Buttons).

These two objects allow integrating the Internet Explorer Browser 4.0 in your
application. The first object will display all documents that the browser can support.
The second allows the user to browse the documents that have been already
downloaded once. You can integrate these objects in any dialog window, access
Internet Explorer and browse on static addresses or addresses that can be taken from
a table, from a calculation result or directly from within the application.

Browser IE 4.0

When the Browser Internet Explorer 4.0 object is added to a dialog window it displays the
window of the Internet Explorer 4.0 Browser. You can define a default site on which
the window must be opened in the 'Calc' field. The use of this object requires the
following values:

C O M P O N E N T G U I D E

4 6 T H E C O M P O N E N T G U I D E

The 'Calc' field defines the string variable containing the 'URL'
address. The syntax used is:'Al variare di questa espressione riesegue
la navigazione'

Translation'When this expression changes re-execute the browsing'

The 'Events' field defines the event or the list of events separated
by commas. When the events are triggered a routine procedure must be
executed. This field is optional. Clicking the '?' button next to the
field you can select the event from a pick-list. The list of events is
stored in the 'EVENTS.CPL' under the directory 'CLASSES'. The syntax
used is. '??? Evento_1, Evento_2, Evento_n...'

Translation '??? Event_1, Event_2, Event_n...'

The Browser Internet Explorer 4.0 object generates the event NavigationComplete
which is triggered by ending the browsing activity. The event notification is
transparent to the application execution. You need to associate the object to another
object that answers to the event notification, such as the Esegui procedura Batch (Execute
Routine) object.

In the 'Object Options' window of the answering object you need to
define in the Events field the name of the reference object, i.e. the
Browser Internet Explorer 4.0 object using capital letters plus the
name of the event. The syntax used is: <Object Name> NomeEvento

Translation <Object Name> EventName

In the Browser Internet Explorer 4.0 object the cURL property has been defined, which
returns the address loaded by the browser. This property returns the current address
to which the object is pointing.

Bottoni per Browser IE 4.0 (Browser IE 4.0 Buttons)

When the Bottoni per Browser IE 4.0 (Browser IE 4.0 Buttons) object is added to a dialog
window it displays four buttons that allow to browse the Internet using the "Browser
Internet Explorer 4.0" object. To use this object you need to define the following
values.

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 4 7

The 'Property' area contains the parameter 'cBrowserName' to which the
name of the "Browser Internet Explorer 4.0" object is associated.
Defining this field you can use the object's buttons as simulators of
the standard Internet Explorer 4.0 buttons. The button functionalities
are Back, Forward, Stop and Refresh. The syntax used
is:cBrowserName='variabile che identifica il Browser IE4.0'

TranslationcBrowserName='variable identifying the IE 4.0 Browser.'

Examples

You are now required to add the two Browser objects into one window. You need to
define a dialog window and a routine.

HTML Document Dialog Window

The dialog window must have four elements for each browser:

• a string variable

• a BrowserButtons object

• a Browser; object

• an External Program. object.

The variables work as bar where browser addresses are defined. In these variables you
can define an http or ftp address to access the desired Web page.

There are two string variables that are initialized an http address. The first variable
initializes at an Internet address (e.g.www.codepainter.com), the second an Intranet
address (e.g. //spdnt).

The Browser objects contain the Web pages you are accessing.

The Object Options windows must be defined as follows: in the Ref field define the
reference names for the browsers ('browser1' and 'browser2'). In the Calc field define
the variables containing the URL address to which you want to connect ('address1'
and 'address2').

C O M P O N E N T G U I D E

4 8 T H E C O M P O N E N T G U I D E

The BrowserButtons objects allow browsing the pages that have been already accessed at
least once using the functionalities Forward and Back. Further they allow re-loading a
page in the browser using the functionality Refresh or to stop the downloading using
the functionality Stop.

The Object Options window are defined as follows. In the 'Property' area define the
reference to the Browser object next to the parameter cBrowserName: 'w_browser1'
and 'w_browser2'.

The 'External Program' object returns the current browser name in the
address bar and is executed when the Browser object has completed the
page download. The Object Options windows must be defined as follows:
in the Events field define the event NavigationComplete generated by
the first and second browser. In the first object add the string:
BROWSER1 NavigationComplete

and in the second object add the string BROWSER2 NavigationComplete

In the Property area type Browse next to prg, i.e. the name of the procedure that must
be executed: prg ='BROWSE(w_browser1,1)' and prg ='BROWSE(w_browser2,2)'.

The parameters passed on to the procedure are: the reference variable of the object
Browser, and the reference to the Browser that notifies the event.

The Browse Procedure

The 'Browse' procedure is called when the Browser object has completely downloaded
the Web page. The Browser returns the current address to the variable of the browser
that has called the address using the property cURL. The routine is:

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 4 9

//Parameter Definition

oBrowser(O)

nBrowser(N,1,0)

//Global Variables Definition

w_address1(C,60)

w_address2(C,60)

If nBrowser=1

w_address1=<=oBrowser.cURL

Else

w_address2=<=oBrowser.cURL

End If

The result of this example is shown in the following picture.

C O M P O N E N T G U I D E

5 0 T H E C O M P O N E N T G U I D E

2.2.15 Controllo Proprieta' Visuali (Check
Visual Properties)

The 'Controllo Proprietà Visuali' (Check Visual Properties) object allows to set an
object property and a value if required.

To use this 'Controllo Proprietà Visuali' object you need to define the following
parameters:

C O M P O N E N T G U I D E

T H E C O M P O N E N T G U I D E 5 1

Calc
In the 'Calc' field define the property value. Clicking the '?' button
next to the field all available working variables are listed. The
syntax used is:valore per la proprieta'

Translationproperty value

Property
The 'Property' area contains the variable name (cObj) and the property
(cProp). The syntax used is:cObj="nome variabile"cProp="propieta'"

TranslationcObj="variable name"cProp="property"

2.2.16 Stringa Calcolata (Calculated String)

The 'Stringa Calcolata' (Calculated String) object allows adding a label to the dialog
window.

To use this object you need to define the following parameters:

C O M P O N E N T G U I D E

5 2 T H E C O M P O N E N T G U I D E

Calc
In the 'Calc' field define the text, text color and background. The
syntax used is:testo','colore testo (num)','sfondo (num)

Translationtext','text color (num)','background (num)

Property
In the 'Property' area define the Caption. The syntax used is:caption=
testo della label

Translationcaption = label text

